
Securing RSA against Fault Analysis by
Double Addition Chain Exponentiation?

Matthieu Rivain

Oberthur Technologies & University of Luxembourg
m.rivain@oberthur.com

Abstract. Fault Analysis is a powerful cryptanalytic technique that en-
ables to break cryptographic implementations embedded in portable de-
vices more efficiently than any other technique. For an RSA implemented
with the Chinese Remainder Theorem method, one faulty execution suf-
fices to factorize the public modulus and fully recover the private key.
It is therefore mandatory to protect embedded implementations of RSA
against fault analysis.
This paper provides a new countermeasure against fault analysis for ex-
ponentiation and RSA. It consists in a self-secure exponentiation algo-
rithm, namely an exponentiation algorithm that provides a direct way to
check the result coherence. An RSA implemented with our solution hence
avoids the use of an extended modulus (which slows down the computa-
tion) as in several other countermeasures. Moreover, our exponentiation
algorithm involves 1.65 multiplications per bit of the exponent which is
significantly less than the 2 required by other self-secure exponentiations.

1 Introduction

The physical cryptanalysis gathers different cryptanalytic techniques taking ad-
vantage of the physical properties of cryptographic implementations. Among
these, one mainly identifies side channel analysis [27, 26] that physically ob-
serves cryptographic computations and fault analysis [8, 6] that physically dis-
turbs them. The latter consists in exploiting the faulty outputs resulting from
erroneous computations in order to retrieve information on the secret key. Fault
analysis has been introduced first against RSA and other public key schemes [8]
and then against DES [6]. Several works followed that improved fault analysis
and generalized it to other algorithms.

A straightforward way to protect any algorithm against fault analysis is by
performing twice the computation and by checking that the same result is ob-
tained. In case of inconsistency, an error message is returned thus preventing the
exposure of the faulty result. A variant consists in verifying an encryption by
a decryption (or vice versa). These countermeasures are suitable for fast algo-
rithms such as block ciphers, but when a public key cryptosystem such as RSA
must be implemented, a doubling of the execution time becomes prohibitive.

? Updated version of the work published in the proceedings of CT-RSA 2009.

That is why, securing RSA against fault analysis constitutes a challenging issue
of embedded cryptography. Several methods have been proposed so far but the
number of secure and practical solutions is still quite restricted.

In this paper, we provide a new countermeasure against fault analysis for
exponentiation and RSA that constitutes an efficient alternative to the existing
solutions. First we introduce preliminaries about RSA, fault analysis and the
existing countermeasures (Sect. 2). Then we describe our self-secure exponentia-
tion algorithm (Sect. 3) and the resulting secure RSA-CRT algorithm (Sect. 4).
Afterward we analyze the security of our solution (Sect. 5) and we address its
resistance vs side channel analysis (Sect. 6). Finally, we give an analysis of the
time and memory complexities of our solution and we compare them to previous
solutions in the literature (Sect. 7).

2 RSA and Fault Analysis

2.1 The RSA Cryptosystem

RSA is nowadays the most widely used public key cryptosystem [33]. An RSA
public key is composed of a public modulus N which is the product of two large
secret primes p and q and of a public exponent e which is co-prime with the
Euler’s totient of N namely ϕ(N) = (p − 1) · (q − 1). The corresponding RSA
private key is composed of the public modulus N and the secret exponent d that
is defined as the inverse of e modulo ϕ(N).

An RSA signature (or deciphering) s of a message m < N is obtained by
computing: s = md mod N . The signature verification (or message ciphering) is
the inverse operation that can be performed publicly since, according to Euler’s
Theorem, we have: m = se mod N .

For efficient implementation of RSA, one makes often use of the Chinese
Remainder Theorem (CRT). This theorem implies that md mod N can be com-
puted from md mod p and md mod q. The RSA-CRT hence consists in perform-
ing the two following exponentiations: sp = mdp mod p and sq = mdq mod q,
where dp = d mod (p− 1) and dq = d mod (q − 1). By Fermat’s little Theorem,
we have sp = md mod p and sq = md mod q. Therefore, once sp and sq have been
computed, s can be recovered from sp and sq by applying a so-called recombina-
tion step: s = CRT(sp, sq). Two methods exist for CRT recombination: the one
from Gauss and the one from Garner. The less memory consuming is the Gar-
ner’s recombination that is defined as CRT(sp, sq) = sq +q ·

(
iq ·(sp−sq) mod p),

where iq = q−1 mod p. The whole RSA-CRT is around 4 times faster than the
straightforward RSA which makes its use very common, especially in the context
of low resource devices were computation time is often critical.

2.2 Fault Analysis Against RSA

The most powerful fault attack against RSA is known as the Bellcore attack
[8] that targets a CRT implementation. It consists in corrupting one of the two

CRT exponentiations, say the one modulo p. The RSA computation thus results
in a faulty signature s̃ that is correct modulo q (i.e. s̃ ≡ s mod q) and corrupted
modulo p (i.e. s̃ 6≡ s mod p). This implies that the difference s̃− s is a multiple
of q but is not a multiple of p, and hence we have gcd(s̃−s,N) = q. Therefore, a
pair signature/faulty signature provides a way to factorize N and consequently
to fully break RSA. Actually, a pair message/faulty signature suffices to mount
the attack since we have gcd(s̃e−m,N) = q [22]. This way, RSA is broken with
a single faulty computation.

RSA implemented in straightforward mode (i.e. without CRT) is also vul-
nerable to fault analysis. Several attacks have been published that assume either
a faulty exponent [3], a faulty modulus [5, 12, 35] or a faulty intermediate power
[8, 9, 34]. These attacks require several faulty signatures to fully recover the key
but still constitute practical threats.

Another kind of fault attacks known as safe-error attacks can be distinguished
from the ones addressed above. Depending on the algorithm, a fault injection
may have no effect for some secret key values and may cause a corruption for
others. In that case, simply observing wether the computation was corrupted or
not reveals information on the secret key. Such attacks are especially threatening
since they bypass classical fault analysis countermeasures that return an error in
case of fault detection. Among these attacks, two categories can be distinguished:
the C-safe-error attacks [41] that target dummy operations and the M-safe-error
attacks that target registers allocations [40, 24]. Our countermeasure provides
an error detection mechanism and does not aim to thwart safe-error attacks.
However, as discussed in Sect. 5.2, these last can be simply prevented.

Securing RSA against Fault Analysis. A simple way to protect RSA against
fault analysis is by verifying the signature s before returning it, namely by per-
forming the following check: m

?= se mod N . This method offers a perfect secu-
rity against differential fault analysis since a faulty signature is systematically
detected. This countermeasure is efficient as long as e is small, but in the op-
posite case, it implies to perform two exponentiations which doubles the time
complexity of RSA. This overhead is clearly prohibitive in the context of low
resource devices. Moreover, depending on the context, the public exponent e
may not be available (e.g. the Javacard API for RSA signature [37]). That is
why, many works in the last decade have been dedicated to the search of alterna-
tive solutions. We review hereafter the main proposals that can be divided into
two families: the extended modulus based countermeasures and the self-secure
exponentiations.

2.3 Extended Modulus Based Countermeasures

We present hereafter different countermeasures that all rely on the use of an
extended modulus in order to add redundancy in the computation.

Shamir’s Trick and Variants. A first solution to protect RSA with CRT has

been proposed by Shamir [36]. It consists in performing the two CRT exponen-
tiations with extended moduli p · t and q · t where t is a small integer. Namely,
one computes s∗p = md mod ϕ(p·t) mod p · t and s∗q = md mod ϕ(q·t) mod q · t. The
consistency of the computation is then checked by verifying that s∗p mod t equals
s∗q mod t. If no error is detected, the algorithm returns CRT(s∗p mod p, s∗q mod q).
Under its simplest form, this countermeasure does not protect the CRT recom-
bination which enables a successful fault attack [2]. Several works have proposed
variants of Shamir’s countermeasure in order to deal with this issue [2, 7, 14].

Vigilant Scheme. In [38], Vigilant proposed another countermeasure based on
a modulus extension. The modulus is multiplied by t = r2 for a small random
number r. The message is then formatted as follows: m̂ = αm+β ·(1+r) mod Nt
where (α, β) is the unique solution in {1, · · · , Nt}2 of the system α ≡ 1 mod N ,
α ≡ 0 mod t, β ≡ 0 mod N and β ≡ 1 mod t. Then, the exponentiation sr =
m̂d mod Nt is performed. As shown in [38], sr equals αmd +β · (1+dr) mod Nt.
Therefore, the signature can be recovered from sr since it satisfies s = sr mod
N and the consistency of the computation can be verified by checking sr ≡
1 + dr mod t. This method can be extended to protect RSA-CRT (see [38] for
details).

Security Considerations. The security of an extended modulus based counter-
measure is not perfect. For instance, if a faulty message m̃ satisfies m̃ ≡ m mod t
and m̃ 6≡ m mod N , then the exponentiation of this message results in a faulty
signature that is not detected. The non-detection probability of an extended
modulus based countermeasure is roughly about 2−k where k denotes the bit-
length of the modulus extension t. Therefore, the greater k, the more secure the
countermeasure. However, the greater k, the slower the exponentiation (see Sect.
7.3). This kind of countermeasure hence offers a time/security tradeoff. A usual
choice for k is 64 bits which provides a fair security. However, depending on the
application, one may choose k = 32 (low security, more efficient exponentiation)
or k = 80 (strong security, less efficient exponentiation).

2.4 Self-secure Exponentiations

For the countermeasures presented hereafter, the redundancy is not included in
the modular operations anymore but at the exponentiation level. Namely, the
exponentiation algorithm provides a direct way to check the consistency of the
computation.

Giraud Scheme. The Giraud Scheme [18] relies on the use of the Montgomery
powering ladder. It uses the fact that this exponentiation algorithm works with
a pair of intermediate variables (a0, a1) storing values of the form (mα,mα+1).
At the end of the exponentiation the pair (a0, a1) equals (md−1,md) and the
consistency of the computation can be verified by checking wether a0 ·m equals
a1. If a fault is injected during the computation, the coherence between a0 and
a1 is lost and the fault is detected by the final check.

Boscher et al. Scheme. The scheme by Boscher et al. [10] is based on the right-
to-left square-and-multiply-always algorithm [15] which was originally devoted to
thwart simple side channel analysis (see Sect. 6.1). In [10], the authors observe
that this algorithm computes a triplet (a0, a1, a2) that equals (md,m2l−d−1,m2l

)
at the end of the algorithm, where l denotes the bit-length of d. The principle
of their countermeasure is hence to check that a0 · a1 ·m equals a2 at the end of
the exponentiation. Once again, in case of fault injection, the relation between
the ai’s is broken and the fault is detected by the final check.

The main drawback of these two countermeasures is that they both impose the
use of an exponentiation algorithm that performs 2 modular multiplications per
bit of the exponent while other exponentiation algorithms require an average of
1.5 multiplications per bit of the exponent (and sometimes less).

In the next section, we propose a new self-secure exponentiation. Our method
requires around 1.65 multiplications per bit of the exponent in average and hence
constitutes an efficient alternative to the existing countermeasures.

3 A New Self-secure Exponentiation Based on Double
Addition Chains

3.1 Basic Principle

In the following, we shall call double exponentiation an algorithm taking as inputs
an element m and a pair of exponents (a, b), and computing the pair of powers
(ma,mb).

The core idea of our method is to process a double exponentiation to compute
the pair (md,mϕ(N)−d) modulo N . Then, the consistency of the computation is
verified by performing the following check:

md ·mϕ(N)−d ?≡ 1 mod N . (1)

If no error occurs during the computation then, due to Euler’s Theorem, this
check is positive. In that case, the algorithm returns md mod N . On the other
hand, if the computation is corrupted, then the result of this check is negative
with high probability. In that case, the algorithm returns an error message.

In order to construct a self-secure exponentiation based on aforementioned
principle, we need a double exponentiation algorithm. We propose hereafter such
an algorithm that is well suited for implementation constrained in memory. Our
solution is based on the building of an addition chain. This notion, as well as
the ensued notion of addition chain exponentiation are briefly introduced in the
next section (see [25] for more details).

3.2 Addition Chain Exponentiations

At first, we give the definition of an addition chain.

Definition 1. An addition chain for an integer a is a sequence x0, x1, · · · , xn

with x0 = 1 and xn = a that satisfies the following property: for every k there
exist indices i, j < k such that xk = xi + xj.

An addition chain (xi)i for an integer a provides a way to evaluate any
element m to the power a. Let m0 = m. For k from 1 to n, one computes
mk = mi·mj where i, j < k are such that xk = xi+xj . By induction, the sequence
(mk)k satisfies: mk = mxk for every k ≤ n which leads to mn = mxn = ma. Such
an addition chain exponentiation may require an important amount of memory
to store the intermediate powers required for the computation of subsequent
powers. This can make the exponentiation unpractical, especially in the context
of low resource devices. Therefore, the minimum number of variables required to
store the intermediate powers is an important parameter of the addition chain
exponentiation. This parameter that directly results from the addition chain will
be called the memory depth of the chain in the following.

In this paper, an addition chain x0, x1, · · · , xn with (xn−1, xn) = (a, b) is
called a double addition chain for the pair (a, b). A double addition chain for a
pair (a, b) provides a way to perform the double exponentiation m 7→ (ma,mb)
for any element m.

Remark 1. What we call here double exponentiation shall not be confused with
multi-exponentiations (also known as simultaneous exponentiations) that com-
pute a product of powers

∏
i mai

i (see for instance [32]). What we call double
addition chain is also called addition sequence in the general case where possibly
more than two powers must be computed [11, 19]. Addition sequences have not
been so much investigated. In [11], the authors propose some heuristics but these
are not suitable for implementations constrained in memory.

3.3 A Heuristic for Double Addition Chains

In this section, we propose a heuristic to compute a double addition chain with
a memory depth of 3 for any pair of natural integers (a, b). This provides us
with a double exponentiation algorithm that is well suited for implementations
constrained in memory.

Without loss of generality, we assume a ≤ b. The chain involves a pair of
intermediate results (ai, bi) that are initialized to (0, 1) and that equal (a, b)
once all the additions have been performed. In order to have a memory depth of
3, one single additional variable is used that keeps the value 1 (this amounts to
keep the element m in a register for the resulting exponentiation). Therefore, at
the ith step of the chain, one can either increment ai or bi by 1, double ai or bi,
or add ai and bi together.

To construct such a chain, we start from the pair (a, b) and go down to
the pair (0, 1) by applying the inverse operations. Namely, we define a sequence
(αi, βi)i such that (α0, β0) = (a, b) and (αn, βn) = (0, 1) for some n ∈ N, and
where, for every i, the pair (αi+1, βi+1) is obtained from (αi, βi) by decrementing,
by dividing by two and/or by subtracting an element to the other one. In order

to limit the memory required to the storage of the chain, we have to restrict the
set of possible operations. Our heuristic is the following one:

(αi+1, βi+1) =

(
αi, βi/2

)
if αi ≤ βi/2 and βi mod 2 = 0(

αi, (βi − 1)/2
)

if αi ≤ βi/2 and βi mod 2 = 1(
βi − αi, αi

)
if αi > βi/2

(2)

Proposition 1. If α0, β0 ∈ N∗ are such that α0 ≤ β0 then the sequence (αi, βi)i

satisfies the following properties:

1. For every i, we have αi ≤ βi.
2. There exists n ∈ N such that (αn, βn) = (0, 1).

Proof. The first property is straightforward: it is true for i = 0 and it is preserved
by every step. The second one is demonstrated as follows. For every i such that
αi > 0, we have αi+1 ≤ βi+1 ≤ βi and αi+1 + βi+1 < αi + βi. This implies
that there exists n′ ∈ N such that αn′ > 0 and αn′+1 ≤ 0. From (2), one
deduces αn′ = βn′ > 0 and αn′+1 = 0. Denoting x the natural integer such that
(αn′+1, βn′+1) = (0, x), we finally get (αn′+dlog xe, βn′+dlog xe) = (0, 1). �

At this point, we need a binary representation for the sequence of additions
to perform for the processing of the sequence (ai, bi)i. Let us denote by n the
natural integer satisfying (αn, βn) = (0, 1). We define τ and ν as the n-bit vectors
whose coordinates satisfy:

τi =
{

0 if αn−i ≤ βn−i/2
1 if αn−i > βn−i/2 (3)

and
νi = βn−i mod 2 . (4)

The sequence (ai, bi)i can be computed from τ and ν by initializing (a0, b0)
to (0, 1) and by iterating:

(ai+1, bi+1) =

 (ai, 2bi) if τi+1 = 0 and νi+1 = 0
(ai, 2bi + 1) if τi+1 = 0 and νi+1 = 1
(bi, ai + bi) if τi+1 = 1

One can verify that (ai, bi) = (αn−i, βn−i) holds for every i which yields (an, bn) =
(a, b).

Let us remark that the whole sequence ν is not necessary for processing this
addition chain (and the resulting exponentiation). Indeed, only the bits νi for
which τi equals 0 are required. Therefore, the exponentiation algorithm shall
make use of a single compressed sequence ω in order to avoid memory loss. We
simply define ω as the sequence obtained from τ by inserting every bit νi for
which τi = 0 between τi and τi+1. In the sequel, we shall denote by n∗ the
bit-length of ω. Moreover, when we will need to make appear the relationship
between the pair (a, b) and ω, we will use the notation ω(a, b).

The sequence ω(a, b) thus constitutes the binary representation of the dou-
ble addition chain for the pair of exponents (a, b). To process the relying double
exponentiation one must pre-compute ω. This is done by computing the pair
(αi, βi) for every i ∈ {1, · · · , n}. The following algorithm details such a com-
putation. It makes use of two registers R0 and R1 that store the intermediate
results αi and βi. It makes also use of a Boolean variable γ such that αi is stored
in Rγ⊕1 and βi is stored in Rγ .

Algorithm 1 Double addition chain computation – ChainCompute

Input: A pair of natural integers (a, b) s.t. a ≤ b

Output: The chain ω(a, b)

1. R0 ← a; R1 ← b; γ ← 1; j ← n∗

2. while (Rγ⊕1, Rγ) 6= (0, 1) do

3. if (Rγ/2 > Rγ⊕1)

4. then ωj−1 ← 0; ωj ← Rγ mod 2; Rγ ← Rγ/2; j ← j − 2

5. else ωj ← 1; Rγ ← Rγ −Rγ⊕1; γ ← γ ⊕ 1; j ← j − 1

6. end while

7. return ω

Remark 2. The length n∗ is a priori unknown before the computation of the
chain. However, as shown in Sect. 7.2, it is upper bounded by 2.2dlog be (with
high probability). For a practical implementation of Algorithm 1, one may use
a buffer of 2.2dlog be bits to store ω, initializing j by the final bit index of this
buffer.

The following algorithm describes the resulting double modular exponentia-
tion algorithm. It makes use of two registers R0 and R1 that store the interme-
diate results mai and mbi and one more register to hold m. It makes also use of
a Boolean variable γ such that mai is stored in Rγ⊕1 and mbi is stored in Rγ .

Algorithm 2 Double modular exponentiation – DoubleExp

Input: An element m ∈ ZN , a chain ω(a, b) s.t. a ≤ b, a modulus N

Output: The pair of modular powers (ma mod N, mb mod N)

1. R0 ← 1; R1 ← m; γ ← 1

2. for i = 1 to n∗ do

3. if (ωi = 0) then

4. Rγ ← R2
γ mod N ; i← i + 1

5. if (ωi = 1) then Rγ ← Rγ ·m mod N

6. else

7. Rγ⊕1 ← Rγ⊕1 ·Rγ mod N ; γ ← γ ⊕ 1

8. end for

9. return (Rγ⊕1, Rγ)

3.4 The Secure Exponentiation Algorithm

Following the principle described in Sect. 3.1, Algorithm 2 provides a way to
perform a modular exponentiation secure against fault analysis. The resulting
secure modular exponentiation is depicted in the following algorithm.

Algorithm 3 Secure modular exponentiation
Input: A message m, a secret exponent d, a modulus N and its Euler’s totient ϕ(N)
Output: The modular power md mod N

1. ω ← ChainCompute
�
d, 2ϕ(N)− d

�

2. (s, c)← DoubleExp
�
m, ω, N

�

3. if s · c mod N 6= 1 then return “error”; else return s

Remark 3. For the chain computation (Step 1), ϕ(N)−d is replaced by 2ϕ(N)−d
in order to fit the constraint a ≤ b imposed by the chain computation algorithm.
This does not affect the result of the double exponentiation in Step 2 since we
have mϕ(N)−d ≡ m2ϕ(N)−d mod N .

4 A New Secure RSA-CRT Algorithm

For an RSA computation, the secure modular exponentiation proposed above
can be extended to be performed in CRT mode. Two double exponentiations are
performed separately in order to compute the pairs (sp, cp) and (sq, cq) where
cp = mp−1−dp mod p and cq = mq−1−dq mod q. Then the signature s is recovered
from sp and sq by CRT recombination and its value is checked modulo p (resp.
q) using cp (resp. cq) according to (1).

Algorithm 4 Secure RSA-CRT
Input: A message m, the secret exponents dp and dq, the secret primes p and q
Output: The modular power md mod p · q

1. ωp ← ChainCompute
�
dp, 2(p− 1)− dp)

2. (sp, cp)← DoubleExp(m mod p, ωp, p)

3. ωq ← ChainCompute
�
dq, 2(q − 1)− dq)

4. (sq, cq)← DoubleExp(m mod q, ωq, q)

5. s← CRT(sp, sq)

6. if (s · cp mod p 6= 1 or s · cq mod q 6= 1) then return “error” else return s

Remark 4. We assume that m mod p (resp. m mod q) cannot be corrupted be-
fore the beginning of the double exponentiation. This is mandatory for the se-
curity of Algorithm 4, since such a corruption would not be detected and would
enable the Bellcore attack. In practice, this can be ensure by computing a cyclic
redundancy code for m mod p (resp. m mod q) at the beginning of the RSA-
CRT algorithm. Then, at the beginning of the double exponentiation algorithm,
m mod p (resp. m mod q) is recomputed from m and its integrity is checked once

it has been loaded in two different registers (m and R1 in Algorithm 2). Any
corruption occurring after this check shall be detected by the final check.

Remark 5. The chains ωp and ωq can be either computed on-the-fly as depicted
in Algorithm 4 (Steps 1 and 3) or pre-computed and stored in non-volatile mem-
ory. The first solution has the advantages of preserving the classical RSA-CRT
parameters and of enabling the exponent blinding countermeasure (see Sect.
6.2). The second solution has the advantage of avoiding the timing and memory
overhead induced by the chain computations.

5 Security Against Fault Analysis

In this section, we analyze the security of our method against fault analysis. We
start with a few remarks of practical purpose, then we investigate the detection
probability of a fault injection and finally we address safe-error attacks.

Remark 6. We assume that the Boolean γ cannot be modified at the end of
Algorithm 2. This is mandatory for the security of the solution since such a
modification would result in a swapping of the two registers which would not be
detected. In practice, this can be ensured by doubling the variable γ.

Remark 7. We assume that one cannot switch the last bit(s) of the chain ω (resp.
ωp, ωq) from 1 to 00 (or vice cersa). This would provoke an undetected error.
Such a switch can be prevented in practice by checking that the loop index i
matches the chain length n∗ at the end of Algorithm 2.

Remark 8. In Algorithms 3 and 4, we assume that the integrity of the chain
computation parameters is checked before executing the chain computation al-
gorithm. This avoids any attack that would corrupt d (resp. dp, dq) before the
computation of 2ϕ(N)− d (resp. 2(p− 1)− dp, 2(q − 1)− dq).

Remark 9. Some papers claim that coherence checks using conditional branches
should be avoided to strengthen fault analysis security [42, 14]. The argument
behind this assertion is that the coherence check could be easily skipped by cor-
rupting the status register. An alternative solution to direct coherence checking
is to use an infection procedure that renders the erroneous signature harmless in
case of fault detection [42]. However, most of the proposed countermeasures have
security flaws due to ineffective infection methods (for instance [7, 14] have been
broken in [39, 4]). Moreover, the infection procedure can also be skipped as it has
been practically demonstrated in [23]. In [16], a simple solution is proposed that
performs a coherence check without conditional branches in a way that is secure
against operations skipping. We suggest to use this solution for the coherence
checks performed in Algorithm 3 (Step 3) and Algorithm 4 (Step 6).

5.1 Fault Detection

We analyze hereafter the different fault attacks that can be attempted on our
secure exponentiation algorithm and we investigate the corresponding detection
probability. We only focus on transient faults, namely faults whose effect lasts for
one computation. Permanent fault attacks are easily thwarted by the addition
of some cyclic redundancy codes to check the parameters integrity.

We use the generic notation M to denote the involved modulus that may
equal N (for a straightforward RSA), p or q (for a RSA-CRT) and we denote by
ordM (m) the order of an element m in Z∗

M . When the fault causes the corruption
of an intermediate variable v, we denote the corrupted variable by ṽ and the
error by ε such that ṽ = v + ε. We analyze here the condition about ε for a
non-detection and we bound the probability P of non-detection in the uniform
fault model i.e. assuming that ε is uniformly distributed.

For our analysis, the following lemma shall be useful (see the proof in Ap-
pendix A).

Lemma 1. Let M be an integer greater than 30. Let m be a random variable
uniformly distributed over Z∗

M and let u be a random variable uniformly dis-
tributed over {1, · · · , ϕ(M)} and independent of m. We have:

P (ordM (m)|u) <
2

M1/3
. (5)

For the sake of simplicity, we approximate hereafter a uniform distribution
over ZM by a uniform distribution over Z∗

M . This approximation is sound in our
context since M is a large prime or an RSA modulus.

Corruption of one of the two exponents. Among the exponents a and b,
one equals d and the other one equals ϕ(M)− d. On the one hand, if ϕ(M)− d
is corrupted, then the result of the exponentiation remains correct (i.e. it equals
md mod M) and the attack failed whatever the result of the final check (which
is however very likely to detect the fault). On the other hand, if d is corrupted,
we show hereafter that the final check will detect the error with high probability.

In fact, the error is not detected if and only if we have m
ed · mϕ(M)−d ≡

1 mod M that is mε ≡ 1 mod M . This occurs if and only if ε is a multiple of
the order of m. Therefore, the probability of non-detection can be expressed as
P = P (ordM (m)|ε). Hence, the lower the order of m, the higher the probability
of non-detection. Since a potential attacker does not know ϕ(M), he cannot
chose m in a way that affect its order. For this reason, m can be considered
uniformly distributed over ZM . Therefore, in the uniform fault model, Lemma
1 implies P < 2/M1/3.

Remark 10. The bound provided by Lemma 1 is not tight at all but it is sufficient
to show that P is negligible. For instance, if M satisfies log M ≥ 244, which is
necessary (but not sufficient) for the security of RSA (even for RSA-CRT where
log N = 2 log M), P is strictly lower than 2−80 which is negligible.

Corruption of the message or an intermediate power. From the defini-
tion of the double addition chain given in Sect. 3.3, one can see that for every
i ∈ {1, · · · , n}, the pair (an, bn) can be expressed as a linear transformation of
the triplet (ai, bi, 1). Let us denote by αa

i , βa
i , δa

i the three coefficients of the
expression of an, namely an = αa

i ai + βa
i bi + δa

i . By analogy, we denote by αb
i ,

βb
i , δb

i the coefficients in the expression of bn.

If the message m is corrupted at the ith step of the exponentiation, this last
returns the following pair of powers:

(
ma(m−1 · m̃)δa

i ,mb(m−1 · m̃)δb
i

)
modulo

M . The error is not detected if and only if we have (m−1 · m̃)δa
i +δb

i ≡ 1 mod M ,
that is (1 + ε · m−1)δa

i +δb
i ≡ 1 mod M . This occurs if and only if the order of

m′ = 1 + ε · m−1 divides δa
i + δb

i . Therefore, the probability of non-detection
can be expressed as P = P

(
ordM (m′)|δa

i + δb
i

)
. Following the same reasoning,

a corruption of the intermediate power mai (resp. mbi) is not detected with a
probability P = P

(
ordM (m′)|αa

i + αb
i

)
where m′ = 1 + e · m−ai (resp. P =

P
(
ordM (m′)|βa

i + βb
i

)
where m′ = 1 + ε ·m−bi).

Since a and b are unknown to the attacker, this one cannot chose the value
of δa

i + δb
i , αa

i + αb
i or βa

i + βb
i since these directly ensue from a and b. That

is why, we make the heuristic assumption that P equals P (ordM (m′)|u) where
u is uniformly distributed over {1, · · · , ϕ(M)}. In the uniform fault model, we
have the uniformity of m′ that holds from the one-to-one relationship between
ε and m′ for every m 6= 0. Consequently, Lemma 1 implies P < 2/M1/3 and p
is negligible.

Corruption of the chain. A faulty chain w̃ results in a faulty pair of powers
(mea,m

eb). The error is not detected if and only if the order of m divides ã + b̃,
hence the non-detection probability can be expressed as P = P

(
ordM (m)|ã + b̃

)
.

As shown in Sect. 7.2, the expected bit-length of the chain ω yielding a pair
of l-bit exponents (a, b) is of 2l. This suggests an almost bijective relationship
between the chains space and the exponents pairs space. In the uniform fault
model, we can therefore consider that ã and b̃ are uniformly distributed which,
by Lemma 1, implies P < 2/M1/3.

Corruption of the modulus. If the modulus M is corrupted at the ith step
of the exponentiation, then this last results in the two following powers: m

αa
i

1 ·
m

βa
i

2 · mδa
i mod M̃ and m

αb
i

1 · m
βb

i
2 · mδb

i mod M̃ where m1 = mai mod M and
m2 = mbi mod M . Therefore, the error is not detected if and only if we have
m

αa
i +αb

i
1 ·mβa

i +βb
i

2 ·mδa
i +δb

i mod M̃ = 1.

In the uniform fault model, the faulty modulus M̃ is uniformly distributed
over [0, 2l[where l denotes the bit-length of M . Therefore, the probability of non-
detection P is close to P (u1 mod u2 = 1) where u1 and u2 are uniform (and in-
dependent) random variables over [0, 2l[. This probability equals 2−l

∑2l−1
i=1 (1/i)

which is strictly lower than 2−80 for every l ≥ 86. The probability of non-
detection P is hence negligible in our context.

5.2 Safe-error Attacks

As recalled in Sect. 2.2, safe-error attacks divide into two categories: C-safe-error
attacks [41] and M-safe-error attacks [40, 24].

To prevent C-safe-error attacks one must ensure that no dummy operation is
conditionally performed depending on the secret key. Our secure exponentiation
does not perform any dummy operation and is hence secure against C-safe-
error attacks. When the chain is computed on-the-fly, it must be done in an
atomic way in order to thwart simple side channel analysis (see Sect. 6.1). The
atomic version of the chain computation algorithm (see Appendix B) makes use
of dummy operations and is hence vulnerable to C-safe-error attacks. In that
case, these can be thwarted by using the exponent blinding countermeasure (see
Sect. 6.2).

To prevent M-safe-error attacks one can either randomize the exponent (using
for instance the exponent blinding) or randomize the indices of the registers that
are addressed by some exponent bits (or chain bits in our context). When the
chain is pre-computed, the exponent cannot be randomized and the registers
indices randomization introduced hereafter shall be used. The principle is to
randomly chose the registers to store the different variables among the different
used registers. For instance, in Algorithm 1, a random bit r is picked up so that
the registers R0 and R1 are switched if r equals 1. In the description of Algorithm
1 this amounts to replace Rγ by Rγ⊕r. In this way, a M-safe-error attack will
imply a faulty output once out of two, independently of the performed operation.
This simple countermeasure thwarts the attacks recently published in [24].

6 Toward Side Channel Analysis Resistance

In this section, we address the resistance of our exponentiation algorithm against
the two main kinds of side channel analysis (SCA): simple SCA and differential
SCA.

6.1 Simple Side Channel Analysis

Simple SCA [26] exploits the fact that the operation flow of a cryptographic al-
gorithm may depend on the secret key. Different operations may induce different
patterns in the side channel leakage which provides secret information to any
attacker able to eavesdrop this leakage. To thwart simple SCA, an algorithm
must be atomic [13], namely, it must have the same operation flow whatever the
secret key.

The chain computation algorithm (Algorithm 2) and the double exponentia-
tion algorithm (Algorithm 1) may be vulnerable to simple SCA. To circumvent
this weakness, we provide atomic versions of these algorithms in Appendix B.

6.2 Differential Side Channel Analysis

Differential SCA [26] exploits the fact that the side channel leakage reveals in-
formation about some key-dependent intermediate variables of the computation.
Since its first publication, several improvements of differential SCA have been
proposed, especially to attack modular exponentiation [1, 17, 20, 30]. In order
to thwart differential SCA, one usually makes use of randomization techniques.
The message randomization as well as the modulus randomization are usual
countermeasures that can be straightforwardly combined with our method. The
exponent is usually randomized using the blinding technique that consists in
performing the exponentiation to the power d′ = d + r · ϕ(N) for a small ran-
dom number r [27, 30, 15]. This technique cannot be straightforwardly applied
while using our secure exponentiation algorithm since we have d′ > ϕ(N) for
every r > 0. Therefore, we propose the following simple adaptation: in Step
1 of Algorithm 3, the exponent a is set to d + r1 · ϕ(N) and the exponent b
is set to r2 · ϕ(N) − d where r1 and r2 are two small random numbers with
r2 ≥ r1 + 2. Then the rest of the secure exponentiation algorithm does not
change. Since md+r1·ϕ(N) ≡ md mod N , the desired signature is computed and
since md+r1·ϕ(N) ·mr2·ϕ(N)−d ≡ 1 mod N , the final check is correctly carried out.

Remark 11. If the chain ω is pre-computed, the exponent blinding cannot be
used. In that case, another kind of randomization (message, modulus) shall be
used. However, these do not prevent a differential SCA targeting the chain itself
(as for instance the SEMD attack of [30] or the address-bit DPA [20]). To deal
with this issue, we suggest to use a Boolean masking such as proposed in [21].

7 Complexity Analysis

In this section we analyze the time complexity and the memory complexity of our
proposal. In the sequel, we shall denote by l the bit-length of the exponentiation
inputs. Namely for a straightforward RSA we have l = dlog Ne and for a RSA-
CRT we have l = dlog N/2e.

7.1 Time Complexity

Our secure exponentiation is mainly composed of the chain computation and the
double exponentiation. The chain computation loop is shorter than the expo-
nentiation loop and it involves simple operations (e.g. substraction, division by
2) whose time complexities are negligible compared to a modular multiplication.
Therefore, the time complexity of our proposal mainly depends on the number
of multiplications performed by the double exponentiation algorithm (all the
more so as the chain may be pre-computed). We shall denote this number by m
and we shall define the multiplications-per-bit ratio as the coefficient θ satisfying
m = θl.

Some practical values for the expectation and the standard deviation of θ are
given in Table 7.1 that were obtained by simulations. For l ∈ {512, · · · , 1024},

the expected multiplications-per-bit ratio is around 1.65. Compared to the clas-
sical square-and-multiply algorithm, our exponentiation hence requires 10% more
multiplications, implying a 10% overhead in average, which is a fair cost for fault
analysis resistance. Moreover, the time complexity of our exponentiation is stead-
ier than the one of the square-and-multiply since the standard deviation σ (θ)
is lower than 1/5 and decreasing for l ≥ 512 while, for the square-and-multiply
algorithm, it is constant to 1/4.

Table 1. Expectation and standard deviation of the double exponentiation
multiplications-per-bit ratio.

l = 512 l = 640 l = 768 l = 896 l = 1024

E (θ) 1.65 1.66 1.66 1.66 1.66

σ (θ) 0.020 0.017 0.017 0.016 0.014

7.2 Memory Complexity

Our double exponentiation algorithm requires three l-bit registers to store the
message and the pair of powers. If the chain ω is computed on-the-fly, it requires
an additional buffer is necessary to store it.

We performed simulations to derive the practical values of the expectation
and the standard deviation of the chain length n∗. For the expectation, we
obtained E (n∗) ≈ 2.03 l for l ∈ {512, · · · , 1024}. For the standard deviation,
the obtained values are summarized in Table 2. Approximating the distribution
of n∗ by a Gaussian, we get P (n∗ > E (n∗) + kσ (n∗)) =

(
1 − erf

(
k/
√

2
))

/2
where erf(·) denotes the error function. For k = 10 and for l ∈ {512, · · · , 1024},
this probability is lower than 2−80. Consequently, for l ∈ {512, · · · , 1024}, the
probability to have n∗ > 2.2 l is negligible in practice, hence ω can be stored in
a (2.2 l)-bit buffer.

Table 2. Standard deviation of the chain bit-length.

l = 512 l = 640 l = 768 l = 896 l = 1024

σ (n∗) 0.015 l 0.013 l 0.011 l 0.010 l 0.010 l

On the whole, our secure exponentiation requires 5.2 l bits of memory when the
chain is computed on-the-fly and it requires 3 l bits of memory when the chain
is pre-computed.

For our secure RSA-CRT (see Algorithm 4), the peak of memory consumption
is reached in the second exponentiation while sp and cp must be kept in memory.
This makes a total memory consumption of 7.2 l bits with on-the-fly chain
computation and of 5 l bits with pre-computed chain.

7.3 Comparison With Previous Solutions

We analyze hereafter the complexity of previous countermeasures in the litera-
ture. As explained in Sect. 2, these can be divided in two categories: the extended
modulus based countermeasures and the self-secure exponentiations.

Extended Modulus Based Countermeasures. The time complexity of an
extended modulus based countermeasure (such as the Shamir’s trick or the Vig-
ilant Scheme) is around the complexity of the main exponentiation loop(s) since
the additional computations are negligible. However, such countermeasures are
not free in terms of timing since the use of an extended modulus slows down
the exponentiation. In fact, the time complexity of a modular multiplication
can be written as l2t0 where t0 denotes a constant time that depends on the
device architecture. Denoting by k the bit-length of the modulus extension, an
extended modulus exponentiation has a time complexity of m(l + k)2t0 while
a normal exponentiation has a time complexity of ml2t0. Besides, the modulus
extension implies an increase of the exponentiation execution time by a factor
(1 + k/l)2. As an illustration, Table 7.3 gives several values of the induced over-
head according to the modulus length and to the extension length. For instance,

Table 3. Time overhead (in %) for an extended modulus based modular exponentia-
tion.

l = 512 l = 768 l = 1024

k = 32 (low security) 13 9 6

k = 64 (fair security) 27 17 13

k = 80 (strong security) 34 22 16

an RSA 1024 implemented in CRT (l = 512) with extended modulus provid-
ing a fair level of security (k = 64) is about 27% slower than an unprotected
one. This time overhead is sizeable; in particular it is significantly greater than
the 10% overhead induced by our countermeasure. However, extended modulus
based countermeasures enables the use of exponentiation algorithms faster that
the square-and-multiply such as the q-ary or the sliding windows methods (see
for instance [29]). Roughly, a q-ary exponentiation has a multiplications-per-bit
ratio of 1+(2q−1)/(q2q) which is lower than or equal to 1.5, but it has a higher
memory complexity since it requires 2q−1 + 1 registers. The use of a sliding
window allows to slightly improve the time complexity of a q-ary method [28].

The memory complexity of an exponentiation with modulus extension is of
nr(l + k) where nr denotes the number of registers required by the exponen-
tiation algorithm. For an RSA-CRT, the memory complexity depends on the
used countermeasure. For the Vigilant Scheme, the memory consumption peak
occurs during the second exponentiation while the values S′

p, iqr, r, R3 and
R4 must hold in memory (see [38]). This results in a memory consumption of
nr(l + k) + (l + k) + 3.5 k = (nr + 1) · l + (nr + 4.5) · k bits.

Remark 12. We do not detail the memory complexity of the other extended
modulus based countermeasures since, for most of them, it is close to the memory
complexity of the Vigilant Scheme.

Previous Self-secure Exponentiations. The Giraud Scheme and the Boscher
et al. Scheme both have a multiplications-per-bit ratio constant to 2. This im-
plies an average time overhead of 33% compared to the square-and-multiply
algorithm and of 21% compared to our exponentiation. However, both of these
schemes do not require additional computations contrary to the extended mod-
ulus based countermeasures or to our scheme when the chain is computed on-
the-fly. Although these additional computations are theoretically negligible, they
may induce an overhead for a practical implementation depending on the device
architecture.

In terms of memory, we shall focus on the Giraud Scheme since it is less con-
suming than the Boscher et al. Scheme. The secure exponentiation requires two
l-bit registers. For the RSA-CRT, the peak of memory consumption is reached
during the two recombinations. For instance, the first recombination requires
(at least) 3l bits of memory while m, Sp and Sq must hold in memory (see [18])
which makes a total complexity of 7l bits.

Comparison with our Solution. Table 4 provides a comparison between the
Giraud Scheme, the Vigilant Scheme and ours for an RSA 1024 with CRT (i.e.
l = 512). For the Vigilant Scheme, we assume a modulus extension of {64, 80}
bits and a q-ary sliding window exponentiation for q = 1, 2 or 3 [29]. The results

Table 4. Memory and time complexities of different fault analysis countermeasures
for an RSA 1024 with CRT.

Countermeasure Time (106 · t0) Memory (Kb)

Vigilant [38] (q = 1) {511, 484} {2.4, 2.3}
Vigilant [38] (q = 2) {468, 444} {2.6, 2.5}
Vigilant [38] (q = 3) {440, 417} {3.7, 3.6}
Giraud [18] 537 3.5

This paper 443 2.5 (+1.1)

given in Table 4 shows that our countermeasure is currently one of the most
competitive solution to thwart fault analysis for an RSA 1024 with CRT.

Remark 13. The time complexity for the Vigilant Scheme with sliding widow
is computed as follows. A q-ary exponentiation performs an average of l ·

(
1 +

(2q − 1)/(q2q)
)

multiplications [29] and the use of a sliding window yields an
improvement of about 5% for l = 512 [28]. Therefore, the time complexity of
one exponentiation is estimated to 0.95 · (l + k)2t0 · l ·

(
1 + (2q − 1)/(q2q)

)
.

Concerning the memory complexity, the sliding window method requires a total
of nr = 2q−1 + 1 registers.

8 Conclusion

In this paper, we have described a new countermeasure to protect exponentiation
and RSA against fault analysis. The core idea of our method is to introduce
redundancy in the computation by performing a double exponentiation. To do so,
we proposed a double exponentiation algorithm that is based on the computation
of an addition chain. We analyzed the security of our solution vs fault analysis
and we showed how it can be protected against side channel analysis. We also
studied the time and memory complexities of our countermeasure which showed
that it offers an efficient alternative to the existing schemes. A direction for
further research would be to investigate more efficient double exponentiation
algorithms and time-memory tradeoffs.

Acknowledgements

I would like to thank Jean-Sébastien Coron, Emmanuelle Dottax, Christophe
Giraud, Gilles Piret and Emmanuel Prouff for helpful comments. I am also espe-
cially grateful to one of the anonymous reviewers of CT-RSA 2009 for valuable
suggestions.

References

1. F. Amiel, B. Feix, and K. Villegas. Power Analysis for Secret Recovering and
Reverse Engineering of Public Key Algorithms. In C. M. Adams, A. Miri, and
M. J. Wiener, editors, SAC 2007, LNCS, pages 110–125. Springer, 2007.

2. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault Attacks on
RSA with CRT: Concrete Results and Practical Countermeasures. In B. Kaliski Jr.,
Ç. Koç, and C. Paar, editors, CHES 2002, volume 2523 of LNCS, pages 260–275.
Springer, 2002.

3. F. Bao, R. Deng, Y. Han, A. Jeng, A. D. Narasimhalu, and T.-H. Ngair. Break-
ing Public Key Cryptosystems an Tamper Resistance Devices in the Presence of
Transient Fault. In 5th Security Protocols Workshop, volume 1361 of LNCS, pages
115–124. Springer, 1997.

4. A. Berzati, C. Canovas, and L. Goubin. (In)security Against Fault Injection
Attacks for CRT-RSA Implementations. In L. Breveglieri, S. Gueron, I. Koren,
D. Naccache, and J.-P. Seifert, editors, FDTC 2008, pages 101–107. IEEE Com-
puter Society, 2008.

5. A. Berzati, C. Canovas, and L. Goubin. Perturbating RSA Public Keys: An Im-
proved Attack. In E. Oswald and P. Rohatgi, editors, CHES 2007, volume 5154 of
LNCS, pages 380–395. Springer, 2008.

6. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystem.
In B. Kalisky Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 513–525.
Springer, 1997.

7. J. Blömer, M. Otto, and J.-P. Seifert. A New RSA-CRT Algorithm Secure against
Bellcore Attacks. In S. Jajodia, V. Atluri, and T. Jaeger, editors, CCS’03, pages
311–320. ACM Press, 2003.

8. D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults. In W. Fumy, editor, EUROCRYPT ’97, volume 1233
of LNCS, pages 37–51. Springer, 1997.

9. M. Boreale. Attacking Right-to-Left Modular Exponentiation with Timely Ran-
dom Faults. In L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert, editors,
FDTC 2006, volume 4236 of LNCS, pages 24–35. Springer, 2006.

10. A. Boscher, R. Naciri, and E. Prouff. CRT RSA Algorithm Protected against
Fault Attacks. In D. Sauveron, K. Markantonakis, A. Bilas, and J.-J. Quisquater,
editors, WISTP 2007, volume 4462 of LNCS, pages 229–243. Springer, 2007.

11. J. Bos and M. Coster. Addition chain heuristics. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 400–407. Springer, 1989.

12. E. Brier, B. Chevallier-Mames, M. Ciet, and C. Clavier. Why One Should Also
Secure RSA Public Key Elements. In L. Goubin and M. Matsui, editors, CHES
2006, volume 4249 of LNCS, pages 324–338. Springer, 2006.

13. B. Chevallier-Mames, M. Ciet, and M. Joye. Low-cost Solutions for Preventing
Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE Transactions on
Computers, 53(6):760–768, 2004.

14. M. Ciet and M. Joye. Practical Fault Countermeasures for Chinese Remaindering
Based RSA. In L. Breveglieri and I. Koren, editors, FDTC’05, pages 124–132,
2005.

15. J.-S. Coron. Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Ç. Koç and C. Paar, editors, CHES’99, volume 1717 of LNCS,
pages 292–302. Springer, 1999.

16. E. Dottax, C. Giraud, M. Rivain, and Y. Sierra. On Second-Order Fault Analysis
Resistance for CRT-RSA Implementations. Cryptology ePrint Archive, Report
2009/24, 2009. http://eprint.iacr.org/2009/024.

17. P.-A. Fouque and F. Valette. The Doubling Attack: Why Upwards is Better than
Downwards. In C. Walter, Ç. Koç, and C. Paar, editors, CHES 2003, volume 2779
of LNCS, pages 269–280. Springer, 2003.

18. C. Giraud. An RSA Implementation Resistant to Fault Attacks and to Simple
Power Analysis. IEEE Transactions on Computers, 55(9):1116–1120, Sept. 2006.

19. D. M. Gordon. A Survey of Fast Exponentiation Methods. J. Algorithms,
27(1):129–146, 1998.

20. K. Itoh, T. Izu, and M. Takenak. Address-bit Differential Power Analysis of Cryp-
tographic Schemes OK-ECDH and OK-ECDSA. In B. Kaliski Jr., Ç. Koç, and
C. Paar, editors, CHES 2002, volume 2523 of LNCS, pages 129–143. Springer,
2002.

21. K. Itoh, T. Izu, and M. Takenaka. A Practical Countermeasure against Address-
Bit Differential Power Analysis. In C. Walter, Ç. Koç, and C. Paar, editors, CHES
2003, volume 2779 of LNCS, pages 382–396. Springer, 2003.

22. M. Joye, A. Lenstra, and J.-J. Quisquater. Chinese Remaindering Based Cryp-
tosystems in the Presence of Faults. Journal of Cryptology, 12(4):241–245, 1999.

23. C. H. Kim and J.-J. Quisquater. Fault Attacks for CRT Based RSA: New At-
tacks, New Results, and New Countermeasures. In D. Sauveron, K. Markanton-
akis, A. Bilas, and J.-J. Quisquater, editors, WISTP 2007, volume 4462 of LNCS,
pages 215–228. Springer, 2007.

24. C. H. Kim, J. H. Shin, J.-J. Quisquater, and P. J. Lee. Safe-error attack on spa-
fa resistant exponentiations using a hw modular multiplier. In K.-H. Nam and
G. Rhee, editors, ICISC, volume 4817 of LNCS. Springer, 2007.

25. D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, third
edition, 1988.

26. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer, 1999.

27. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In N. Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS, pages
104–113. Springer, 1996.

28. Ç. Koç Analysis of the Sliding Window Techniques for Exponentiation. Computer
& Mathematics with applications, 30(10):17–24, 1995.

29. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

30. T. Messerges, E. Dabbish, and R. Sloan. Power Analysis Attacks of Modular
Exponentiation in Smartcard. In Ç. Koç and C. Paar, editors, CHES ’99, volume
1717 of LNCS, pages 144–157. Springer, 1999.

31. D. S. Mitrinovic, J. Sándor, and B. Crstici. Handbook of Number Theory. Springer,
1995.

32. B. Möller. Algorithms for Multi-exponentiation. In S. Vaudenay and A. Youssef,
editors, SAC 2001, volume 2259 of LNCS, pages 165–180. Springer, 2001.

33. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126,
1978.

34. J. Schmidt and C. Herbst. A Practical Fault Attack on Square and Multiply. In
L. Breveglieri, S. Gueron, I. Koren, D. Naccache, and J.-P. Seifert, editors, FDTC
2008, pages 53–58. IEEE Computer Society, 2008.

35. J.-P. Seifert. On Authenticated Computing and RSA-based Authentication. In
V. Atluri, C. Meadows, and A. Juels, editors, ACM CCS 2005, pages 122–127.
ACM, 2005.

36. A. Shamir. Improved Method and Apparatus for Protecting Public Key Schemes
from Timing and Fault Attacks. Publication number: WO9852319, Nov. 1998.

37. Sun Microsystems. Application Programming Interface – Java CardTM Plateform,
Version 2.2.2, Mar. 2006. http://java.sun.com/products/javacard/specs.html.

38. D. Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault
Attacks. In E. Oswald and P. Rohatgi, editors, CHES 2007, volume 5154 of LNCS,
pages 130–145. Springer, 2008.

39. D. Wagner. Cryptanalysis of a Provable Secure CRT-RSA Algorithm. In B. Pfitz-
mann and P. Liu, editors, CCS’04, pages 82–91. ACM Press, 2004.

40. S.-M. Yen and M. Joye. Checking Before Output May Not Be Enough Against
Fault-Based Cryptanalysis. IEEE Transactions on Computers, 49(9):967–970,
2000.

41. S.-M. Yen, S.-J. Kim, S.-G. Lim, and S.-J. Moon. A Countermeasure against one
Physical Cryptanalysis May Benefit Another Attack. In K. Kim, editor, ICISC
2001, volume 2288 of LNCS, pages 414–427. Springer, 2001.

42. S.-M. Yen, S.-J. Kim, S.-G. Lim, and S.-J. Moon. RSA Speedup with Residue Num-
ber System Immune against Hardware Fault Cryptanalysis. IEEE Transactions on
Computers, 52(4):461–472, 2003.

A Proof of Lemma 1

Proof. By the law of total probability, we have:

P (ordM (m)|u) =
∑

λ∈D(ϕ(M))

P (λ|u) P (ordM (m) = λ) , (6)

where D is the function mapping a natural integer to the set of its divisors.
On the one hand, the probability P (λ|u) equals 1/λ. On the other hand, for
every λ ∈ D(ϕ(M)), there are ϕ(λ) elements of order λ in Z∗

M which leads to
P (ordM (m) = λ) = ϕ(λ)/ϕ(M). On the whole, (6) can be rewritten as:

P (ordM (m)|u) =
1

ϕ(M)

∑
λ∈D(ϕ(M))

ϕ(λ)
λ

. (7)

Since ϕ(λ)/λ is strictly lower than or equal to 1, we have P (ordM (m)|u) ≤
d(ϕ(M))/ϕ(M) where d(·) denotes the divisor function (i.e. the function that
maps a natural integer to the quantity of its distinct divisors). It is well known
that the divisor function satisfies d(x) < 2

√
x for every x [31] which implies

P (ordM (m)|u) < 2/
√

ϕ(M). Since we have ϕ(M) > n2/3 for every M > 30 [31],
we get (5). �

B Atomic Algorithms

Atomic Chain Computation. Looking at the chain computation algorithm,
we observe that the main operations (namely operations on large registers) per-
formed at each loop iteration are a division by two and possibly a substraction
(depending on the value of τi). To render the algorithm atomic both operations
must be performed at each loop iteration. The following algorithm describes the
atomic version of the chain computation. It makes use of three registers: R0, R1

and R2 which are used to store the values of αi and βi as well as a temporary
value. It also uses three indices iα, iβ , itmp ∈ {0, 1, 2} such that αi is stored in
Riα

, βi is stored in Riβ
and the temporary value is stored in Ritmp

.

Algorithm 5 Atomic double addition chain computation

Input: A pair of natural integer (a, b) s.t. a ≤ b

Output: The chain ω(a, b)

1. Riα ← a; Riβ ← b; j ← n∗

2. while (Riα , Riβ) 6= (0, 1) do

3. Ritmp ← Riβ −Riα

4. v ← Riβ mod 2

5. Riβ ← Riβ /2

6. t← (Riβ ≤ Riα)

7. ωj−1 ← t; ωj ← t ∨ v

8. (iα, iβ , itmp)←
�
t ∧ (itmp, iα, iβ)

�
∨
�
(t⊕ 1) ∧ (iα, iβ , itmp)

�

9. j ← j − 1− (t⊕ 1)

10. end while

11. return ω

Notations. In Step 6, the notation t ← (Riβ
≤ Riα

) is used to denote the oper-
ation that compares the two values in Riβ

and Riα and that returns the binary
value t satisfying t = 1 if Riβ

≤ Riα and t = 0 otherwise. In Steps 8 and 9, the
logical AND is extended to the {0, 1} × {0, 1}n → {0, 1}n operator performing
a logical AND between the left argument and each coordinate of the right argu-
ment.

Looking at Algorithm 5, we see that, at each loop iteration, the Boolean
values t and v represent the values of τi and νi. One can verify that if t = 0 then
these values are stored in (ωj−1, ωj) and j is decremented by two while if t = 1
then t is stored in ωj and j is decremented by 1. Moreover, if t = 0 then Steps
8 and 9 have no effect while if t = 1 then Step 8 ensures that the indices of the
different registers are permuted so that (αi, βi) is correctly updated.

Although Algorithm 5 requires three l-bit registers and a (2.2 l)-bit buffer
to store ω (see Sect. 7), its memory consumption can be reduced to 4.2 l bits
using the following trick. During the computation of the 1.2 l high order bits
of ω, the l low order bits allocated for ω are used as one of the three necessary
l-bit registers. Once the 1.2 l high order bits of ω have been computed, the
intermediate values αi and βi have a bit-length lower than l/2. Therefore, the
three registers can be allocated on less than 2l bits and the low order part of the
buffer for ω can be freed.

Atomic Double Exponentiation. The following algorithm describes the atomic
version of the double modular exponentiation. It makes use of two registers R(0,0)

and R(0,1) that are used to store the intermediate results mai and mbi and one
more register R(1,0) to store m. It makes also use of two Boolean variables γ and
µ. The Boolean γ indicates that mai is stored in R(0,γ⊕1) and that mbi is stored
in R(0,γ). And the Boolean µ indicates wether the next modular multiplication
is a multiplication by m (µ = 0) or not (µ = 1).

Algorithm 6 Atomic double modular exponentiation
Input: An element m ∈ ZN , a chain ω(a, b) s.t. a ≤ b, a modulus N
Output: The pair of modular power (ma mod N, mb mod N)

1. R(0,0) ← 1; R(0,1) ← m; R(1,0) ← m

2. γ ← 1; µ← 1; i← 0

3. while i < n do

4. t← ωi ∧ µ; v ← ωi+1 ∧ µ

5. R(0,γ⊕t) ← R(0,γ⊕t) ·R((µ⊕1),γ∧µ) mod N

6. µ← t ∨ (v ⊕ 1); γ ← γ ⊕ t

7. i← i + µ + µ ∧ (t⊕ 1)

8. end while

9. return (Rγ⊕1, Rγ)

While µ = 1, the Boolean t is evaluated to τi and, if τi = 1, the Boolean v
is evaluated to νi. Then, while t = 1 or v = 0 each loop iteration corresponds
to a step performing one single multiplication which is done in Step 5. If t = 0
and ν = 1, the step must perform two multiplications: R(0,γ) by R(0,γ) and
R(0,γ) by R(1,0). The first one is performed in Step 5 afterward the Boolean µ is
evaluated to 0 thus indicating that the next loop must perform the multiplication
by R(1,0). In that case, i is not incremented and the next loop iteration performs
the desired multiplication before evaluating µ to 1 and normally carrying on the
computation.

