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Abstract. A large variety of side channel analyses performed on embed-
ded devices involve the linear correlation coefficient as wrong-key distin-
guisher. This coefficient is actually a sound statistical tool to quantify
linear dependencies between univariate variables. However, when those
dependencies are non-linear, the correlation coefficient stops being perti-
nent so that another statistical tool must be investigated. Recent works
showed that the Mutual Information measure is a promising candidate,
since it detects any kind of statistical dependency. Substituting it for the
correlation coefficient may therefore be considered as a natural extension
of the existing attacks. Nevertheless, the first applications published at
CHES 2008 have revealed several limitations of the approach and have
raised several questions. In this paper, an in-depth analysis of side chan-
nel attacks involving the mutual information is conducted. We expose
their theoretical foundations and we assess their limitations and assets.
Also, we generalize them to higher orders where they seem to be an
efficient alternative to the existing attacks. Eventually, we provide simu-
lations and practical experiments that validate our theoretical analyses.

1 Introduction

Side Channel Analysis (SCA) is a cryptanalytic technique that consists in an-
alyzing the physical leakage produced during the execution of a cryptographic
algorithm embedded on a physical device. This side channel leakage is indeed
statistically dependent on the intermediate variables of the computation which
enables key recovery attacks.

Since their introduction in the nineties, several kinds of SCA have been pro-
posed which essentially differ in the involved distinguisher. A first family is com-
posed of SCA based on linear correlation distinguishers. When such an attack
is performed, the adversary implicitly assumes that there is a linear dependence
between its predictions and the leakage measurements. Actually, the attack ef-
fectiveness depends on the accuracy of this assumption. The most well-known
examples of such attacks are the Differential Power Analysis (DPA) [1] that
is based on a Boolean correlation and the Correlation Power Analysis (CPA)
[2] that involves Pearson correlation coefficient. The second important family
of SCA is composed of the so-called Template Attacks (TA) [3]. They involve



maximum-likelihood distinguishers and can succeed when the DPA or CPA do
not. However, TA can only be performed if the attacker owns a profile of the
leakage according to the values of some intermediate variables, which is a strong
limitation.

Recently a new kind of SCA, called Mutual Information Analysis (MIA),
has been proposed in [4]. It uses the Mutual Information as distinguisher. It is
an interesting alternative to the aforementioned attacks since some assumptions
about the adversary can be relaxed. In particular it does not require a linear
dependency between the leakage and the predicted data (as for CPA) and is
actually able to exploit any kind of dependency. Moreover, this gain in generality
is obtained without needing to profile the leakage as it is the case for TA.

Despite its advantages, the MIA suffers from several limitations and the
preliminary work of Gierlichs et al. [4] poses a number of open questions. First
of all, the MIA efficiency has not been clearly established and it is not clear
whether (and in which contexts) it is better than the other attacks that assume
the same adversary capabilities (as e.g. the CPA). The first attack experiments
presented in [4] suggest that MIA’s efficiency is strongly related to the attack
context (device, algorithmic target, noise, etc.). However, at this time an in-
depth analysis is missing to have a clear idea about this relationship. Secondly,
the estimation of the mutual information, which itself requires the estimation
of statistical distributions, is a major practical issue that has not been fully
investigated in [4]. This problematic has been dealt with in Statistics and Applied
Probabilities Theory (see for instance [5] for an overview). Among the existing
estimation methods, it is of crucial interest to determine the one that optimizes
the MIA. Only such a study will indeed allow us to form an unbiased opinion
about its efficiency versus the one of attacks involving linear dependence based
distinguishers.

2 Preliminaries on Probability and Information Theory

We use the calligraphic letters, like X , to denote sets. The corresponding large
letter X is then used to denote a random variable (r.v. for short) over X , while
the lowercase letter x - a particular element from X . For every positive integer
n, we denote by X a n-dimensional r.v. (X1, · · · , Xn) ∈ Xn, while the low-
ercase letter x - a particular element from Xn. To every discrete r.v. X, one
associates a probability mass function pX defined by pX(x) = p [X = x]. If
X is continuous, one associates to X its probability density function (pdf for
short), denoted by gX: for every x ∈ Xn, we have pX [X1 ≤ x1, · · · , Xn ≤ xn] =∫ x1

−∞ · · ·
∫ xn

−∞ gX(t1, · · · , tn)dt1 · · · dtn.
The Gaussian distribution is an important family of probability distributions,

applicable in many fields. A r.v. X having such a distribution is said to be
Gaussian and its pdf gµ,Σ is defined for every x ∈ Xn by:

gµ,Σ(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, (1)



where µ and Σ respectively denote the mean and the covariance matrix of X.
In this paper, we will study r.v. whose pdf is a finite linear combination of

Gaussian pdfs. Such a pdf, which is called a Gaussian mixture (GM for short),
is denoted by gθ and it satisfies for every x ∈ Xn:

gθ(x) =
T∑

t=1

atgµt,Σt
(x) , (2)

where θ = ((at, µt, Σt))1≤t≤T is a 3T -dimensional vector containing the so-called
mixing probabilities at’s (that satisfy

∑
t at = 1), as well as the means µt and

the covariance matrices Σt of the T Gaussian pdfs in the mixture.
The entropy H(X) of a discrete n-dimensional r.v. X aims at measuring

the amount of information provided by an observation of X. It is defined by
H(X) = −

∑
x∈Xn pX(x) log2(pX(x)). The differential entropy extends the no-

tion of entropy to continuous n-dimensional r.v. Contrary to the entropy, the
differential entropy can be negative. It is defined by:

H(X) = −
∫
x∈Xn

gX(x) log2(gX(x))dx . (3)

If X is a n-dimensional Gaussian r.v. with pdf gµ,Σ , then its entropy satisfies:

H(X) =
1
2

log((2πe)n|Σ|) . (4)

In the general case when X has a GM pdf mixing more than one Gaussian
pdf, there is no analytical expression for its differential entropy. However, upper
and lower bounds can be derived. We recall hereafter the lower bound.

Proposition 1. [6] Let X ∈ Xn be a Gaussian mixture whose pdf gθ is such
that θ = ((ai, µi, Σi))i=1,··· ,T . Then, its differential entropy satisfies:

1
2

log

(
(2πe)n

T∏
t=1

|Σt|at

)
≤ H(X) . (5)

To quantify the amount of information that a second r.v. Y reveals about
X, the notion of mutual information is usually involved. It is the value I(X,Y)
defined by I(X,Y) = H(X) − H(X|Y), where H(X|Y) is called the conditional
entropy of X knowing Y. If Y is discrete, then it is defined by:

H(X|Y) =
∑
y∈Y

pY(y)H(X|Y = y) , (6)

Thanks to the mutual information (or to the conditional entropy), we have
a way to decide about the dependency of two multi-variate random variables: X
and Y are independent iff I(X,Y) equals 0 or equivalently iff H(X|Y) = H(X).



3 Brief Overview of Side Channel Attacks

Any intermediate variable which is a function f(X, k?) of a plaintext X and a
guessable secret key k? is sensitive and its manipulation can be targeted by an
SCA. For every key-candidate k ∈ K, we denote by fk the function x 7→ f(x, k)
and by L(k?) the leakage variable that models the leakage produced by the
manipulation/computation of fk?(X) by the device. The leakage variable can be
expressed as:

L(k?) = ϕ ◦ fk?(X) + B , (7)

where ϕ denotes a deterministic function and B denotes an independent noise.
In (7), the definition of f only depends on the algorithm that is implemented

and it is known to the attacker (it can for instance be a S-box function). On the
opposite, ϕ only depends on the device and its exact definition is usually un-
known to the attacker who will estimate it according to the device specifications
and/or to a leakage profiling phase. Actually, the SCAs essentially differ in the
degree of knowledge on ϕ and B that is required for the attack to succeed.

In a DPA, the attacker only needs to know that the mean of the r.v. ϕ◦fk?(X)
depends on a given bit of fk?(X). Based on this assumption, each key candi-
date k is involved to split the measurements into two sets and the candidates
are discriminated by computing differences of means between those sets. This
essentially amounts to process a Boolean correlation.

In a CPA, the attacker must know a function ϕ̂ that is a good linear approx-
imation of ϕ (i.e. such that ϕ̂ and ϕ are linearly correlated). Usually, he chooses
the Hamming weight function for ϕ̂. Based on this assumption, key candidates k
are discriminated by testing the linear correlation between ϕ̂ ◦ fk(xi) and L(k?)
for a sample of plaintexts (xi)i. This attack can be more efficient than the single-
bit DPA. However, its success highly depends on the correctness of the linear
approximation of ϕ by ϕ̂.

In a TA, the attacker must know a good approximation of the pdf of the
leakage L(k) for every possible key k. It amounts for the attacker to have a good
approximation of ϕ and of the standard deviation of the noise B (or its covariance
matrix in a multivariate model). Wrong key hypotheses are discriminated in a
maximum likelihood attack (see [3]). To pre-compute the pdf’s of all the variables
L(k), the attacker needs to have an open access to a copy of the device under
attack. This is a strong constraint since it is often very difficult to have such an
open copy in practice.

As noticed in [4, 5], MIA attacks are an alternative to the approaches above.
They consist in estimating the mutual information I(L(k?), ϕ̂◦fk(X)) instead of
the correlation coefficient or the difference of means. In an MIA, the attacker is
potentially allowed to make weaker assumptions on ϕ than in the CPA. Indeed,
he does not need a good linear approximation of ϕ but only a function ϕ̂ s.t. the
mutual information I(ϕ̂, ϕ) is non-negligible (which may happen even if ϕ and
ϕ̂ are not linearly correlated). It for instance allows the attacker to choose the
identity function for ϕ̂ which is of particular interest since no knowledge about
the leakage parameters is required.



The effectiveness of a key-recovery side channel attack is usually characterized
by its success rate, namely the probability that the attack outputs the correct
key as a the most likely key candidate. This notion can be extended to higher
orders [7]: an attack is said to be o-th order successful if it classifies the correct
key among the o most likely key candidates. In the following, we shall investigate
the (o-th order) success rate of MIA.

Let us denote by Z(k) the r.v. ϕ̂ ◦ fk(X). Moreover, for every function F
defined over K, let us denote by argmax-o k∈K F (k) the set composed of the o
key candidates k such that F (k) is among the o highest values in {F (k); k ∈
K}. An MIA succeeds at the o-th order iff the estimations Î(L(k?), Z(k)) of
I(L(k?), Z(k)) satisfy:

k? ∈ argmax-o
k∈K

Î(L(k?), Z(k)) . (8)

We therefore deduce two necessary conditions for an MIA to succeed at the
o-th order:

– Theoretical. The mutual information (I(L(k?), Z(k)))k∈K must satisfy:

k? ∈ argmax-o
k∈K

I(L(k?), Z(k)) . (9)

– Practical. The estimations of (I(L(k?), Z(k)))k∈K must be good enough to
satisfy (8) while (9) is satisfied.

In the next section, we study when Relation (9) is satisfied. This will allow us
to characterize (with regards to f , ϕ, ϕ̂) when an MIA is theoretically possible.
Then, for 3-tuples (f, ϕ, ϕ̂) s.t. (9) is satisfied, we shall study in Sec. 6 the success
probability of the MIA according to the estimation method used to compute Î
and according to the noise variation. This will allow us to characterize when
an MIA is practically feasible (i.e. when (8) is satisfied) and when it is more
efficient than the other SCA attacks.

4 Study of the MIA in the Gaussian Model

In this section we focus on first order MIA and, in a second time, we extend our
analysis to the higher order case i.e. when the target implementation is protected
by masking [8]. Our analyses are done under the three following assumptions
which are realistic in a side channel analysis context and make the formalization
easier.

Assumption 1 (Uniformity) The plaintext X has a uniform distribution over
Fn

2 .

Assumption 2 (Balancedness) For every k ∈ K, the (n, m)-function fk :
x 7→ fk(x) is s.t. #{x ∈ Fn

2 ; y = fk(x)} equals 2n−m for every y ∈ Fm
2 .



Remark 1. This assumption states that the algorithmic functions targeted by
the SCA are balanced which is usually the case in a cryptographic context.

Assumption 3 (Gaussian Noise) The noise B in the leakage (see (7)) has a
Gaussian distribution with zero mean and standard deviation σ.

Remark 2. This assumption is realistic and is therefore often done in the liter-
ature (see for instance [8, 9, 7]). Practical attacks and pdf estimations presented
in Sec. 6 provide us with an experimental validation of this assumption.

For clarity reasons, in the next sections we shall denote by L (resp. by Z)
the random variable L(k?) (resp. Z(k)) when there is no ambiguity.

4.1 First Order MIA

The mutual information I(L,Z(k)) equals H(L) − H(L,Z(k)). Since H(L) does
not depend on the key prediction, I(L|Z(k)) reaches one of its o highest values
when k ranges over K iff the conditional entropy H(L|Z(k)) reaches one of its o
smallest values. One deduces that an MIA is theoretically possible iff the 3-tuple
(f, ϕ, ϕ̂) is s.t.:

k? ∈ argmin-o
k∈K

H(L(k?)|Z(k)) , (10)

where argmin-o is defined analogously to argmax-o .
The starting point of our analysis is that studying the MIA effectiveness is

equivalent to investigating the minimality of H(L|Z(k)) over K. As a consequence
of (6), we have H(L|Z(k)) =

∑
z∈Im(ϕ̂) pZ(z)H(L|Z(k) = z). From (3), one

deduces:

H(L|Z(k)) = −
∑

z∈Im(ϕ̂)

pZ(z)
∫

`

gL|Z=z(`) log gL|Z=z(`)d` . (11)

To reveal the relationship between H(L|Z(k)) and the key-prediction k, the
expression of the pdf gL|Z=z in (11) needs to be developed. Let us denote by
Ek(z) the set [ϕ̂◦fk ]−1(z). Since X has a uniform distribution over Fn

2 , for every
` ∈ L and every z ∈ Im(ϕ̂ ◦ fk) we have:

gL|Z=z(`) =
1

#Ek(z)

∑
x∈Ek(z)

gϕ◦fk? (x),σ (`) . (12)

The next proposition directly follows.

Proposition 2. If X is a r.v. with uniform distribution, then for every pair
(k?, k) ∈ K2 and every z ∈ Z the pdf of the r.v. (L(k?) | Z(k) = z) is
a GM gθ whose parameter θ satisfies θ =

(
(az,t, t, σ

2)
)
t∈Im(ϕ)

, with az,t =
p [ϕ ◦ fk?(X) = t | ϕ̂ ◦ fk(X) = z].



In Proposition 2, the key hypothesis k only plays a part in the definition of
the weights az,t of the GM. In other terms, gL|Z(k)=z is always composed of the
same Gaussian pdfs and the key hypothesis k only impacts the way how the
Gaussian pdfs are mixed. To go further in the study of the relationship between
k and H(L(k?)|Z(k) = z), let us introduce the following diagram where z is an
element of Im(ϕ̂), where F ′, F and T are image sets:

z
ϕ̂−1

−−→ F ′ f−1
k−−→ Ek(z)

fk?−−−→ F
ϕ−−→ T ,

Based on the diagram above, we can make the two following observations:

– If the set T is reduced to a singleton set {t1} (i.e. if ϕ̂ ◦ fk is constant equal
to t1 on Ek(z)), then all the probabilities az,t s.t. t 6= t1 are null and az,t1

equals 1. In this case, one deduces from Proposition 2 that the distribution
of (L(k?)|Z(k) = z) is Gaussian and, due to (4), its conditional entropy
satisfies

H(L(k?)|Z(k) = z) =
1
2

log(2πeσ2) .

– If #T > 1 (i.e. if #ϕ◦fk?(Ek(z)) > 1), then there exist at least two probabil-
ities az,t1 and az,t2 which are non-null and the distribution of (L(k?)|Z(k) =
z) is a GM (not Gaussian). Due to (5), its entropy satisfies:

H(L(k?)|Z(k) = z) ≥ 1
2

log(2πeσ2) .

When ϕ is constant on F ′ (e.g. when ϕ̂ = ϕ or ϕ̂ = Id), the two observations
above provide us with a discriminant property. If k? = k, then we have F = F ′

and thus T is a singleton and H(L|Z = z) equals 1
2 log(2πeσ2). Otherwise, if

k 6= k?, then fk? ◦ fk is likely to behave as a random function3. In this case,
F is most of the time different from F ′ and T is therefore likely to have more
than one element4. This implies that #ϕ ◦ fk?(Ek(z)) is strictly greater than 1
and thus that H(L|Z = z) is greater than or equal to 1

2 log(2πeσ2). Eventually,
we get the following proposition in which we exhibit a tight lower bound for the
differential entropy H(L(k?)|Z(k)).

Proposition 3. For every (k?, k) ∈ K2, the conditional entropy of the r.v.
(L(k?)|Z(k)) satisfies:

1
2

log
(
2πeσ2

)
≤ H((L(k?)|Z(k)) . (13)

If ϕ ◦ fk? is constant on Ek(z) for every z ∈ Z, then the lower bound is tight.

Proof. Relation (13) is a straightforward consequence of (6) and of Propositions
1 and 2. The tightness is a direct consequence of (4) and Proposition 2. �
3 This property, sometimes called wrong key assumption [10], is often assumed to be

true in a cryptographic context, due to the specific properties of the primitive f .
4 As detailed later, this is only true if ϕ̂ ◦ fk is non-injective.



Remark 3. Intuitively, the entropy H(Y ) is a measure of the diversity or random-
ness of Y . It is therefore reasonable to think that the more components in the
GM pdf of (L(k?)|Z(k)), the greater its entropy. Relation (13) provides a first
validation of this intuition. The entropy is minimal when the pdf is a Gaussian
one (i.e. when the GM has only one component). In our experiments (partially
reported in Sec. 6), we noticed that the entropy of a GM whose components
have the same variance, increases with the number of components.

Corollary 1. If ϕ̂ ◦ fk is injective, then H(L(k?)|Z(k)) equals 1
2 log(2πeσ2).

Proof. If ϕ̂◦fk is injective, then Ek(z) is a singleton and ϕ◦fk? is thus constant
on Ek(z).

If the functions ϕ̂ ◦ fk ’s are all injective, then Corollary 1 implies that the
MIA cannot succeed at any order. Indeed, in this case the entropy H(L(k?)|Z(k))
stays unchanged when k ranges over K and thus, k? does not satisfy (10). As
a consequence, when the fk ’s are injective (which is for instance the case when
fk consists in a key addition followed by the AES S-box), then the attacker
has to choose ϕ̂ to be non-injective (e.g. the Hamming weight function). It
must be noticed that this is a necessary but not sufficient condition since the
function ϕ̂ must also be s.t. I(ϕ̂, ϕ) is non-negligible (otherwise the MIA would
clearly failed). In this case, the attacker must have a certain knowledge about
the leakage function ϕ in order to define an appropriate function ϕ̂ and hence,
the MIA does no longer benefit from one of its main advantages. This drawback
can be overcome by exclusively targeting intermediate variables s.t. the fk ’s are
not injective (in AES, the attacker can for instance target the bitwise addition
between two S-box outputs during the MixColumns operation).

4.2 Generalization to the Higher Order Case

In this section, we extend the analysis of MIA to higher orders and we assume
that the implementation protected by masking. The sensitive variable fk?(X) is
now masked with d − 1 independent random variables M1, ..., Md−1 which are
uniformly distributed over Im(f).

The masked data fk?(X) ⊕ M1 ⊕ · · · ⊕ Md−1 and the different masks Mj ’s
are processed at different times. The leakage about fk?(X) ⊕M1 ⊕ · · · ⊕Md−1

is denoted by L0 and the leakages about the Mj ’s are denoted by L1, ..., Ld−1.
Under Assumption 3, the Lj ’s satisfy:

Lj =
{

ϕ[fk?(X)⊕
⊕d−1

t=1 Mt] + B0 if j = 0,
ϕj(Mj) + Bj if j 6= 0,

(14)

where the Bj ’s are independent Gaussian noises with mean 0 and standard
deviations σj , and where ϕ, ϕ1, · · · , ϕd−1 are d device dependent functions that
are a priori unknown to the attacker. The vector (L0, · · · , Ld−1) is denoted by L.
The vector of masks (M1, · · · ,Md−1) is denoted by M. We denote by Φk?(X,M)
the vector (ϕ(fk?(X)⊕

⊕d−1
t=1 Mt), ϕ1(M1), · · · , ϕd−1(Md−1)).



To simplify our analysis, we assume that the attacker knows the manipula-
tion times exactly and is therefore able to get a sample for the r.v. L. Under this
assumption and for the same reasons as in the univariate case, the higher order
MIA essentially consists in looking for the key candidate k which minimizes an
estimation of the conditional entropy H(L|Z(k)). Due to (6), this entropy equals∑

z∈Im(ϕ̂) pZ(k)(z)H(L|Z(k) = z). Since Z equals ϕ̂ ◦ fk(X), the probabilities
pZ(k)(z) in this sum can be exactly computed by the attacker. Once this com-
putation has been performed, estimating H(L|Z(k)) amounts to estimate the
entropies H(L|Z(k) = z) for all the hypotheses k. These entropies are estimated
as for the first order case (see (11)), but the pdfs gL|Z(k)=z are multivariate.
More precisely, after denoting by Σ the matrix (Cov [Bi, Bj ])i,j , we get:

gL|Z(k)=z(`) =
1

#Ek(z)(#Im(f))d−1

∑
x∈Ek(z)

m∈Im(f)d−1

gΦk? (x,m),Σ(`) . (15)

In a similar way than in Sec. 4, the next proposition directly follows.

Proposition 4. If X is a r.v. with uniform distribution, then for every pair
(k?, k) ∈ K2 and every z ∈ Z the pdf of the r.v. (L(k?) | Z(k) = z) is a GM
gθ whose parameter θ satisfies θ = ((az,t, t, Σ))t, with Σ = (Cov [Bi, Bj ])i,j and
az,t = p[Φk?(X,M) = t | ϕ̂ ◦ fk(X) = z].

We deduce from Propositions 1 and 4 the following result.

Proposition 5. If X is a r.v. with uniform distribution over X , then for every
(k?, k) ∈ K2, the entropy of the r.v. (L(k?)|(Z(k),M)) satisfies:

1
2

log
(
(2πe)d|Σ|

)
≤ H(L(k?)|(Z(k),M)) . (16)

If ϕ ◦ fk? is constant on Ek(z) for every z ∈ Im(Z), then the bound is tight.

We cannot deduce from the proposition above a wrong-key discriminator as
we did in the univariate case. Indeed, to compute the entropy in (16) the attacker
must know the mask values, which is impossible in our context. However, if the
3-tuple (f, ϕ, ϕ̂) satisfies the condition of Proposition 5, then it can be checked
that for every z the number of components in the multi-variate GM pdf of
(L(k?)|Z(k) = z) reaches its minimum for k = k?. As discussed in Remark 3, this
implies that the entropy of L(k?)|Z(k) is likely to be minimum for k = k?. The
simulations and experiments presented in Sec. 6 provides us with an experimental
validation of this fact.

In the next sections, we assume that an MIA is theoretically possible. Namely,
we assume that k? belongs to argmin-o k H(L(k?)|Z(k)) for a given order o. At
first, we study the success probability of an MIA according to the method used
to estimate H(L(k?)|Z(k)) and the noise variation. Secondly, we compare the
efficiency of an MIA with the one of the CPA in different contexts.



5 Conditional Entropy Estimation

Let L be a d-dimensional r.v. defined over Ld (i.e. L is composed of d different
instantaneous leakage measurements) and let k be a key-candidate. We assume
that the attacker has a sample of N leakage-message pairs (li, xi) ∈ Ld × X
corresponding to a key k?, and that he wants to compute H(L|Z(k)) to dis-
criminate key-candidates k. Due to (6), estimating H(L|Z(k)) from the sample
((li, xi))i essentially amounts to estimate the entropy H(L|Z(k) = z) for every
z ∈ Z. For such a purpose, a first step is to compute estimations ĝL|Z=z of the
gL|Z=z ’s. Then, depending on the estimation method that has been applied, the
H(L|Z(k) = z)’s are either directly computable (Histogram method) or must
still be estimated (Kernel and Parametric methods). In the following we present
three estimation methods and we discuss their pertinency in our context.

5.1 Histogram method

Description. We choose d bin widths h0, ..., hd−1 (one for each coordinate of
the leakage vectors) and we partition the leakage space Ld into regions (Rα)α

with equal volume υ =
∏

j hj . Let k be a key-candidate and let z be an element
of Z. We denote by Sz the sub-sample

(
li;xi ∈ [ϕ ◦ fk ]−1(z)

)
i
⊆ (li)i and by

`i,j the jth coordinate of li. To estimate the pdf gL|Z=z , we first compute the
density vector Dz whose coordinates are defined by:

Dz(α) =
#(Sz ∩Rα)

#Sz
, (17)

where Sz ∩Rα denotes the sample of all the li’s in Sz that belong to Rα.
The estimation ĝL|Z=z is then defined for every l ∈ Ld by ĝL|Z=z(l) = Dz (il)

υ ,
where il is the index of the region Ril that contains l. Integrating the pdf estima-
tion according to formula (3) gives the following estimation for the conditional
entropy: Ĥ(L|Z = z) = −

∑
α Dz(α) log(Dz(α)/υ). We eventually get:

Ĥ(L|Z) = −
∑
z∈Z

pZ(z)
∑
α

Dz(α) log
(

(
Dz(α)

υ

)
. (18)

The optimal choice of the bin widths hj is an issue in Statistical Theory.
Actually, there are several rules that aim at providing ad hoc formulae for com-
puting the hj ’s based on the nature of the samples (see for instance [11, 12]).
In our simulations, we chose to follow the Scott Rule. Namely, if σ̂j denotes the
estimated standard deviation of the sample (`i,j)i of size Nj , then hj satisfies

hj = 3.49× σ̂j ×N
− 1

3
j (notice that in our context all the Nj ’s are equal to N).

Simulations. In order to illustrate the Histogram method in the context of an
MIA attack, we generated 10000 leakage measurements in the Gaussian model
(7) for ϕ being the Hamming weight function, for f being the first DES S-box
parameterized with the key k? = 11 and for σ = 0.1. Since the DES S-box is



non-injective, we chose the identity function for ϕ̂. Fig. 1 plots the estimations
of the pdf gL|Z=1 when k = 11 and when k = 5 (for a number of bins equal
to 285). As expected (Proposition 2 and Corollary 1), a Gaussian pdf seems to

Fig. 1. Histogram Method in the First Order Case.

be estimated when k = 11 (good key prediction), whereas a mixture of three
Gaussian distributions seems to be estimated when k = 5 (wrong key predic-
tion). For the experimentation described in the left-hand figure we obtained
Ĥ(L(11)|Z(11) = 1) = −1.31 (due to (4) we have H(L(11)|Z(11) = 1) = −1.27)
and we got Ĥ(L(11)|Z(5) = 1) = −0.0345 for the one in the right-hand side.
Moreover, we validated that the estimated conditional entropy is minimum for
the good key hypothesis.

In order to illustrate the Histogram method in the context of a 2nd order MIA
attack, we generated 10000 pairs of leakage measurements in the higher order
Gaussian model (14) with d = 2, with ϕ and ϕ1 being the Hamming Weight
function, with f being the first DES S-box parametric with the key k? = 11 and
with σ0 = σ1 = 0.1. Fig. 2 plots the estimations of the pdf gL|Z=1 when k = 11
and when k = 5. As expected, the mixture of Gaussian distributions for k = 11

Fig. 2. Histogram Method in the Second Order Case.



have less components than for k = 5. For the experimentation in the left-hand
figure we obtained Ĥ(L(11)|Z(11) = 1) = 0.22 (and Ĥ(L(11)|Z(11)) = 0.14
), whereas we got 1.12 for Ĥ(L(11)|Z(5) = 1) (and 1.15 for Ĥ(L(11)|Z(5))).
Here again, the estimated conditional entropy was minimum for the good key
hypothesis.

5.2 Kernel Density Method

Description. Although the Histogram method can be made to be asymptot-
ically consistent, other methods can be used that converge at faster rates. For
instance, rather than grouping observations together in bins, the so-called Ker-
nel density estimator (or Parzen window method) can be thought to place small
“bumps” at each observation, determined by the Kernel function (see for instance
[13]). The estimator consists of a “sum of bumps” and is clearly smoother as a
result than the Histogram method.

The Kernel density estimation ĝL|Z=z based on the sample Sz is defined for
every l = (`0, ..., `d−1) ∈ Ld by:

ĝL|Z=z(l) =
1

#Sz

∑
li=(`i,0,...,`i,d−1)∈Sz

1
υ
×

d−1∏
j=0

K
(

`j − `i,j

hj

)
,

where K is a Kernel function chosen among the classical ones (see for instance
[14]), where the hi’s are Kernel bandwidths and where υ equals

∏
j hj . As recalled

in [15], the following Parzen-windows entropy estimation of H(L|Z = z) is sound
when the sample size is large enough:

Ĥ(L|Z = z) = − 1
#Sz

∑
li∈Sz

log

 1
#Sz

∑
lr∈Sz

1
υ
×

d−1∏
j=0

K
(

`i,j − `r,j

hj

) ,

In our attack simulations, we chose the Kernel function to be the Epanechnikov
one defined for every u by K(u) = 3

4 (1−u2) if |u| ≤ 1 and by K(u) = 0 otherwise
(another usual choice is the Gaussian Kernel [14]). Our choice was motivated not
only by the fact that this Kernel function has a simple form, but also by the
fact that its efficiency is asymptotically optimal among all the Kernels [16]. Let
σ̂j denotes the estimated standard deviation of the sample (`i,j)i of size Nj . To
select the Kernel bandwidth hj , we followed the normal scale rule [13]. Namely,

we chose the hj ’s s.t. hj = 1.06× σ̂j ×N
− 1

5
j .

Simulations. In order to illustrate the effectiveness of the Kernel method, we
applied it for the same simulated traces used for our 1st and 2nd order Histogram
experiments (Fig. 1 and Fig. 2). We present our results in Fig. 3(a–b) for the
first order and in Fig. 3(c–d) for the second order.

As expected, the pdf estimated in Fig. 3(a) when k = 11 seems to be a
Gaussian one, whereas the pdf estimated when k = 5 seem to be a mixture



(a) 1st order for k = 11. (b) 1st order for k = 5.

(c) 2nd order for k = 11. (d) 2nd order for k = 5.

Fig. 3. Kernel Method

of three Gaussian distributions. Moreover, the estimations are smoother than
in the case of the Histogram Method and there is no noticeable differences be-
tween the estimation with Gaussian Kernel and the estimation with the Epanech-
nikov one. For the experimentation described in the left-hand figure we obtained
H(L(11)|Z(11) = 1) = −0.88 and we got 0.54 for H(L(11)|Z(5) = 1) (right-hand
side).

As expected, in Fig. 3(c) the mixture of Gaussian distributions for k = 11
have less components than for k = 5. For the experimentation in the left-hand fig-
ure we obtained H(L(11)|Z(11)) = 0.17, whereas we got 0.52 for H(L(11)|Z(5)).
Moreover, we validated that the conditional entropy H(L(11)|Z(k)) is minimum
for k = k? = 11.

5.3 Parametric Estimation

Description. Under Assumption 3, (12) shows that gL|Z=z is a GM gθ whose
parameter θ satisfies:

θ =
(

1
#Ek(z)

, ϕ ◦ f(x, k?), σ2

)
x∈Ek(z)

. (19)

Based on this relation, an alternative to the methods presented above is to
compute an estimation θ̂ of the parameter θ so that we get ĝL|Z=z = gθ̂ and



thus:
Ĥ(L|Z = z) = −

∫
l∈Ld

gθ̂(l) log2 gθ̂(l)dl .

For every x, the mean value ϕ ◦ f(x, k?) in (19) can be estimated by l̄x =
1

#{i;xi=x}
∑

i;xi=x li and the noise variance σ2 by σ̂2 =
∑

i

(
li − l̄xi

)2. On the

whole, this provides us with the following estimation θ̂ of θ:

θ̂ =
(

1
#Ek(z)

, l̄x, σ̂2

)
x∈Ek(z)

.

For Higher Order MIA, (15) can be rewritten:

gθ =
1

#Ek(z)

∑
x∈Ek(z)

gθx
, (20)

where gθx denotes the GM pdf of the r.v. (L|X = x) whose parameter satisfies:

θx =
(

1
(#Im(f))d−1

, Φk(x,m), Σ
)

m∈Im(f)d−1

.

The mean values Φk(x,m) of the different components cannot be directly esti-
mated as in the first order case since the values taken by the masks m for the
different leakage observations li are not assumed to be known. To deal with this
issue, a solution is to involve GM estimation methods such as the Expectation
Maximization Algorithm. By applying it on the sample (li ; xi = x)i we get an
estimation θ̂x of θx for every x ∈ X . Then, according to (20), we obtain:

Ĥ(L | Z = z) = −
∑

x

∫
l∈Ld

gθ̂x
(l) log gθ̂x

(l)dl .

Remark 4. As an advantage of the Parametric estimation method, the mean
values lx’s (resp. the estimated parameters θ̂x’s) are only computed once for
every x and are then used to compute Ĥ(L|Z(k) = z) for every pair (k, z).

Simulations. As for the previous estimation methods, we applied the Para-
metric estimation to the same simulated traces. The resulting estimated pdfs
(ĝL(11)|Z(k)=1)k=11,5 are plotted in Fig. 4(a–b) for the first order and in Fig.
4(c–d) for the second order.

The results are similar to those of the previous estimation methods. For the
first order case, we distinguish a mixture of three Gaussian distributions for the
wrong key hypothesis while a single Gaussian pdf is observed for the correct
one. For the second order case, the GM obtained for the wrong key hypothesis
contains more components than the one for the correct key hypothesis. Once
again, the estimated entropy is lower for the correct key hypothesis than for the
wrong one. For instance, the entropies of the plotted pdfs equal −0.94 (correct
hyp.) and 0.13 (wrong hyp.) for the first order case and 0.24 (correct hyp.) and
0.60 (wrong hyp.) for the second order case.



(a) 1st order for k = 11. (b) 1st order for k = 5.

(c) 2nd order for k = 11. (d) 2nd order for k = 5.

Fig. 4. Parametric Estimation

6 Experimental Results

6.1 First Order Attack Simulations

To compare the efficiency of the MIA with respect to the estimation method,
we simulated leakage measurements in the Gaussian model (7) with ϕ being
the Hamming weight function and f being the first DES S-box (we therefore
have n = 6 and m = 4). For various noise standard deviations σ and for the
estimation methods described in previous sections, we estimated the number
of messages required to have an attack first order success rate greater than or
equal to 90% (this success rate being computed for 1000 attacks). Moreover, we
included the first Order CPA in our tests to determine whether and when an
MIA is more efficient than a CPA5. Each attack was performed with ϕ̂ being
the identity function in order to test the context in which the attacker has no
knowledge about the leakage model. Moreover, each attack was also performed
with ϕ̂ being the Hamming weight function in order to test the context where
the attacker has a good knowledge of the leakage model. The results are given in
Table 1 where MIAH , MIAK and MIAP respectively stand for the Histogram,
the Kernel and the Parametric MIA.
5 Attacks have been performed for measurements numbers ranging over 50 different

values from 30 to 106.



Table 1. Attack on the first DES S-box – Number of measurements required to achieve
a success rate of 90% according to the noise standard deviation σ.

Attack \ σ 0.5 1 2 5 10 15 20 50 100

CPA, ϕ̂ = Id 30 30 100 1000 3000 7000 15000 70000 260000

MIAH (Hist), ϕ̂ = Id 80 160 600 4000 20000 50000 95000 850000 106+

MIAK (Kernel), ϕ̂ = Id 70 140 500 3000 15000 35000 60000 500000 106+

MIAP (Param.), ϕ̂ = Id 60 100 300 2000 5000 15000 20000 150000 500000

CPA, ϕ̂ = HW 30 30 70 400 2000 4000 7000 45000 170000

MIAH (Hist), ϕ̂ = HW 40 70 300 1500 7000 20000 40000 320000 106+

MIAK (Kernel), ϕ̂ = HW 30 60 190 1500 5500 15000 25000 190000 900000

MIAP (Param.), ϕ̂ = HW 70 70 150 1000 3000 7000 15000 65000 300000

It can be checked in Table 1 that the CPA is always better than the MIA when
ϕ̂ = HW. This is not an astonishing result in our model, since the deterministic
part of the leakage corresponds to the Hamming weight of the target variable.
More surprisingly, this stays true when ϕ̂ is chosen to be the identity function.
This can be explained by the strong linear dependency between the identity
function and the Hamming weight function over F4

2 = {0, . . . , 15}. Eventually,
both results suggest that the CPA is more suitable than the MIA for attacking
a device leaking first order information in a model close to the Hamming weight
model with Gaussian noise. When looking at the different MIAs, we can notice
that MIAP becomes much more efficient than MIAH and MIAK when the noise
standard deviation increases.

6.2 Second Order Attack Simulations

In a CPA, the attacker computes Pearson correlation coefficients which is a
function of two univariate samples. Thus, when the CPA is applied against dth
order masking (see (14)) a multivariate function must be defined to combine the
different leakage signals (corresponding to the masked data and the masks) [9].
This signal processing induces an information loss which strongly impacts the
Higher order CPA efficiency when the noise is increasing. Because an Higher
Order MIA can operate on multivariate samples, it does not suffer from the
aforementioned drawback. We can therefore expect the MIA to become more
efficient than the CPA when it is performed against masking. To check this
intuition, we simulated power consumption measurements such as in (14) with
d = 2, with ϕ = ϕ1 = Id, with σ1 = σ2 = σ and with f being the first DES S-box.
For various noise standard deviations σ and for the estimation methods described
in previous sections, we estimated the number of measurements required to have
an attack success rate greater than or equal to 90% (this success rate being
computed over 100 attacks). In the following table, we compare second order



MIA with Histogram estimation method (2O-MIAH ) with second order CPA
(2O-CPA) for two different combining function6.

Table 2. Second Order Attack on DES S-box – Number of measurements required to
achieve a success rate of 90% according to the noise standard deviation σ.

Attack σ 0.5 1 2 5 7 10

2O-CPA (ϕ̂ = HW, abs. diff. combining)) 300 800 5000 200000 106+ 106+

2O-CPA (ϕ̂ = HW, norm. product combining) 300 400 3000 70000 300000 106+

2O-MIAH (ϕ̂ = Id) 7000 7000 8000 15000 30000 55000

The results presented in Table 2 corroborate our intuition: when the noise
standard deviation crosses the threshold 4, second order MIA attacks become
much more efficient than second order CPA even for leakage measurements sim-
ulated in the Gaussian Model with ϕ = HW which is favorable to CPA-like
attacks.

6.3 Practical Attacks

To test the MIA in a real-life context, we performed it against two AES S-box
implementations that use a lookup-table (i.e. fk corresponds to the AES S-box).
The first one is a hardware implementation on the chip SecMat V3/2 (see [17]
for details about the chip and the circuit’s layout). The corresponding power
consumption measurements are plotted in Fig. 5(a) over the time. It can be
noticed that they are not very noisy. The second one is a software implementation
running on a 8-bit architecture smart card. As it can be seen in Fig. 6(a), the
signal is much more noisy in this case.

For both set of traces, we performed the CPA and the MIA attacks with
the Histogram estimation method and the Parametric estimation method (see
Sec. 5). For all of these attacks the prediction function ϕ̂ was chosen to be the
Hamming weight function (since ϕ̂ ◦ fk must be non-injective – see Corollary 1
–). The obtained correlation and mutual information curves are plotted in Fig.
5(b–d) and Fig. 6(b–d) over the time. For each attack the curve corresponding
to the correct (resp. wrong) key hypothesis is drawn in black (resp. gray).

In both cases, the attacks succeed with a few number of traces. It can be no-
ticed that the MIA with a Parametric estimation is more discriminating than the
MIA with the Histogram estimation. This confirms the simulations performed in
Sec. 6.1. However, even when the Parametric estimation method is involved, the
CPA is always more discriminating than the MIA. Those results suggest that for
the attacked devices the power consumption has in fact a high linear dependency
with the Hamming weight of the manipulated data. This implies in particular

6 In our simulations we performed 2O-CPAs involving either the absolute difference
or the normalized product combining [9].



(a) Power Consumption traces. (b) CPA(HW) attack with 256 traces.

(c) MIA (Hist) attack with 1024 traces. (d) MIA (param.) attack with 1024 traces.

Fig. 5. Practical Attacks on a Hardware AES Implementation

that the Hamming weight Model is sound in this context and that looking for
non-linear dependencies is not useful.

To corroborate that the leakage measured in Fig. 5 and 6 are close to the one
simulated in Sec. 5, we plotted in Fig. 7 the estimation of the pdf gL(0)|Z(k)=1

when k = 0 = k? and k = 5 6= k? for the hardware implementation. We could
verify that actually the conditional pdfs that are estimated look like GM pdfs
(a Gaussian pdf when k? is correctly guessed and a mixture of two pdfs when it
is not).

7 Conclusion

This paper extends the works published in [4] and [5] to expose the theoretical
foundations behind the attack and it generalizes it to higher orders. This analysis
clarifies assets and limitations of the MIA. In particular, it shows that the MIA
is less efficient than the CPA when the deterministic part of the leakage is a
linear function of the prediction made by the attacker. This implies that the
CPA must be preferred to the MIA when the targeted device leaks a linear
function of the Hamming weight of the manipulated data. This paper also argues
that the way to estimate the mutual information has an impact on the attack
efficiency. A parametric estimation method has been introduced which renders
the MIA efficiency close to the one of the CPA when the noise is increasing. When



(a) Power Consumption traces. (b) CPA(HW) attack with 2000 traces.

(c) MIA (Hist) attack with 2000 traces. (d) MIA (Param.) attack with 2000 traces.

Fig. 6. Practical Attacks on a Software AES Implementation

masking is used to protect the implementation, an extension of the MIA has been
proposed which is, for our simulations, much more efficient than classical higher
order CPA. It actually seems that this is the context in which the MIA offers an
efficient alternative to correlation-based attacks.
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