
On Double Exponentiation for Securing RSA
against Fault Analysis

Duc-Phong Le1, Matthieu Rivain2, and Chik How Tan1

1 Temasek Laboratories, National University of Singapore
{tslld,tsltch}@nus.edu.sg

2 CryptoEpxerts, France
matthieu.rivain@cryptoexperts.com

Abstract. At CT-RSA 2009, a new principle to secure RSA (and mod-
ular/group exponentiation) against fault-analysis has been introduced
by Rivain. The idea is to perform a so-called double exponentiation to
compute a pair (md,mϕ(N)−d) and then check that the output pair satis-
fies the consistency relation: md ·mϕ(N)−d ≡ 1 mod N . The author then
proposed an efficient heuristic to derive an addition chain for the pair
(d, ϕ(N)−d). In this paper, we revisit this idea and propose faster meth-
ods to perform a double exponentiation. On the one hand, we present
new heuristics for generating shorter double addition chains. On the other
hand, we present an efficient double exponentiation algorithm based on
a right-to-left sliding window approach.

1 Introduction

Fault analysis is a cryptanalytic technique that takes advantage of errors occur-
ring in cryptographic computations. Such errors can be induced in a device by
physical means such as the variation of the power supply voltage, the increase in
the clock frequency or an intensive lighting of the circuit. The erroneous results
of the cryptographic computations can then be exploited in order to retrieve
some information about the secret key. Fault attacks have first been introduced
by Boneh et al. in [6] against RSA and other public key cryptosystems. In par-
ticular, they showed how to break RSA computed in CRT mode from a single
faulty signature.

Many countermeasures have been proposed to protect embedded implemen-
tations of RSA against fault attacks. They can basically be classified in two dif-
ferent categories: countermeasures based on a modulus extension and self-secure
exponentiations. The former countermeasures add redundancy in the computa-
tion by multiplicatively extending the RSA modulus. This approach was first
introduced by Shamir in [26], and then further extended in [30, 1, 5, 10, 28]. The
second approach consists in using an exponentiation algorithm that directly in-
cludes redundancy. It was first followed by Giraud in [14], who suggested to use
the Montgomery ladder exponentiation algorithm. This approach was also fol-
lowed by Bosher et al. in [8] with the square-and-multiply-always algorithm, and

subsequently improved by Baek [2] and by Joye and Karroumi [17]. Eventually,
Rivain proposed an alternative method in [22]. His approach is to compute a
pair (md,mϕ(N)−d) in order to check the computation consistency by the rela-
tion md ·mϕ(N)−d ≡ 1 mod N . The author then presents an efficient heuristic
to perform such a double exponentiation.

This paper revisits Rivain’s idea and presents faster methods for double ex-
ponentiation. We first propose efficient improvements of the heuristic for double
addition chains proposed in [22]. Namely, we present simple improvements that
result in a speed up of 7% compared to the original method, and we investigate
the use of sliding-window techniques to further improve its performances. On
the other hand, we describe an efficient double exponentiation algorithm based
on sliding-window technique and Yao’s exponentiation [29]. Finally, we analyze
the performances of our proposals and provide a comparison of the various self-
secure exponentiation algorithms in the current literature.

2 Preliminaries

2.1 The RSA Cryptosystem

The RSA cryptosystem, introduced by Rivest, Shamir, and Adleman in 1978 [23],
is currently the most widely used public key cryptosystem in smart devices. An
RSA public key is composed of a public modulus N which is defined as the
product of two large secret primes p and q, and of a public exponent e which is
co-prime to ϕ(N) = (p− 1) · (q − 1) (the Euler’s totient of N). The underlying
RSA private key is composed of the public modulus N and the secret exponent
d = e−1 mod N . A signature s (or deciphering) of a message m is computed by
raising m to the power d modulo N , that is s = md mod N .

For the sake of efficiency, one often uses the Chinese Remainder Theorem
(CRT). This theorem implies that md mod N can be computed from mdp mod p
and mdq mod q where dp = d mod (p− 1) and dq = d mod (q − 1). The RSA in
CRT mode (or RSA-CRT) then consists in computing these two smaller modular
exponentiations and in combining the two results to recover the signature [13].
As pointed out in [21], this implementation reduces the size of the data stored
in memory and is roughly four times faster than the standard implementation.

For both standard RSA and RSA-CRT, the core operation of the signa-
ture/deciphering is the modular exponentiation. The efficient implementation of
RSA hence relies on an efficient exponentiation algorithm.

2.2 Addition Chains and Exponentiation

An addition chain for a positive integer a is a sequence of integers C(a) =
{ai}0≤i≤n beginning with a0 = 1 and ending with an = a such that each el-
ement is the sum of two previous elements in the sequence. Namely, for every
i ∈ {1, 2, . . . , n} there exist j, k ∈ {0, 1, . . . , i− 1} such that ai = aj +ak. An ad-
dition chain for an integer a yields a way to evaluate the exponentiation m 7→ ma

by computing the sequence mai = maj ·mak for i from 1 to n. Conversely, any
exponentiation process has an underlying addition chain. The problem of design-
ing efficient exponentiation algorithms can hence be considered as the problem of
finding short addition chains. A generalization of this problem whose instances
are the tuples (a1, a2, . . . , ak, n) is to find an addition chain of length n contain-
ing a1, . . . , ak (see for instance [12]). The later problem arises when one needs
to compute simultaneously the monomials ma1 , ma2 , . . . , mak given m and a1,
a2, . . . , ak. In this paper, we investigate the case k = 2; that is, given a pair of
exponent (a, b) we aim at efficiently compute m 7→ (ma,mb). An addition chain
for such a pair of exponent was called double addition chain in [22].

Given integers a and n, the decision problem of whether there exists an
addition chain of length n for a is NP-complete. As a result, finding the shortest
addition chain for an exponent a is difficult on average. That is why one relies
on heuristics to perform exponentiations in practice. Some heuristics require to
perform a preprocessing of the exponent and store the indices (j, k) such that
mai = maj · mak for every i. Other heuristics decide on the multiplication to
perform at each step by processing the exponent on the fly.

A well-known such heuristic is the binary method also known as square-
and-multiply method. Let (a`−1, . . . , a1, a0)2 denote the binary expansion of a,
namely a =

∑
i 2iai where ai ∈ {0, 1}. The equality

ma =
∏
i

(
m2i

)ai
=
∏
i|ai=1

m2i

gives rise to a simple exponentiation algorithm. At each step one computes m2i

by squaring m2i−1

and then multiply it to some accumulator if ai = 1. After `
such steps, the accumulator contains the value ma. This process is summarized in
Algorithm 1. This algorithm processes the exponent bits, from the less significant
one to the most significant one and is hence often referred to as the right-to-left
(R2L) binary algorithm. Note that a common left-to-right variant also exists
that processes the bits in the inverse order (see for instance [19]).

Algorithm 1 R2L binary algorithm

Input: m, a = (a`−1, . . . , a1, a0)2 ∈ N
Output: ma

1. M ← m
2. A1 ← 1
3. for i = 0 to `− 1 do
4. if ai = 1 then A1 ← A1 ·M
5. M ←M2

6. end for
7. return A1

Algorithm 2 R2L window algorithm

Input: m, a = (un−1, . . . , u1, u0)2w ∈ N
Output: ma

1. M ← m
2. for u ∈ {1, 2, . . . , 2w − 1} do Au ← 1
3. for i = 0 to `− 1 do
4. if ui 6= 0 then Aui ← Aui ·M
5. M ←M2w

6. end for
7. return

∏
u Au

u

A generalization of the binary method consists in processing the exponent
by window of w bits. Let (un−1, . . . , u1, u0)2w denote the expansion of some
exponent a in radix 2w where n = dlog2(a)/we, that is a =

∑
i ui2

iw with
ui ∈ {0, 1, . . . 2w − 1} and un−1 6= 0. The principle of the window method is
analogous to that of the binary method and is based on the equality

ma =
∏
i

(
m2iw

)ui
=

2w−1∏
u=1

(∏
i|ui=u

2iw
)u

.

A loop is processed which applies w successive squarings in every iteration to

compute m2iw from m2(i−1)w

, and which multiplies the result to some accumu-
lator Aui

. At the end of the loop each accumulator Au contains the product∏
i|ui=u

2iw. The different accumulators are finally aggregated as
∏
uA

u
u = ma.

The resulting algorithm is summarized in Algorithm 2. This algorithm was first
put forward by Yao in [29] and is often referred as Yao’s algorithm. It requires
more memory than the binary method (specifically 2w memory registers) but it

is faster since the number of multiplications is roughly reduced to
(
1 + 1−2−w

w

)
`.

3 RSA and Fault Analysis

The first fault attacks against RSA were published in the pioneering work of
Boneh et al. [6]. In particular, this paper describes a very efficient attack against
RSA in CRT mode. The principle of the so-called Bellcore attack is to corrupt
one of the two CRT exponentiations, and to exploit the difference between the
correct and faulty signatures to recover the secret prime factors of the modulus
N . For example, suppose an attacker injects a fault during the computation
of sp = mdp mod p so that the RSA computation results in a faulty signature
s̃ which is correct modulo q and faulty modulo p (i.e. s̃ ≡ s mod q and s̃ 6≡
s mod p). The difference s̃− s is hence a multiple of q but is not a multiple of p,
and the prime factor q can be recovered by computing q = gcd(s̃− s,N).

Implementations of RSA in standard mode (i.e. without CRT) are also vul-
nerable to fault analysis. Some attacks have been described which target the
exponent [3], the public modulus [4, 9, 25] or an intermediate power of the expo-
nentiation [6, 7, 24]. Although these attacks require several faulty signatures for
a full recovery of the secret key, they constitute a practical threat that must be
considered by implementors.

3.1 Securing RSA against Fault Analysis

The simplest method to thwart fault analysis is to compute the signature s twice
and compare the two results. This method implies a doubling of the computation
time and it cannot detect permanent errors. A more efficient way is to verify the
signature s with the public exponent e. That is, the cryptographic device checks
whether m ≡ se mod N before returning the signature s. This method provides a

perfect security since a faulty signature is systematically detected. On the other
hand, this method is efficient as long as e is small (which is widely common), but
in the presence of a random e, it is as inefficient as the computation doubling.
Besides, in some applications (e.g. the Javacard API for RSA signature [27]),
the public exponent e is not available to the implementor. That is why, many
works have focused on finding alternative solutions.

Shamir [26] first suggested a non-trivial countermeasure that computes ex-
ponentiations with some redundancy. The principle is to perform the two CRT
exponentiations with extended moduli p · t and q · t where t is a small (random)
integer. One can then efficiently check the consistency of the computation mod-
ulo t. This method has been extended and improved in many subsequent works
[30, 1, 5, 10, 28]. In the present paper, we focus on a different approach in which
the redundancy is not included in the modular operations but at the exponenti-
ation level. Namely, we focus on self-secure exponentiations that provide a direct
way to check the consistency of the computation.

3.2 Self-Secure Exponentiation Algorithms

The first exponentiation algorithm with built-in security against fault analysis
was proposed by Giraud in [14] and is based on the Montgomery ladder [20]. It
uses the fact that this exponentiation algorithm works with a pair of registers
(R0, R1) storing values of the form (mα,mα+1). At the end of the exponentiation
loop, the registers contain the pair of values (md−1,md), which enables to verify
the computation consistency by checking whether R0 · m well equals R1. If a
fault is injected during the computation, the coherence between R0 and R1 is
lost and the fault is detected by the final check.

Another self-secure exponentiation algorithm was proposed by Boscher et
al. [8] which is based on the right-to-left square-and-multiply-always algorithm
(originally devoted to thwart simple power analysis [11]). Their algorithm works
as Algorithm 1 but it involves an additional register A0 initialized to 1, and when
di = 0 the multiplication A0 ← A0 ·M is processed. It is observed in [8] that the

triplet (A0, A1,M) stores (m2`−d−1,md,m2`) at the end of the exponentiation.
The computation consistency can be verified by checking whether A0 ·A1 ·m =
M . In case of fault injection, the relation between the three register values is
broken and the fault is detected by the final check. This approach was then
generalized by Baek in [2] to the use of the right-to-left window square-and-
multiply-always algorithm. It works as Algorithm 2 with a register A0 so that
the multiplication Aui

← Aui
·M is also performed whenever ui = 0. At the end

of the exponentiation, computing

R←
2w−1∏
b=1

Auu and L←
2w−1∏
b=0

A2w−1−u
u ,

one then gets a triplet (R,L,M) storing (md,m2`−d−1,m2`) as in the binary
case. If the computation was performed correctly then the equation R · L ·m =

M must hold. The obtained self-secure exponentiation achieves better timing
performances than the previous ones: it roughly involves (1+ 1

w)` multiplications
on average against 2` multiplications for the Giraud and Bosher et al. schemes.
In [17] Joye and Karroumi further improved this approach with a variant for
the aggregation and consistency check achieving a better time-memory trade-off
than the original Baek proposal.

Remark 1. The self-secure exponentiations presented above have a drawback:
they do not provide detection of errors induced in the exponent. For instance,
if the exponent is corrupted before or during the Montgomery ladder (e.g. by
flipping the current bit in any iteration), it shall output a pair (md′−1,md′) where
d′ denotes the corrupted exponent value. One hence clearly see that such a fault
is not detected by the consistency check since we still have md′−1 · m = md′ .
The same applies for the Bosher et al. scheme and its variants. The final triplet

in presence of a corrupted exponent equals (md′ ,m2`−d′−1,m2`) and the fault
is undetected by the consistency check. In his paper, Giraud suggests to include
integrity checks for the exponent and the loop counter in every iteration of the
exponentiation loop. In their paper, Bosher et al. suggest to recompute the read
exponent on the fly in order to check that it well matches the correct exponent
value at the end of the exponentiation (see also [16]). Although such methods
may circumvent the problem in theory, their practical implementation is not
straightforward and it might leave some unexpected flaws.

3.3 Securing Exponentiation with Double Addition Chains

In [22], Rivain introduced another principle for self-secure exponentiation. It
consists in performing a double exponentiation to compute md and mϕ(N)−d at
the same time and then checking the following consistency relation:

md ·mϕ(N)−d ≡ 1 (mod N).

If there is no fault injected during the computation, then the above equation
well holds. Otherwise, if the computation is corrupted, it doesn’t hold with high
probability (see analysis in [22]).

In order to get an efficient self-secure exponentiation from the above principle,
one must then find a way to raise m to both powers d and ϕ(N)−d with the least
multiplications possible. In other words, one must find a short addition chain
containing both exponents. For such a purpose, Rivain introduces a heuristic to
compute a double addition chain for any pair of integers (a, b). To construct such
a chain, he defines a sequence {(αi, βi)}i starting from the pair (α0, β0) = (a, b)
down to the pair (αn, βn) = (0, 1) for some n ∈ N, such that the inverse sequence
is an addition chain for (a, b). Formally, he defines

(αi+1, βi+1) =

 (αi, βi/2) if αi ≤ βi/2 and βi is even
(αi, (βi − 1)/2) if αi ≤ βi/2 and βi is odd
(βi − αi, αi) if αi > βi/2.

Without loss of generality, b is assumed to be greater than a and the above
sequence keep αi ≤ βi as invariant. Moreover it is shown in [22] that there exists
n ∈ N such that (αn, βn) = (0, 1). Then by defining

τj =

{
0 if βi ≥ 2αi,
1 if βi < 2αi,

and νj =

{
βi (mod 2) if τj = 0,
⊥ if τj = 1,

where j = n − i, the inverse sequence (aj , bj) = (αi, βi) can be computed by
initializing (a0, b0) to (0, 1) and iterating

(aj+1, bj+1) =

 (aj , 2bj) if τj+1 = 0 and νj+1 = 0
(aj , 2bj + 1) if τj+1 = 0 and νj+1 = 1
(bj , aj + bj) if τj+1 = 1

(1)

to finally get (an, bn) = (a, b). The sequence (τj , νj) is hence a sound encoding to
process the above double addition chain. The method of [22] consists in comput-
ing the (αi, βi) sequence in order to derive and store the (τj , νj) sequence. The
double exponentiation m 7→ (ma,mb) is then efficiently computed by evaluat-
ing the sequence (maj ,mbj) with respect to (1). According to [22], the resulting
encoding has a bit-length lower than 2.2` with overwhelming probability and
the underlying exponentiation involves 1.65` multiplications on average, where
` = log2 b.

4 New Heuristics for Double Addition Chains

As shown above, the problem of finding a double addition chain for a pair (a, b)
can be thought as the problem of finding a way to go from the pair (a, b) to
the pair (0, 1) using only (and the least possible) subtractions, decrementations
and divisions by two. From this starting point, Rivain’s method works with two
intermediate variables αi and βi according to the following principle. If αi is close
to βi then βi − αi is small so a subtraction step βi+1 = βi − αi should be used.
Otherwise, if αi is significantly lower than βi, then βi−αi is not significantly lower
than βi, so such a subtraction step should be avoided. One should rather lower βi
so that it get closer to αi by using a binary step βi+1 = βi/2 or βi+1 = (βi−1)/2
depending on the parity of βi. In this section, we show that this principle can
be improved in several ways.

4.1 First Improvements

Our first improvement starts from the observation that when βi is odd and lies
in [2αi; 3αi], it is more efficient to perform a subtraction step βi+1 = βi−αi and
get βi+1 ≤ 2

3βi at the cost of one subtraction (inducing one multiplication at the
exponentiation level), rather than performing a binary step βi+1 = (βi − 1)/2
and get βi+1 ≤ 1

2βi at the cost of one decrementation and one division by two
(inducing two multiplications at the exponentiation level).

Our second improvement focuses on the situation where βi ≥ 2kαi for some
k ≥ 2. In such a situation, the original method applies k binary steps involving
k divisions by two and H(r) decrementations where r = βi (mod 2k) and H is
the Hamming weight function. We observe that if we have αi (mod 2k) = βi
(mod 2k) 6= 0, then it is more efficient to perform a subtraction step βi+1 =
βi − αi so that βi+1 is a multiple of 2k. Doing so, the k next steps are divisions
by 2 and βi is lowered by a factor 2k in k + 1 operations instead of k +H(r).

From these observations, we suggest to modify the above method by defining
the (αi, βi) sequence such that (α0, β0) = (a, b) and for every i ≥ 0:

(αi+1, βi+1) =


(βi − αi, αi) if βi < 2αi
(αi, βi − αi) if (βi ∈ [2αi; 3αi] and βi is odd) or (βi > 2αi

and ∃ k s.t. αi (mod2k) = βi (mod2k) 6= 0)
(αi, (βi − γ)/2) otherwise,

where γ = βi (mod2). Our simulations revealed that the double exponentiation
obtained from our heuristic involves an average of 1.55` multiplications, which
represents a gain of 7% compared to the original method.

Example 1. We illustrate the effectiveness of the above variant for the pair
(7, 35). For this pair, the original method gives:

(0, 1)
+−→ (1, 1)

×2 +1−−−−→ (1, 3)
×2 +1−−−−→ (1, 7)

+−−→ (7, 8)
×2 +1−−−−→ (7, 17)

×2 +1−−−−→ (7, 35)

which requires 10 multiplications at the exponentiation level. Using our improve-
ment, we obtain the chain:

(0, 1)
×2 +1−−−−→ (0, 3)

×2 +1−−−−→ (0, 7)
+−→ (7, 7)

×2−−→ (7, 14)
×2−−→ (7, 28)

+−−→ (7, 35)

which only needs 8 multiplications at the exponentiation level.

Encoding. We have to slightly modify the (τj , νj) encoding defined in [22] in
order to include the proposed improvements. In the original proposal recalled in
Section 3.3, a step (αi+1, βi+1) = (βi − αi, αi) is encoded by a bit τj = 1. On
the other hand, a step (αi+1, βi+1) = (αi, (βi − γ)/2), where γ = βi (mod 2),
is encoded by a bit τj = 0 followed by a bit νj = γ. In order to include our
improvements, we must define an encoding for a step (αi+1, βi+1) = (αi, βi−αi),
namely a subtraction step without swapping of the elements. We suggest to
encode every subtraction step by a bit τj = 1 followed by a bit νj that equals
1 if there is no swap (i.e. βi ≥ 2αi) and that equals 0 if there is a swap (i.e.
βi < 2αi). Specifically, we define:

τj =

{
0 if (αi+1, βi+1) = (αi, (βi − γ/2)),
1 otherwise,

and

νj =

βi (mod 2) if τj = 0,
0 if τj = 1 and βi < 2αi,
1 if τj = 1 and βi ≥ 2αi,

where j = n − i. The addition chain (aj , bj) = (αi, βi) can be computed by
initializing (a0, b0) to (0, 1) and iterating

(aj+1, bj+1) =

 (aj , 2bj + νj+1) if τj+1 = 0,
(bj , aj + bj) if τj+1 = 1 and νj+1 = 0,
(aj + bj , bj) if τj+1 = 1 and νj+1 = 1.

Example 2. We construct the encoding Γ (7, 35) for the double addition chain
given in Example 1. First, we obtain

(τ0, τ1, τ2, τ3, τ4, τ5) = (0, 0, 1, 0, 0, 1) and (ν0, ν1, ν2, ν3, ν4, ν5) = (1, 1, 0, 0, 0, 1)

giving the following encoding:

Γ (7, 35) = 0 1 0 1 1 0 0 0 0 0 1 1

Each pattern of two bits correspond to a single step: 00 indicates a (×2)-step,
01 indicates a (×2 + 1)-step, 10 and 11 indicate a (+)-step (with and without
swapping respectively).

4.2 Improved Method based on Sliding Window

The original and improved methods presented above require only 3 registers to
compute a double exponentiation m 7→ (ma,mb) (one for m, one for mai and one
for mbj). In this section, we look at the context where more memory is available.
For a single exponentiation, window-based methods are natural extensions of the
binary method for reducing the number of multiplications. We show hereafter
how to improve the performances of double addition chains by using a sliding
window (see e.g. [18]).

In the original method, if we have βi ≥ 2kαi, then the heuristic performs
k binary steps to lower βi by a factor 2k. At the exponentiation level, this
translates by a binary exponentiation involving k squarings and an average of
k
2 multiplications. It is then natural to replace such binary exponentiation by a
more efficient sliding-window exponentiation. The principle is to precompute and
store odd values 3, 5, . . . , 2w − 1, for some widow parameter w, so that when βi ≥
2kαi for some k ≤ w, we first subtract ri = βi (mod 2k) ∈ {1, 3, . . . , 2w−1} to βi
and then we perform k successive divisions by two (note that we assume βi to be
odd, otherwise it is simply divided by two). This translates by a multiplication
and k squarings at the exponentiation level.

We then modify the original method by defining the sequence (αi, βi) such
that (α0, β0) = (a, b), and for every i ≥ 0:

(αi+1, βi+1) =

 (αi, βi/2) if αi ≤ βi/2 and βi is even,
(αi, (βi − ri)/2ki) if αi ≤ βi/2, βi is odd,
(βi − αi, αi) if αi > βi/2,

where ri = βi (mod 2ki) and ki is the greatest integer in {1, 2, . . . , w} such that
βi ≥ 2kiαi and 2ki−1 ≤ ri < 2ki . The latter condition means that the most

significant bit of ri (viewed as a ki-bit string) is at 1. It is equivalent to the
equality ki = blog2(ri)c+ 1, which is required for our encoding (see below).

Note that the double addition chain is not strictly the inverse of the above
sequence. Since it must start with a sequence:

1
×2−−→ 2

+1−−→ 3
+2−−→ 5

+2−−→ 7
+2−−→ · · · +2−−→ 2w − 1

in order to precompute the odd values 3, 5, . . . , 2w − 1. This chain translates
to one square and 2w−1 − 1 multiplications to compute the powers m3, m5, . . . ,
m2w−1 at the exponentiation level. Moreover the resulting implementation has
a greater memory consumption since these precomputed powers must be stored
during the exponentiation.

Our simulations revealed that the double exponentiation obtained from our
sliding-window-based heuristic involves an average of multiplications ranging
from 1.59` to 1.53` depending on the window size. This represents a gain between
4% and 8% compared to the original method.

Example 3. We illustrate the effectiveness of our sliding-window-based method
for the pair (6, 27). For this pair, the original method gives:

(0, 1)
×2 +1−−−−→ (0, 3)

×2−−→ (0, 6)
+−−→ (6, 6)

×2 +1−−−−→ (6, 13)
×2 +1−−−−→ (6, 27)

Using our sliding-window-based method, we obtain the chain:

(0, 1)
×2 +1−−−−→ (0, 3)

×2−−→ (0, 6)
+−−→ (6, 6)

×2 ×2 +3−−−−−−−→ (6, 27)

saving one multiplication at the exponentiation level.

Encoding. In order to define a sound encoding for our window-based double
addition chains, we define the three following sequences:

τj =

{
0 if βi ≥ 2αi,
1 if βi < 2αi,

νj =

{
βi (mod 2) if τj = 0,
⊥ if τj = 1,

and

γj =

{
(ri − 1)/2 if τj = 0 and νj = 1,
⊥ if τj = 1 or νj = 0,

where j = n − i. Note that when ri is odd (i.e. when νj = 1), γj is the value
obtained by shifting ri = βi (mod 2ki) by one bit to the left, and we have
ri = 2γj + 1.

The double addition chain (aj , bj) = (αi, βi) can then be computed from the
(τj , νj , γj) sequence by initializing (a0, b0) to (0, 1) and iterating

(aj+1, bj+1) =

 (aj , 2bj) if τj+1 = 0 and νj+1 = 0
(aj , 2

kibj + ri) if τj+1 = 0 and νj+1 = 1
(bj , aj + bj) if τj+1 = 1,

where ri = 2γj + 1 and ki = blog2(ri)c+ 1.
Each step is hence encoded by a bit τj , followed by a bit νj if and only if

τj = 0, followed by w − 1 bits encoding γj if and only if τj = 0 and νj = 1.

Example 4. We construct the encoding Γ (6, 27) for the double addition chain
given in Example 3 (with window size w = 2). First, we obtain

(τ0, τ1, τ2, τ3) = (0, 0, 1, 0) , (ν0, ν1, ν2, ν3) = (1, 0,⊥, 1) ,

and
(γ0, γ1, γ2, γ3) = (0,⊥,⊥, 1)

giving the following encoding:

Γ (6, 27) = 0 1 0 0 0 1 0 1 1

The first three bits 010 indicate a (×2 + 1)-step. The next two bits 00 indicate
a (×2)-step. The next bit 1 indicates a (+)-step. And the final three bits 011
indicate a (×2× 2 + 3)-step.

4.3 Combined Improvements

In the previous section we have introduced two different kinds of improvements
to Rivain’s heuristic for double addition chains. The purpose of our first improve-
ments is to perform subtraction steps (without swapping) instead of binary steps
in some cases where it is more advantageous to do so. The purpose of the sliding-
window method is to speed up a succession of several binary steps. These two
kinds of improvements are hence fully compatible and we can combine them by
defining the (αi, βi) sequence as:

(αi+1, βi+1) =


(βi − αi, αi) if βi < 2αi
(αi, βi − αi) if (βi ∈ [2αi; 3αi] and βi is odd) or (βi > 2αi

and ∃ k s.t. αi (mod 2k) = βi (mod 2k) 6= 0)
(αi, (βi − ri)/2ki) otherwise,

where ri = βi (mod 2ki) and ki is the greatest integer in {1, 2, . . . , w} such that
βi ≥ 2kiαi and 2ki−1 ≤ ri < 2ki . The encoding of the obtained double addition
chain (aj , bj) = (αi, βi) with j = n − i is easily deduced from the encodings of
both previous heuristics. Specifically, it is based on the three following sequences:

τj =

{
0 if βi ≥ 2αi,
1 if βi < 2αi,

νj =

βi (mod 2) if τj = 0,
0 if τj = 1 and βi < 2αi,
1 if τj = 1 and βi ≥ 2αi,

and

γj =

{
(ri − 1)/2 if τj = 0 and νj = 1,
⊥ if τj = 1 or νj = 0,

where j = n− i. The double addition chain (aj , bj) = (αi, βi) can finally be com-
puted from the (τj , νj , γj) sequence by initializing (a0, b0) to (0, 1) and iterating

(aj+1, bj+1) =


(aj , 2bj) if (τj+1, νj+1) = (0, 0),
(aj , 2

kibj + ri) if (τj+1, νj+1) = (0, 1),
(bj , aj + bj) if (τj+1, νj+1) = (1, 0),
(aj + bj , bj) if (τj+1, νj+1) = (1, 1),

where ri = 2γj + 1 and ki = blog2(ri)c+ 1.

5 Sliding-Window Double Exponentiation

In the previous section, we have presented several heuristics for double addi-
tion chain improving the original method from [22]. These heuristics give rise
to efficient double exponentiation algorithms with different time-memory trade-
offs (see Section 6 for a detailed comparison). However, these algorithms have
a drawback in practice: they require the precomputation of the chain encoding
(involving the evaluation of the (αi, βi) sequence). Although this precomputa-
tion only involves simple operations compared to the modular multiplications
used in the exponentiation, it might not be negligible in practice, especially for
implementations using a hardware accelerator for modular arithmetic (which is
common in smart cards and other embedded systems).

In this section, we propose an alternative by describing an efficient double
exponentiation algorithm that does not rely on any form of precomputation.
Our proposed algorithm is a generalization of Yao algorithm for the double
exponentiation scenario and it is based on a sliding window approach.

Algorithm 3 Sliding-Window Double Exponentiation

Input: m, a, b
Output: (ma,mb)
1. M ← m
2. for d ∈ {1, 3, . . . , 2w − 1} do
3. Ad ← 1 ; Bd ← 1
4. end for
5. for i = 0 to `− 1 do
6. if (ai = 1) then
7. d← (ai+w−1, . . . , ai+1, ai)2
8. Ad ← Ad ·M
9. a← a− 2id

10. endif
11. if (bi = 1) then
12. d← (bi+w−1, . . . , bi+1, bi)2
13. Bd ← Bd ·M
14. b← b− 2id
15. endif
16. M ←M2

17. end for
18. A1 ←

∏
d A

d
d

19. B1 ←
∏

d B
d
d

20. return (A1, B1)

In a nutshell, the proposed algorithm works as two parallel executions of
Yao’s algorithm (see Algorithm 2), by using two sets of 2w−1 accumulators: A1,
A3, . . . , A2w−1 for exponent a, and B1, B3, . . . , B2w−1 for exponent b. On the
other hand, a single register M is used and the squarings involved to derive the

successive powers m, m2, m4, ..., m2` are computed only once, which results in
a saving of ` squarings compared to two independent applications of Algorithm
2. Moreover, for the sake efficiency, we use a sliding window rather than a fixed
window. Namely, instead of cutting the exponent in n fixed windows of w bits,
each bit is treated from the less significant one to the most significant one. If
the current bit ai equals 0, the algorithm just squares M and continue with the
next bit. Otherwise if ai equals 1, then the algorithm processes the current w-bit
digit d =

∑j=w−1
j=0 ai+j2

j by multiplying M to the corresponding accumulator

Ad, and by setting the next w bits of a to 0 with a← a− 2id. The same process
is performed simultaneously for the exponent b and corresponding accumulators.

The explicit description of the obtained double exponentiation is given in
Algorithm 3. This algorithm involves ` squarings as a regular sliding window
exponentiation. On the other hand, it involves twice more multiplications, that
is 2 × `

w+1 multiplications on average for the exponentiation loop. For the ag-
gregation, we adapt the method proposed in [15] for fixed window algorithms to
the case of sliding-window algorithms. Specifically, the aggregation is computed
as follows:

1. M ← A2w−1
2. for d = 2w − 3 to 3 step i← i− 2 do
3. Ad ← Ad ·Ad+2

4. M ←M ·Ad
5. end for
6. A1 ←M2 ·A3 ·A1

The above process takes 2w − 1 multiplications, and it must be performed twice
(in steps 18 and 19 of Algorithm 3). This makes a total of

(
1+ 2

w+1

)
`+2w+1−2

multiplications on average.

Example 5. We illustrate hereafter the processing of Algorithm 3 by detailing
the successive values of the pair (a, b) and the different registers between each
loop iteration for the input pair of exponents (14, 25):


(a, b)
M

(A1, A3)
(B1, B3)

 :


(29, 50)

m
(1, 1)
(1, 1)

 →


(28, 50)

m2

(m, 1)
(1, 1)

 →


(28, 48)

m4

(m, 1)

(m2, 1)

 →


(16, 48)

m8

(m,m4)

(m2, 1)

 →


(16, 48)

m16

(m,m4)

(m2, 1)

 →


(0, 0)

m32

(m17,m4)

(m2,m16)



At the end of the exponentiation loop we well have m17 ·
(
m4
)3

= m29 on the

one hand and m2 ·
(
m16

)3
= m50 on the other hand.

6 Performances and Comparison

In this section, we provide performance figures for our proposals and we com-
pare them with other self-secure exponentiations in the literature. Basically, we
consider:

– the binary self-secure exponentiations by Giraud [14] (Montgomery
ladder) and by Bosher et al. [8] (square and multiply always),

– the w-ary square-and-multiply-always (w-ary SMA) method by
Baek [2], with the Joye-Karroumi improvement [17],

– the double addition chain method by Rivain [22],

– the improved heuristics for double addition chains described in Sec-
tion 4 of this paper,

– the sliding-window double exponentiation described in Section 5 of
this paper.

The performances of the different methods are summarized in Table 1, for
exponent bit-length ` ∈ {512, 1024, 2048}, and for various window sizes. Specifi-
cally, we give the average number of multiplications per bit of the exponent as
well as the number of `-bit memory registers require by each self-secure expo-
nentiation. We also give the memory overhead required to store the exponent,
the chain encoding (for Rivain’s method and our improvements) or the pair of
exponents (for the double exponentiation described in Section 5). This overhead
is given in number of required `-bit registers.

Table 1. Performances of various self-secure exponentiations.

Window Multiplications/bit Reg. Memory
size ` = 512 ` = 1024 ` = 2048 overhead

Binary exp. [14, 8] - 2 2 2 3 1

w = 2 1.52 1.51 1.50 5 1
w-ary SMA [2, 17] w = 3 1.37 1.35 1.34 9 1

w = 4 1.32 1.26 1.27 17 1
w = 5 1.34 1.28 1.23 33 1
w = 6 1.43 1.29 1.23 65 1

Double addition chain [22] - 1.66 1.66 1.66 3 2.2

First improvements (§4.1) - 1.55 1.55 1.55 3 3.19

w = 2 1.59 1.59 1.59 4 1.74
Sliding-window w = 3 1.56 1.56 1.56 6 1.89
improvement (§4.2) w = 4 1.54 1.54 1.54 10 2.09

w = 5 1.54 1.54 1.53 18 2.31
w = 6 1.55 1.54 1.53 34 2.55

w = 2 1.55 1.55 1.55 4 2.57
Combined w = 3 1.54 1.54 1.54 6 2.56
improvements (§4.3) w = 4 1.53 1.53 1.53 10 2.66

w = 5 1.53 1.52 1.52 18 2.78
w = 6 1.54 1.53 1.52 34 2.92

w = 2 1.68 1.67 1.67 5 2
Sliding-window double w = 3 1.53 1.51 1.51 9 2
exponentiation (§5) w = 4 1.46 1.43 1.42 17 2

w = 5 1.46 1.39 1.36 33 2
w = 6 1.53 1.40 1.35 65 2

We see that our techniques provide significant improvements of the original
heuristic for double addition chain proposed in [22]. The first improved heuristic
(Section 4.1) is roughly 7% faster than the original method, whereas the window-
based method is 4% to 8% faster depending on the window size. When combined,
the two kind of improvements provide a performance gain between 7% and 9%.
On the other hand the double exponentiation algorithm described in Section 5
achieves a speed up factor up to 19% depending on the available memory and
the exponent length. In comparison, Baek w-ary self-secure exponentiation is
roughly 10% faster for a similar memory consumption. However our algorithms
(as Rivain’s initial proposal) have the advantage of inherently protecting the
implementation against corruption of the exponent whereas all other proposals
require additional countermeasures for this purpose (see Remark 1).

7 Conclusion

In this paper we have revisited double exponentiation algorithms for fault-
analysis resistant RSA. We have introduced new variants of Rivain’s heuristic
for double addition chains that achieve speed up factors up to 9%. We have
also presented a generalization of Yao’s right-to-left exponentiation to efficiently
perform a double exponentiation. This algorithm achieves a performance gain
up to 19% compared to the original double addition chain exponentiation, while
requiring no precomputation. These improvements are of interest as self-secure
exponentiations based on double exponentiation are currently the only ones that
protect the exponent from fault attacks (whereas other self-secure exponentia-
tions need additional countermeasures to this aim).

Interesting open issues include the design of more efficient double expo-
nentiation algorithms (either based on addition chains or not), as well as the
investigation of alternative approaches for designing self-secure exponentiation
algorithms.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault Attacks on
RSA with CRT: Concrete Results and Practical Countermeasures. In Kaliski Jr.,
B., Koç, Ç., Paar, C., eds.: Cryptographic Hardware and Embedded Systems –
CHES 2002. Volume 2523 of Lecture Notes in Computer Science. (2002) 260–275

2. Baek, Y.J.: Regular 2w-ary right-to-left exponentiation algorithm with very effi-
cient dpa and fa countermeasures. International Journal of Information Security
9(5) (2010) 363–370

3. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.H.: Breaking
Public Key Cryptosystems an Tamper Resistance Devices in the Presence of Tran-
sient Fault. In: 5th Security Protocols Workshop. Volume 1361 of Lecture Notes
in Computer Science. (1997) 115–124

4. Berzati, A., Canovas, C., Goubin, L.: Perturbating RSA Public Keys: An Improved
Attack. In Oswald, E., Rohatgi, P., eds.: CHES. Volume 5154 of Lecture Notes in
Computer Science., Springer (2008) 380–395

5. Blömer, J., Otto, M., Seifert, J.P.: A New RSA-CRT Algorithm Secure against
Bellcore Attacks. In Jajodia, S., Atluri, V., Jaeger, T., eds.: ACM Conference on
Computer and Communications Security – CCS’03, ACM Press (2003) 311–320

6. Boneh, D., DeMillo, R., Lipton, R.: On the Importance of Checking Cryptographic
Protocols for Faults. In Fumy, W., ed.: Advances in Cryptology, International
Conference on the Theory and Application of Cryptographic Techniques – EURO-
CRYPT ’97. Volume 1233 of Lecture Notes in Computer Science., Springer (1997)
37–51

7. Boreale, M.: Attacking Right-to-Left Modular Exponentiation with Timely Ran-
dom Faults. In Breveglieri, L., Koren, I., Naccache, D., Seifert, J.P., eds.: Fault
Diagnosis and Tolerance in Cryptography – FDTC 2006. Volume 4236 of Lecture
Notes in Computer Science. (2006) 24–35

8. Boscher, A., Naciri, R., Prouff, E.: CRT RSA Algorithm Protected against Fault
Attacks. In Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.J., eds.:
Information Security Theory and Practices – WISTP 2007. Volume 4462 of Lecture
Notes in Computer Science. (2007) 229–243

9. Brier, E., Chevallier-Mames, B., Ciet, M., Clavier, C.: Why one should also secure
rsa public key elements. In Goubin, L., Matsui, M., eds.: Cryptographic Hardware
and Embedded Systems – CHES 2006. Volume 4249 of Lecture Notes in Computer
Science. (2006) 324–338

10. Ciet, M., Joye, M.: Practical Fault Countermeasures for Chinese Remaindering
Based RSA. In Breveglieri, L., Koren, I., eds.: Workshop on Fault Diagnosis and
Tolerance in Cryptography – FDTC’05. (2005) 124–132

11. Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In Koç, Ç., Paar, C., eds.: Cryptographic Hardware and Embedded
Systems – CHES ’99. Volume 1717 of Lecture Notes in Computer Science. (1999)
292–302

12. Downey, P., Leong, B., Sethi, R.: Computing Sequences with Addition Chains.
SIAM Journal on Computing 10(3) (1981) 638–646

13. Garner, H.L.: The residue number system. Electronic Computers, IRE Transac-
tions on (2) (1959) 140–147

14. Giraud, C.: An RSA Implementation Resistant to Fault Attacks and to Simple
Power Analysis. IEEE Transactions on Computers 55(9) (September 2006) 1116–
1120

15. Joye, M.: Highly Regular m-Ary Powering Ladders. In Jr., M.J.J., Rijmen, V.,
Safavi-Naini, R., eds.: Selected Areas in Cryptography, 16th Annual International
Workshop – SAC 2009. Volume 5867 of Lecture Notes in Computer Science.,
Springer (2009) 350–363

16. Joye, M.: A Method for Preventing ”Skipping” Attacks. In: 2012 IEEE Symposium
on Security and Privacy Workshops, IEEE Computer Society (2012) 12–15

17. Joye, M., Karroumi, M.: Memory-Efficient Fault Countermeasures. In Prouff, E.,
ed.: Smart Card Research and Advanced Applications, 10th IFIP WG 8.8/11.2
International Conference – CARDIS 2011. Volume 7079 of Lecture Notes in Com-
puter Science., Springer (2011) 84–101

18. Koc, C.K.: Analysis of Sliding Window Techniques for Exponentiation. Computers
and Mathematics with Applications 30 (1995) 17–24

19. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. 1st edn. CRC Press, Inc. (1996)

20. Montgomery, P.L.: Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation 48(177) (1987) 243–264

21. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for rsa public-key
cryptosystem. Electronics Letters 18(21) (1982) 905–907

22. Rivain, M.: Securing RSA against Fault Analysis by Double Addition Chain Expo-
nentiation. In Fischlin, M., ed.: Topics in Cryptology, The Cryptographers’ Track
at the RSA Conference 2009 - CT-RSA 2009. Volume 5473 of Lecture Notes in
Computer Science., Springer (2009) 459–480

23. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21(2) (1978) 120–
126

24. Schmidt, J., Herbst, C.: A Practical Fault Attack on Square and Multiply. In
Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.P., eds.: Fault Diag-
nosis and Tolerance in Cryptography – FDTC 2008. (2008) 53–58

25. Seifert, J.P.: On authenticated computing and rsa-based authentication. In Atluri,
V., Meadows, C., Juels, A., eds.: Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, CCS 2005, Alexandria, VA, USA, November
7-11, 2005, ACM (2005) 122–127

26. Shamir, A.: Improved Method and Apparatus for Protecting Public Key Schemes
from Timing and Fault Attacks. Patent WO9852319 (November 1998) Also pre-
sented to EUROCRYPT’97 rump session.

27. Sun Microsystems: Application Programming Interface – Java CardTM Plateform,
Version 2.2.2 (March 2006) http://java.sun.com/products/javacard/specs.html.

28. Vigilant, D.: RSA with CRT: A New Cost-Effective Solution to Thwart Fault
Attacks. In Oswald, E., Rohatgi, P., eds.: CHES. Volume 5154 of Lecture Notes
in Computer Science., Springer (2008) 130–145

29. Yao, A.C.C.: On the evaluation of powers. SIAM Journal on Computing 5(1)
(1976) 100–103

30. Yen, S.M., Joye, M.: Checking Before Output May Not Be Enough Against Fault-
Based Cryptanalysis. IEEE Transactions on Computers 49(9) (2000) 967–970

