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Abstract. It is widely accepted that higher-order masking is a sound countermeasure to protect
implementations of block ciphers against side-channel attacks. The main issue while designing such
a countermeasure is to deal with the nonlinear parts of the cipher i.e. the so-called s-boxes. The pre-
vailing approach to tackle this issue consists in applying the Ishai-Sahai-Wagner (ISW) scheme from
CRYPTO 2003 to some polynomial representation of the s-box. Several efficient constructions have
been proposed that follow this approach, but higher-order masking is still considered as a costly (im-
practical) countermeasure. In this paper, we investigate efficient higher-order masking techniques
by conducting a case study on ARM architectures (the most widespread architecture in embedded
systems). We follow a bottom-up approach by first investigating the implementation of the base
field multiplication at the assembly level. Then we describe optimized low-level implementations
of the ISW scheme and its variant (CPRR) due to Coron et al. (FSE 2013). Finally we present
improved state-of-the-art methods with custom parameters and various implementation-level opti-
mizations. We also investigate an alternative to polynomials methods which is based on bitslicing
at the s-box level. We describe new masked bitslice implementations of the AES and PRESENT
ciphers. These implementations happen to be significantly faster than (optimized) state-of-the-art
polynomial methods. In particular, our bitslice AES masked at order 10 runs in 0.48 megacycles,
which makes 8 milliseconds in presence of a 60 MHz clock frequency.

1 Introduction

Since their introduction in the late 1990’s, side-channel attacks have been considered as a serious threat
against cryptographic implementations. Among the existing protection strategies, one of the most widely
used relies on applying secret sharing at the implementation level, which is known as (higher-order)
masking. This strategy achieves provable security in the so-called probing security model [21] and noisy
leakage model [25, 17], which makes it a prevailing way to get secure implementations against side-channel
attacks.

Higher-Order Masking. Higher-order masking consists in sharing each internal variable x of a cryp-
tographic computation into d random variables x1, x2, . . . , xd, called the shares and satisfying

x1 + x2 + · · ·+ xd = x (1)

for some group operation +, such that any set of d− 1 shares is randomly distributed and independent
of x. In this paper, the considered masking operation will be the bitwise addition. It has been formally
demonstrated that in the noisy leakage model, where the attacker gets noisy information on each share,
the complexity of recovering information on x grows exponentially with the number of shares [12, 25].
This number d, called the masking order, is hence a sound security parameter for the resistance of a
masked implementation.

When dth-order masking is involved to protect a blockcipher, a so-called dth-order masking scheme
must be designed to enable computation on masked data. To be sound, a dth order masking scheme
must satisfy the two following properties: (i) completeness, at the end of the encryption/decryption, the
sum of the d shares must give the expected result; (ii) probing security, every tuple of d − 1 or less
intermediate variables must be independent of any sensitive variable.

Most blockcipher structures are composed of one or several linear transformation(s), and a non-linear
function, called the s-box (where the linearity is considered w.r.t. the bitwise addition). Computing a



linear transformation ` : x 7→ `(x) in the masking world can be done in O(d) complexity by applying `
to each share independently. This clearly maintains the probing security and the completeness holds by
linearity since we have `(x1) + `(x2) + · · ·+ `(xd) = `(x). On the other hand, the non-linear operations
are more tricky to compute on the shares while ensuring completeness and probing security.

Previous Works. In [21], Ishai, Sahai, and Wagner tackled this issue by introducing the first generic
higher-order masking scheme for the multiplication over F2 in complexity O(d2). The here-called ISW
scheme was later used by Rivain and Prouff to design an efficient masked implementation of AES [26].
Several works then followed to improve this approach and to extend it to other SPN blockciphers [10, 14,
15, 22]. The principle of these methods consists in representing an n-bit s-box as a polynomial

∑
i ai x

i

in F2n [x]/(x2
n − x), whose evaluation is then expressed as a sequence of linear functions (e.g. squaring

over F2n [n], additions, multiplications by constant coefficients) and nonlinear multiplications over F2n .
As linear operations, the former are simply masked in complexity O(d), whereas the latter are secured
using ISW in complexity O(d2). The total complexity is hence mainly impacted by the number of non-
linear multiplications involved in the underlying polynomial evaluation. This observation led to a series
of publications aiming at conceiving polynomial evaluation methods with the least possible nonlinear
multiplications [10, 27, 15]. The so-called CRV method, due to Coron, Roy and Vivek [15], is currently
the best known generic method for this aim.

Recently, an alternative to previous ISW-based polynomial methods was proposed by Carlet, Prouff,
Rivain and Roche in [11]. They introduce a so-called algebraic decomposition method that can express
an s-box in terms of polynomials of low algebraic degree. They also show that a variant of ISW proposed
by Coron, Prouff, Rivain and Roche [14] to secure multiplications of the form x 7→ x · `(x), where ` is
linear, can actually be used to secure the computation of any quadratic function. By combining the latter
scheme, called CPRR in the following, together with their algebraic decomposition method, Carlet et al.
obtain an efficient alternative to existing ISW-based masking schemes. In particular, their technique is
argued to beat the CRV method based on the assumption that an efficiency gap exists between an ISW
multiplication and a CPRR evaluation. However, no optimized implementation is provided to back up
this assumption.

Despite these advances, higher-order masking still implies strong performance overheads on protected
implementations, and it is often believed to be impractical beyond small orders. On the other hand, most
published works on the subject focus on theoretical aspects without investigating optimized low-level
implementations. This raises the following question: how fast can higher-order masking be in software?

Our Contribution. In this paper, we investigate this question and present a case study on ARM
architectures, which are today the most widespread in embedded systems (privileged targets of side-
channel attacks). We provide an extensive and fair comparison between the different methods of the state
of the art and a benchmarking on optimized implementations of higher-order masked blockciphers. For
such purpose, we follow a bottom-up approach and start by investigating the efficient implementation of
the base-field multiplication, which is the core elementary operation of the ISW-based masking schemes.
We propose several implementations strategies leading to different time-memory trade-offs. We then
investigate the two main building blocks of existing masking schemes, namely the ISW and CPRR
schemes. We optimize the implementation of these schemes and we describe parallelized versions that
achieve significant gains in performances. From these results, we propose fine-tuned variants of the CRV
and algebraic decomposition methods, which allows us to compare them in a practical and optimized
implementation context. We also investigate efficient polynomial methods for the specific s-boxes of two
important blockciphers, namely AES and PRESENT.

As an additional contribution, we put forward an alternative strategy to polynomial methods which
consists in applying bitslicing at the s-box level. More precisely, the s-box computations within a block-
cipher round are bitsliced so that the core nonlinear operation is not a field multiplication anymore
(nor a quadratic polynomial) but a bitwise logical AND between two m-bit registers (where m is the
number of s-box computations). This allows us to translate compact hardware implementations of the
AES and PRESENT s-boxes into efficient masked implementations in software. This approach has been
previously used to design blockciphers well suited for masking [19] but, to the best of our knowledge,
has never been used to derive efficient masked implementation of existing standard blockciphers such
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as AES or PRESENT. We further provide implementation results for full blockciphers and discuss the
security aspects of our implementations.

Our results clearly demonstrate the superiority of the bitslicing approach. Our masked bitslice im-
plementations of AES and PRESENT are significantly faster than state-of-the-art polynomial methods
with fine-tuned low-level implementations. In particular, a masked encryption at the order 10 only takes
a few milliseconds at a 60 MHz clock frequency (i.e. 8ms for AES and 5ms for PRESENT).

Paper Organization. We first give some preliminaries about ARM architectures (Section 2). We
then investigate the base field multiplication (Section 3) and the ISW and CPRR schemes (Section
4). Afterward, we study polynomial methods for s-boxes (Section 5) and we introduce our masked
bitslice implementations of the AES and PRESENT s-boxes (Section 6). Eventually, we describe our
implementations of the full ciphers (Section 7). The security aspects of our implementations are further
discussed in Section 8.

2 Preliminaries on ARM Architectures

Most ARM cores are RISC processors composed of sixteen 32-bit registers, labeled R0, R1, . . . , R15.
Registers R0 to R12 are known as variable registers and are available for computation.3 The three last
registers are usually reserved for special purposes: R13 is used as the stack pointer (SP), R14 is the link
register (LR) storing the return address during a function call, and R15 is the program counter (PC). The
link register R14 can also be used as additional variable register by saving the return address on the stack
(at the cost of push/pop instructions). The gain of having a bigger register pool must be balanced with
the saving overhead, but this trick enables some improvements in many cases.

Most of the ARM instructions can be split into the following three classes: data instructions, memory
instructions, and branching instructions. The data instructions are the arithmetic and bitwise operations,
each taking one clock cycle (except for the multiplication which takes two clock cycles on our particular
ARM architecture). The memory instructions are the load and store (from and to the RAM) which
require 3 clock cycles, or their variants for multiple loads or stores (n + 2 clock cycles). The last class
of instructions is the class of branching instructions used for loops, conditional statements and function
calls. These instructions take 3 or 4 clock cycles. This classification is summarized in Table 1.

Table 1. ARM instructions.

Class Examples Clock cycles

Data instructions EOR, ADD, SUB, AND, MOV 1

Memory instructions LDR, STR / LDM, STM 3 or n+ 2

Branching instructions B, BX, BL 3 or 4

One important specificity of the ARM assembly is the barrel shifter allowing any data instruction to
shift one of its operands at no extra cost in terms of clock cycles. Four kinds of shifting are supported: the
logical shift left (LSL), the logical shift right (LSR), the arithmetic shift right (ASR), and the rotate-right
(ROR). All these shifting operations are parameterized by a shift length in [[0, 31]]. The latter can also be
relative by using a register but in that case the instruction takes an additional clock cycle.

Another feature of ARM assembly that can be very useful is the branch predication. This feature
allows any instruction to be conditionally executed with respect to a (data dependent) flag value (e.g.
the carry flag, the zero flag, etc.). In the context of secure embedded implementations, we have to ensure
a data-independent operation flow in order to prevent timing and/or simple side-channel attacks. We
must therefore avoid data-dependent conditional branches. For this reason we do not make use of the
branch predication, except when it involves non-sensitive data such as loop counters.

3 Note that some conventions exist for the first four registers R0–R3, also called argument registers, and serving
to store the arguments and the result of a function at call and return respectively.
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Eventually, we assume that our target architecture include a fast True Random Number Generator
(TRNG), that frequently fills a register with a fresh 32-bit random strings (e.g. every 10 clock cycles).
The TRNG register can then be read at the cost of a single load instruction.4

3 Base Field Multiplication

In this section, we focus on the efficient implementation of the multiplication over F2n where n is small
(typically n ∈ [[4, 10]]). The fastest method consists in using a precomputed table mapping the 22n

possible pairs of operands (a, b) to the output product a · b. The size of this table is given in Table 2 with
respect to n.

Table 2. Size of the full multiplication table (in kilobytes) w.r.t. n.

n = 4 5 6 7 8 9 10

Table size 0.25 KB 1 KB 4 KB 16 KB 64 KB 512 KB 1048 KB

In the context of embedded systems, one is usually constrained on the code size and spending several
kilobytes for (one table in) a cryptographic library might be prohibitive. That is why we investigate
hereafter several alternative solutions with different time-memory trade-offs. Specifically, we look at the
classical binary algorithm and exp-log multiplication methods. We also describe a tabulated version of
Karatsuba multiplication, and another table-based method: the half-table multiplication. The obtained
implementations are compared in terms of clock cycles, register usage, and code size (where the latter is
mainly impacted by precomputed tables).

In the rest of this section, the two multiplication operands in F2n will be denoted a and b. These
elements can be seen as polynomials a(x) =

∑n−1
i=0 aix

i and b(x) =
∑n−1
i=0 bix

i over F2[x]/p(x) where the
ai’s and the bi’s are binary coefficients and where p is a degree-n irreducible polynomial over F2[x]. In
our implementations, these polynomials are simply represented as n-bit strings a = (an−1, . . . , a0)2 or

equivalently a =
∑n−1
i=0 ai 2i (and similarly for b).

3.1 Binary Multiplication

The binary multiplication algorithm is the most basic way to perform a multiplication on a binary field.
It consists in evaluating the following formula:

a(x) · b(x) =
(
· · ·
((
bn−1a(x)x+ bn−2a(x)

)
x+ bn−3a(x)

)
· · ·
)
x+ b0a(x) , (2)

by iterating over the bits of b. A formal description is given in Algorithm 1.

Algorithm 1 Binary multiplication algorithm

Input: a(x), b(x) ∈ F2[x]/p(x)
Output: a(x) · b(x) ∈ F2[x]/p(x)
1. r(x)← 0
2. for i = n− 1 down to 0 do
3. r(x)← x · r(x) mod p(x)
4. if bi = 1 then r(x)← r(x) + a(x)
5. end for
6. return r(x) mod p(x)

4 This is provided that the TRNG address is already in a register. Otherwise one must first load the TRNG
address, before reading the random value.
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The reduction modulo p(x) can be done either inside the loop (at Step 3 in each iteration) or at the
end of the loop (at Step 6). If the reduction is done inside the loop, the degree of x · r(x) is at most n in
each iteration. So we have

x · r(x) mod p(x) =

{
x · r(x)− p(x) if rn−1 = 1
x · r(x) otherwise

(3)

The reduction then consists in subtracting p(x) to x · r(x) if and only if rn−1 = 1 and doing nothing
otherwise. In practice, the multiplication by x simply consists in left-shifting the bits of r and the
subtraction of p is a simple XOR. The tricky part is to conditionally perform the latter XOR with
respect to the bit rn−1 as we aim to a branch-free code. This is achieved using the arithmetic right shift5

instruction (sometimes called signed shift) to compute (r � 2)⊕ (rn−1 × p) by putting rn−1 at the sign
bit position, which can be done in 3 ARM instructions (3 clock cycles) as follows:

LSL $tmp , $res , #(32-n) ;; tmp = r_{n-1}

AND $tmp , $mod , $tmp , ASR #32 ;; tmp = p & (tmp ASR 32)

EOR $res , $tmp , $res , LSL #1 ;; r = (r_{n-1} * p)^(r << 2)

Step 4 consists in conditionally adding a to r whenever bi equals 1. Namely, we have to compute
r ⊕ (bi × a). In order to multiply a by bi, we use the rotation instruction to put bi in the sign bit and
the arithmetic shift instruction to fill a register with bi. The latter register is then used to mask a with
a bitwise AND instruction. The overall Step 4 is performed in 3 ARM instructions (3 clock cycles) as
follows:

ROR $opB , #31 ;; b_i = sign(opB)

AND $tmp , $opA , #opB , ASR #32 ;; tmp = a & (tmp ASR 32)

EOR $res , $tmp ;; r = r^(a * b_i)

Variant. If the reduction is done at the end of the loop, Step 3 then becomes a simple left shift, which
can be done together with Step 4 in 3 instructions (3 clock cycles) as follows:

ROR $opB , #31 ;; b_i = sign(opB)

AND $tmp , $opA , $opB , ASR #32 ;; tmp = a & (tmp ASR 32)

EOR $res , $tmp , $res , LSL #1 ;; r = (a * b_i)^(r << 2)

The reduction must then be done at the end of the loop (Step 8), where we have r(x) = a(x) · b(x)
which can be of degree up to 2n− 2. Let rh and r` be the polynomials of degree at most n− 2 and n− 1
such that r(x) = rh(x) ·xn+ r`(x). Since we have r(x) mod p(x) = (rh(x) ·xn mod p(x)) + r`(x), we only
need to reduce the high-degree part rh(x) · xn. This can be done by tabulating the function mapping
the n− 1 coefficients of rh(x) to the n− 2 coefficients of rh(x) · xn mod p(x). The overall final reduction
then simply consists in computing T [r � n]⊕ (r ∧ (2n− 1)), where T is the corresponding precomputed
table.

3.2 Exp-Log Multiplication

Let g ∈ F2n be a generator of the multiplicative group F∗2n . We shall denote by expg the exponential

function defined over [[0, 2n−1]] as expg(`) = g`, and by logg the discrete logarithm function defined over
F∗2n as logg = exp−1g . Assume that these functions can be tabulated (which is usually the case for small
values of n). The multiplication between field elements a and b can then be efficiently computed as

a · b =

{
expg(logg(a) + logg(b) mod 2n − 1) if a 6= 0 and b 6= 0
0 otherwise

(4)

5 This instruction performs a logical right-shift but instead of filling the vacant bits with 0, it fills these bits
with the leftmost bit operand (i.e. the sign bit).
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Le us denote t = logg(a) + logg(b). We have t ∈ [[0, 2n+1 − 2]] giving

t mod 2n − 1 =

{
t− 2n + 1 if tn = 1
t otherwise

(5)

where tn is the most significant bit in the binary expansion t =
∑n
i=0 ti 2i, which can be rewritten as

t mod 2n − 1 = (t+ tn) ∧ (2n − 1). This equation can be evaluated with 2 ARM instructions6 (2 clock
cycles) as follows:

ADD $tmp , $tmp , LSR #n ;;tmp = tmp + tmp >>n

AND $tmp , #(2^n-1) ;;tmp = tmp & (2^n-1)

Variant. Here again, a time-memory trade-off is possible: the expg table can be doubled in order to
handle a (n + 1)-bit input and to perform the reduction. This simply amounts to consider that expg is
defined over [[0, 2n+1 − 2]] rather than over [[0, 2n − 1]].

Zero-testing. The most tricky part of the exp-log multiplication is to manage the case where a or
b equals 0 while avoiding any conditional branch. Once again we can use the arithmetic right-shift
instruction to propagate the sign bit and use it as a mask. The test of zero can then be done with 4
ARM instructions (4 clock cycles) as follows:

RSB $tmp , $opA , #0 ;; tmp = 0 - a

AND $tmp , $opB , $tmp , ASR #32 ;; tmp = b & (tmp ASR 32)

RSB $tmp , #0 ;; tmp = 0 - tmp

AND $res , $tmp , ASR #32 ;; r = r & (tmp >> 32)

3.3 Karatsuba Multiplication

The Karatusba method is based on the following equation:

a · b = (ah + a`)(bh + b`)x
n
2 + ah bh (xn + x

n
2 ) + a` b` (x

n
2 + 1) mod p(x) (6)

where ah, a`, bh, b` are the n
2 -degree polynomials such that a(x) = ah x

n
2 + a` and b(x) = bh x

n
2 + b`.

The above equation can be efficiently evaluated by tabulating the following functions:

(ah + a`, bh + b`) 7→ (ah + a`)(bh + b`)x
n
2 mod p(x) ,

(ah, bh) 7→ ah bh (xn + x
n
2 ) mod p(x) ,

(a`, b`) 7→ a` b` (x
n
2 + 1) mod p(x) .

We hence obtain a way to compute the multiplication with 3 look-ups and a few XORs based on 3 tables
of 2n elements.

In practice, the most tricky part is to get the three pairs (ah||bh), (a`||b`) and (ah + a`||bh + b`) to
index the table with the least instructions possible. The last pair is a simple addition of the two first
ones. The computation of the two first pairs from the operands a ≡ (ah||a`) and b ≡ (bh||b`) can then be
seen as the transposition of a 2× 2 matrix. This can be done with 4 ARM instructions (4 clock cycles)
as follows:

EOR $tmp0 , $opA , $opB , LSR #(n/2) ;; tmp0 = [a_h|a_l^b_h]

EOR $tmp1 , $opB , $tmp0 , LSL #(n/2) ;; tmp1 = [a_h|a_l|b_l]

BIC $tmp1 , #(2^n*(2^(n/2) -1)) ;; tmp1 = [a_l|b_l]

EOR $tmp0 , $tmp1 , LSR #(n/2) ;; tmp0 = [a_h|b_h]

6 Note that for n > 8, the constant 2n−1 does not lie in the range of constants enabled by ARM (i.e. rotated 8-
bit values). In that case, one can use the BIC instruction to perform a logical AND where the second argument
is complemented. The constant to be used is then 2n which well belongs to ARM constants whatever the value
of n.
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3.4 Half-Table Multiplication

The half-table multiplication can be seen as a trade-off between the Karatsuba method and the full-table
method. While Karatsuba involves 3 look-ups in three 2n-sized tables and the full-table method involves
1 look-up in a 22n-sized table, the half-table method involves 2 look-ups in two 2

3n
2 -sized tables. It is

based on the following equation:

a · b = bh x
n
2 (ah x

n
2 + a`) + b` (ah x

n
2 + a`) mod p(x) , (7)

which can be efficiently evaluated by tabulating the functions:

(ah, a`, bh) 7→ bh x
n
2 (ah x

n
2 + a`) mod p(x) ,

(ah, a`, b`) 7→ b` (ah x
n
2 + a`) mod p(x) .

Once again, the barrel shifter is useful to get the input triplets efficiently. Each look-up can be done
with two ARM instructions (for a total of 8 clock cycles) as follows:

EOR $tmp ,$opB ,$opA ,LSL#n ;;tmp=[a_h|a_l|b_h|b_l]

LDRB $res ,[$tab1 ,$tmp ,LSR#(n/2) ;;res=T1[a_h|a_l|b_h]

EOR $tmp ,$opA ,$opB ,LSL#(32-n/2) ;;tmp=[b_l |0..| a_h|a_l]

LDRB $tmp ,[$tab2 ,$tmp ,ROR#(32-n/2)] ;;tmp=T2[a_h|a_l|b_l]

3.5 Performances

The full ARM code of the different methods is provided in appendix. The obtained performances are
summarized in Table 3 in terms of clock cycles, register usage, and code size. For clock cycles, the
number in brackets indicates instructions that need to be done only once when multiple calls to the
multiplication are performed (as in the secure multiplication procedure described in the next section).
These are initialization instructions such as loading a table address in a register. For n > 8, elements
take two bytes to be stored (assuming n ≤ 16) which implies an overhead in clock cycles and a doubling
of the table size. For most methods, the clock cycles and register usage are constant w.r.t. n ≥ 8, whereas
the code size depends on n. For the sake of illustration, we therefore additionally display the code size
(and corresponding LUT sizes) in Figure 1 for several values of n.

Table 3. Multiplication performances.

bin mult v1 bin mult v2 exp-log v1 exp-log v2 kara. half-tab full-tab

clock cycles (n ≤ 8) 10n+ 3 (+3) 7n+ 3 (+3) 18 (+2) 16 (+2) 19 (+2) 10 (+3) 4 (+3)

clock cycles (n > 8) 10n+ 4 (+3) 7n+ 15 (+3) 35 (+2) 31 (+2) 38 (+2) - -

registers 5 5 5 (+1) 5 (+1) 6 (+1) 5 (+1) 5

code size (n ≤ 8) 52 2n−1 + 48 2n+1 + 48 3 · 2n + 40 3 · 2n + 42 2
3n
2

+1 + 24 22n + 12

Remark 1. For n > 8, elements take two bytes to be stored (assuming n ≤ 16). Two options are then
possible for look-up tables: one can either store each n-bit element on a full 32-bit word, or store two
n-bit elements per 32-bit word (one per half-word). The former option has a strong impact on the LUT
sizes, and hence on the code size, which is already expected to be important when n > 8. Therefore
we considered the latter option, which has an impact on performances since we either have to load two
bytes successively, or to load one 32-bit word and select the good half-word (which is actually costlier
than two loadings).

We observe that all the methods provide different time-memory trade-offs except for Karatsuba which
is beaten by the exp-log method (v1) both in terms of clock cycles and code size. The latter method shall
then always be preferred to the former (at least on our architecture). As expected, the full-table method
is by far the fastest way to compute a field multiplication, followed by the half-table method. However,
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4 6 8

10−1

100

101

n

K
B

bin mult v1

bin mult v2

exp-log v1

exp-log v2

half-table

full-table

Size of precomputed tables:
n 4 6 8 10

Binary v1 0 0 0 0

Binary v2 8 B 32 B 128 B 1 KB

Exp-log v1 32 B 128 B 0.5 KB 4 KB

Exp-log v2 48 B 192 B 0.75 KB 6 KB

Karatsuba 48 B 192 B 0.75 KB 6 KB

Half-table 0.13 KB 1 KB 8 KB 128 KB

Full-table 0.25 KB 4 KB 64 KB 2048 KB

Fig. 1. Full code size (left graph) and LUT size (right table) w.r.t. n.

depending on the value of n, these methods might be too consuming in terms of code size due to their
large precomputed tables. On the other hand, the binary multiplication (even the improved version) has
very poor performances in terms of clock cycles and it should only be used for extreme cases where
the code size is very constrained. We consider that the exp-log method v2 (i.e. with doubled exp-table)
is a good compromise between code size an speed whenever the full-table and half-table methods are
not affordable (which might be the case for e.g. n ≥ 8). In the following, we shall therefore focus our
study on secure implementations using the exp-log (v2), half-table or full-table method for the base field
multiplication.

4 Secure Multiplications and Quadratic Evaluations

We have seen several approaches to efficiently implement the base-field multiplication. We now investigate
the secure multiplication in the masking world where the two operands a, b ∈ F2n are represented as
random d-sharings (a1, a2, . . . , ad) and (b1, b2, . . . , bd). We also address the secure evaluation of a function
f of algebraic degree 2 over F2n (called quadratic function in the following). Specifically, we focus on the
scheme proposed by Ishai, Sahai, and Wagner (ISW scheme) for the secure multiplication [21], and its
extension by Coron, Prouff, Rivain and Roche (CPRR scheme) to secure any quadratic function [14, 11].

4.1 Algorithms

ISW multiplication. From two d-sharings (a1, a2, . . . , ad) and (b1, b2, . . . , bd), the ISW scheme computes
an output d-sharing (c1, c2, . . . , cd) as follows:

1. for every 1 ≤ i < j ≤ d, sample a random value ri,j over F2n ;
2. for every 1 ≤ i < j ≤ d, compute rj,i = (ri,j + ai · bj) + aj · bi;
3. for every 1 ≤ i ≤ d, compute ci = ai · bi +

∑
j 6=i ri,j .

One can check that the output (c1, c2, . . . , cd) is well a d-sharing of the product c = a · b. We indeed have∑
i ci =

∑
i,j ai · bj = (

∑
i ai)(

∑
j bj) since every random value ri,j appears exactly twice in the sum and

hence vanishes.

Mask refreshing. The ISW multiplication was originally proved probing secure at the order t =
b(d − 1)/2c (and not d − 1 as one would expect with masking order d). The security proof was latter
made tight under the condition that the input d-sharings are based on independent randomness [26]. In
some situations, this independence property is not satisfied. For instance, one might have to multiply
two values a and b where a = `(b) for some linear operation `. In that case, the shares of a are usually
derived as ai = `(bi), which clearly breaches the required independence of input shares. To deal with this
issue, one must refresh the sharing of a. However, one must be careful doing so since a bad refreshing
procedure might introduce a flaw [14]. A sound method for mask-refreshing consists in applying an ISW
multiplication between the sharing of a and the tuple (1, 0, 0, . . . , 0) [17, 4]. This gives the following
procedure:
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1. for every 1 ≤ i < j ≤ d, randomly sample ri,j over F2n and set rj,i = ri,j ;

2. for every 1 ≤ i ≤ d, compute a′i = ai +
∑
j 6=i ri,j .

It is not hard to see that the output sharing (a′1, a
′
2, . . . , a

′
d) well encodes a. One might think that such a

refreshing implies a strong overhead in performances (almost as performing two multiplications) but this
is still better than doubling the number of shares (which roughly quadruples the multiplication time).
Moreover, we show hereafter that the implementation of such a refreshing procedure can be very efficient
in practice compared to the ISW multiplication.

CPRR evaluation. The CPRR scheme was initially proposed in [14] as a variant of ISW to securely
compute multiplications of the form x 7→ x · `(x) where ` is linear, without requiring refreshing. It was
then shown in [11] that this scheme (in a slightly modified version) could actually be used to securely
evaluate any quadratic function f over F2n . The method is based on the following equation

f(x1 + x2 + · · ·+ xd) =
∑

1≤i<j≤d

f(xi + xj + si,j) + f(xj + si,j) + f(xi + si,j) + f(si,j)

+

d∑
i=1

f(xi) + (d+ 1 mod 2) · f(0) (8)

which holds for every (xi)i ∈ (F2n)d, every (si,j)1≤i<j≤d ∈ (F2n)d(d−1)/2, and every quadratic function f
over F2n .

From a d-sharing (x1, x2, . . . , xd), the CPRR scheme computes an output d-sharing (y1, y2, . . . , yd) as
follows:

1. for every 1 ≤ i < j ≤ d, sample two random values ri,j and si,j over F2n ,

2. for every 1 ≤ i < j ≤ d, compute rj,i = ri,j + f(xi + si,j) + f(xj + si,j) + f((xi + si,j) +xj) + f(si,j) ,

3. for every 1 ≤ i ≤ d, compute yi = f(xi) +
∑
j 6=i ri,j ,

4. if d is even, set y1 = y1 + f(0).

According to (8), we then have
∑d
i=1 yi = f

(∑d
i=1 xi), which shows that the output sharing (y1, y2, . . . , yd)

well encodes y = f(x).

In [14, 11] it is argued that in the gap where the field multiplication cannot be fully tabulated (22n

elements is too much) while a function f : F2n → F2n can be tabulated (2n elements fit), the CPRR
scheme is (likely to be) more efficient than the ISW scheme. This is because it essentially replaces (costly)
field multiplications by simple look-ups. We present in the next section the results of our study for our
optimized ARM implementations.

4.2 Implementations and Performances

For both schemes we use the approach suggested in [13] that directly accumulates each intermediate
result ri,j in the output share ci so that the memory cost is O(d) instead of O(d2) when the ri,j ’s are
stored. Detailed algorithms can be found in the appendix. The ARM implementation of these algorithm
is rather straightforward and it does not make use of any particular trick.

As argued in Section 3.5, we consider three variants for the base field multiplication in the ISW
scheme, namely the full-table method, the half-table method and the exp-log method (with doubled exp
table). The obtained ISW variants are labeled ISW-FT, ISW-HT and ISW-EL in the following. The
obtained performances are summarized in Table 4 where the clock cycles with respect to d have been
obtained by interpolation. Note that we did not consider ISW-FT for n > 8 since the precomputed tables
are too huge. The timings (for n ≤ 8) are further illustrated in Figure 2 with respect to d. The register
usage is also discussed in Appendix C.

These results show that CPRR indeed outperforms ISW whenever the field multiplication cannot be
fully tabulated. Even the half-table method (which is more consuming in code-size) is slower than CPRR.
For n ≤ 8, a CPRR evaluation asymptotically costs 1.16 ISW-FT, 0.88 ISW-HT, and 0.75 ISW-EL.
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Table 4. Performances of ISW and CPRR schemes.

ISW-FT ISW-HT ISW-EL CPRR

Clock cycles (for n ≤ 8) 21.5 d2 − 0.5 d 28.5 d2 − 0.5 d 33.5 d2 − 0.5 d 25d2 − 8 d

Clock cycles (for n > 8) n/a n/a 52.5d2 − 4.5d+ 12 37d2 − 14 d

Code size (bytes) 184 + 22n 244 + 2
3n
2

+1 280 + 3 · 2n 196 + 2n
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Fig. 2. Timings of ISW and CPRR schemes.

4.3 Parallelization

Both ISW and CPRR schemes work on n-bit variables, each of them occupying a full 32-bit register. Since
in most practical scenarios, we have n ∈ [[4, 8]], this situation is clearly suboptimal in terms of register
usage, and presumably suboptimal in terms of timings. A natural idea to improve this situation is to use
parallelization. A register can simultaneously store m := b32/nc values, we can hence try to perform m
ISW/CPRR computations in parallel (which would in turn enable to perform m s-box computations in
parallel). Specifically, each input shares is replaced by m input shares packed into a 32-bit value. The
ISW (resp. CPRR) algorithm load packed values, and perform the computation on each unpacked n-bit
chunk one-by-one. Using such a strategy allows us to save multiple load and store instructions, which are
among the most expensive instructions of ARM assembly (3 clock cycles). Specifically, we can replace
m load instructions by a single one for the shares ai, bj in ISW (resp. xi, xj in CPRR) and the random
values ri,j , si,j (read from the TRNG), we can replace m store instructions by a single one for the output
shares, and we can replace m XOR instructions by a single one for some of the addition involved in
ISW (resp. CPRR). On the other hand, we get an overhead for the extraction of the n-bit chunks from
the packed 32-bit values. But each of these extractions takes a single clock cycle (thanks to the barrel
shifter), which is rather small compared to the gain in load and store instructions.

We implemented parallel versions of ISW and CPRR for n = 4 and n = 8. For the former case, we
can perform m = 8 evaluations in parallel, whereas for the later case we can perform m = 4 evaluations
in parallel. For n = 4, we only implemented the full-table multiplication for ISW, since we consider that
a 256-byte table in code is always affordable. For n = 8 on the other hand, we did not implement the
full-table, since we consider that a 64-KB table in code would be to much in most practical scenarios.
Tables 5 and 6 give the obtained performances in terms of clock cycles and code size. For comparison,
we give both the performances of the m-parallel case and that of the m-serial case. We also exhibit the
asymptotic ratio i.e. the ratio between the d2 constants of the serial and parallel case. These performances
are illustrated on Figures 3 and 4. Register usage is further discussed in Appendix C.

These results show the important gain obtained by using parallelism. For ISW, we get an asymptotic
gain around 30% for 4 parallel evaluations (n = 8) compared to 4 serial evaluations, and we get a 58%
asymptotic gain for 8 parallel evaluations (n = 4) compared to 8 serial evaluations. For CPRR, the gain
is around 50% (timings are divided by 2) in both cases (n = 8 and n = 4). We also observe that the
efficiency order keeps unchanged with parallelism, that is: ISW-FT > CPRR > ISW-HT > ISW-EL.
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Table 5. Performances of parallel ISW and CPRR schemes for n = 8.

ISW-HT � 4 ISW-HT × 4 ISW-EL � 4 ISW-EL × 4 CPRR � 4 CPRR × 4

Clock cycles 77.5 d2 − 1.5 d+ 2 114d2 − 2d 95.5 d2 − 1.5 d+ 2 134 d2 − 2 d 54 d2 − 22 d 100 d2 − 32 d

Asympt. ratio 68% 100% 70% 100% 54% 100%

Code size 8.6 KB 8.1 KB 1.5 KB 0.9 KB 580 B 408 B

Table 6. Performances of parallel ISW and CPRR schemes for n = 4.

ISW-FT � 8 ISW-FT × 8 CPRR � 8 CPRR × 8

Clock cycles 72 d2 172d2 − 4d 94 d2 − 42 d− 3 200 d2 − 64 d

Asympt. ratio 42% 100% 47% 100%

Code size 804 B 388 B 596 B 168 B
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Fig. 3. Timings of (parallel) ISW and CPRR schemes
for n = 8.
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Fig. 4. Timings of (parallel) ISW and CPRR schemes
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4.4 Mask-Refreshing Implementation

The ISW-based mask refreshing is pretty similar to an ISW multiplication, but it is actually much faster
since it involves no field multiplications and fewer additions (most terms being multiplied by 0). It simply
consists in processing:

for i = 1 .. d : for j = i+ 1 .. d : r ← $; ai ← ai + r; aj ← aj + r;

A straightforward implementation of this process is almost 3 times faster than the fastest ISW multipli-
cation, namely the full-table one (see Figure 5).

We can actually do much better. Compared to a standard ISW implementation, the registers of the
field multiplication are all available and can hence be used in order to save several loads and stores.
Indeed, the straightforward implementation performs d − i + 1 loads and stores for every i ∈ [[1, d]],
specifically 1 load-store for ai and d − i for the aj ’s. Since we have some registers left, we can actually
pool the aj ’s loads and stores for several ai’s. To do so, we load several shares ai, ai+1, . . . , ai+k with
the LDM instruction (which has a cost of k + 2 instead of 3k) and process the refreshing between them.
Then, for every j ∈ [[i + k + 1, d]], we load aj , performs the refreshing between aj and each of the ai,
ai+1, . . . , ai+k, and store aj back. Afterwards, the shares ai, ai+1, . . . , ai+k are stored back with the STM

instruction (which has a cost of k+ 2 instead of 3k). This allows us to load (and store) the aj only once
for the k shares instead of k times, and to take advantage of the LDM and STM instructions. In practice,
we could deal with up to k = 8 shares at the same time, meaning that for d ≤ 8 all the shares could be
loaded and stored an single time using LDM and STM instructions.
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Table 7. Timings of the ISW-based mask refreshing.

Straightforward version 7.5 d2 + 1.5 d− 7

Optimized version ≤ 2.5 d2 + 2.5 d+ 2
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Fig. 5. Timings of mask refreshing.

The performances of our implementations of the ISW-based mask refreshing are given in Table 7
and plotted in Figure 5 for illustration.7 Our optimized refreshing is up to 3 times faster than the
straightforward implementation and roughly 10 times faster that the full-table-based ISW multiplication.

5 Polynomial Methods for S-boxes

This section addresses te efficient implementation of polynomial methods for s-boxes based on ISW and
CPRR schemes. We first investigate the two best known generic methods, namely the CRV method [15],
and the algebraic decomposition method [11], for which we propose some improvements. We then look at
specific methods for the AES and PRESENT s-boxes, and finally provide extensive comparison of our
implementation results.

5.1 CRV Method

The CRV method was proposed by Coron, Roy and Vivek in [15]. Before recalling its principle, let us
introduce the notion of cyclotomic class. For a given integer n, the cyclotomic class of α ∈ [[0, 2n − 2]]
is defined as Cα = {α · 2i mod 2n − 1 ; i ∈ N}. We have the following properties: (i) cyclotomic classes
are equivalence classes partitioning [[0, 2n− 2]], and (ii) a cyclotomic class has at most n elements. In the
following, we denote by xL the set of monomials {xα ; α ∈ L} for some set L ⊆ [[0, 2n − 1]].

The CRV method consists in representing an s-box S(x) over F2n [x]/(x2
n − x) as

S(x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x) , (9)

where pi(x) and qi(x) are polynomials with monomials in xL for some set L = Cα1=0 ∪ Cα2=1 ∪ Cα3
∪

. . . ∪ Cα`
such that for every i ≥ 3, αi = αj + αk mod 2n − 1 for some j, k < i (or more generally

αi = 2w · αj + αk mod 2n − 1 with k ∈ [[0, n− 1]]). Such polynomials can be written as:

pi(x) =
∑̀
j=2

li,j(x
αj ) + ci,0 and qi(x) =

∑̀
j=2

l′i,j(x
αj ) + c′i,0 , (10)

7 Note that the timings of the optimized version cannot be fully interpolated with a quadratic polynomial but
we provide a tight quadratic upper bound (see Table 7).
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where the li,j , l
′
i,j are linearized polynomials over F2n [x]/(x2

n − x) and where the ci,0, c
′
i,0 are constants

in F2n .
In [15], the authors explain how to find such a representation. In a nutshell, one randomly picks the

qi’s and search for pi’s satisfying (9). This amounts to solve a linear system with 2n equations and t · |L|
unknowns (the coefficients of the pi’s). Note that when the choice of the classes and the qi’s leads to a
solvable system, then it can be used with any s-box (since the s-box is the target vector of the linear
system). We then have two necessary (non sufficient) conditions for such a system to be solvable: (1) the
set L of cyclotomic classes is such that t · |L| ≥ 2n, (2) all the monomials can be reached by multiplying
two monomials from xL, that is {xi · xj mod (x2

n − x) ; i, j ∈ L} = x[[0,2
n−1]]. For the sake of efficiency,

the authors of [15] impose an additional constraint for the choice of the classes: (3) every class (but
C0 = {0}) have the maximal cardinality of n. Under this additional constraint, condition (1) amounts
to the following inequality: t ·

(
1 + n · (`− 1)) ≥ 2n. Minimizing the number of nonlinear multiplications

while satisfying this constraint leads to parameters t ≈
√

2n/n and ` ≈
√

2n/n.
Based on the above representation, the s-box can be evaluated using (` − 2) + (t − 1) nonlinear

multiplications (plus some linear operations). In a first phase, one generates the monomials corresponding
to the cyclotomic classes in L. Each xαi can be obtained by multiplying two previous xαj and xαk

(where xαj might be squared w times if necessary). In the masking world, each of these multiplications
is performed with a call to ISW. The polynomials pi(x) and qi(x) can then be computed according to
(10). In practice the linearized polynomials are tabulated so that at masked computation, applying a li,j
simply consists in performing a look-up on each share of the corresponding xαj . In the second phase, one
simply evaluates (9), which takes t− 1 nonlinear multiplications plus some additions. We recall that in
the masking world, linear operation such as additions or linearized polynomial evaluations can be applied
on each share independently yielding a O(d) complexity, whereas nonlinear multiplications are computed
by calling ISW with a O(d2) complexity. The performances of the CRV method is hence dominated by
the `+ t− 3 calls to ISW.

Mask refreshing. As explained in Section 4.1, one must be careful while composing ISW multiplications
with linear operations. In the case of the CRV method, ISW multiplications are involved on sharings
of values qi(x) and pi(x) which are linearly computed from the sharings of the xαj (see (10)). This
contradicts the independence requirement for the input sharings of an ISW multiplication, and this
might presumably induce a flaw as the one described in [14]. In order to avoid such a flaw in our masked
implementation of CRV, we systematically refreshed one of the input sharings, namely the sharing of
qi(x). As shown in Section 4.4, the overhead implied by such a refreshing is manageable.

Improving CRV with CPRR. As suggested in [11], CRV can be improved by using CPRR evaluations
instead of ISW multiplications in the first phase of CRV, whenever CPRR is faster than ISW (i.e. when
full-table multiplication cannot be afforded). Instead of multiplying two previously computed powers
xαj and xαk , the new power xαi is derived by applying the quadratic function x 7→ x2

w+1 for some
w ∈ [[1, n − 1]]. In the masking world, securely evaluating such a function can be done with a call
to CPRR. The new chain of cyclotomic classes Cα1=0 ∪ Cα2=1 ∪ Cα3 ∪ . . . ∪ Cα`

must then satisfy
αi = (2w + 1)αj for some j < i and w ∈ [[1, n− 1]].

We have implemented the search of such chains of cyclotomic classes satisfying conditions (1), (2) and
(3). We could validate that for every n ∈ [[4, 10]] and for the parameters (`, t) given in [15], we always find
such a chain leading to a solvable system. For the sake of code compactness, we also tried to minimize
the number of CPRR exponents 2w + 1 used in these chains (since in practice each function x 7→ x2

w+1

is tabulated). For n ∈ {4, 6, 7} a single CPRR exponent (either 3 or 5) is sufficient to get a satisfying
chain (i.e. fulfilling the above conditions and leading to a solvable system). For the other values of n, we
could prove that a single CPRR exponent does not suffice to get a satisfying chain. We could then find
satisfying chains for n = 5 and n = 8 using 2 CPRR exponents (specifically 3 and 5). For n > 8, we tried
all the pairs and triplets of possible CPRR exponents without success, we could only find a satisfying
chain using the 4 CPRR exponents 3, 5, 9 and 17.

Optimizing CRV parameters. We can still improve CRV by optimizing the parameters (`, t) depend-
ing on the ratio θ = CCPRR

CISW
, where CCPRR and CISW denote the costs of ISW and CPRR respectively.
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The cost of the CRV method satisfies

CCRV = (`− 2) CCPRR + (t− 1) CISW =
(
(`− 2) · θ + t− 1)

)
CISW (11)

≥
(

(`− 2) · θ +

⌈
2n

(`− 1) · n+ 1

⌉
− 1
)
CISW (12)

where the inequality holds from conditions (1) and (3) above. This lower bound ensures that the system
contains enough unknowns to be solvable. In practice, it was observed in [15] that this is a sufficient
condition most of the time to get a solvable system (and our experiments corroborate this fact). Our
optimized version of CRV hence consists in using the parameter ` minimizing the above lower bound and

the corresponding t =
⌈

2n

(`−1)·n+1

⌉
as parameters for given bit-length n and cost ratio θ.
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Fig. 6. Optimal ` parameter w.r.t. the CPRR-ISW cost ratio θ for n ∈ [[4, 8]].

As an illustration, Figure 6 plots the optimal parameter ` with respect to the ratio θ for several values
of n. We observe that a ratio slightly lower than 1 implies a change of optimal parameters for all values
of n except 4 and 9. In other words, as soon as CPRR is slightly faster than ISW, using a higher ` (i.e.
more cyclotomic classes) and therefore a lower t is a sound trade. For our implementations of ISW and
CPRR (see Section 4), we obtained a ratio θ greater than 1 only when ISW is based on the full-table
multiplication. In that case, no gain can be obtain from using CPRR in the first phase of CRV, and one
should use the original CRV parameters. On the other hand, we obtained θ-ratios of 0.88 and 0.75 for
half-table-based ISW and exp-log-based ISW respectively. For the parallel versions, it can be checked
from Tables 5 and 6 that these ratios become 0.69 (half-table ISW) and 0.58 (exp-log ISW). We can
observe from Figure 6 that for θ ∈ [0.58, 0.88], the optimal CRV parameters are constants for all values
of n except for n = 9 for which a gap occurs around θ ≈ 0.66. Figures 7–9 plot the d2 constant in the
CRV cost obtained with these ratios for different values of ` for n = 6, n = 8, and n = 10. These figures
clearly illustrate the asymptotic gain that can be obtained by using optimized parameters.

For n ∈ {6, 8, 10}, we checked whether we could find satisfying CPRR-based chains of cyclotomic
classes, for the obtained optimal parameters. For n = 6, the optimal parameters are (`, t) = (5, 3) (giving
3 CPRR plus 2 ISW) which are actually the original CRV parameters. We then give in Table 8 a satisfying
chain for these parameters. For n = 8, the optimal parameters are (`, t) = (9, 4) (giving 7 CPRR plus
3 ISW). For these parameters we could not find any satisfying chain of cyclotomic classes. We therefore
used the second best set of parameters that is (`, t) = (8, 5) (giving 6 CPRR plus 4 ISW) for which we
could find a chain (see Table 8). For n = 10, the optimal parameters are (`, t) = (14, 8) (giving 12 CPRR
plus 7 ISW). For these parameters we could neither find any satisfying chain. So once again, we used
the second best set of parameters, that is (`, t) = (13, 9) (giving 11 CPRR plus 8 ISW) and for which we
could find a chain (see Table 8).
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Table 8. Cyclotomic classes with CPRR.

n ` t L exp. 2w + 1

Original CRV parameters

4 3 2 C0 ∪ C1 ∪ C3 3

5 4 3 C0 ∪ C1 ∪ C3 ∪ C15 3,5

6 5 3 C0 ∪ C1 ∪ C5 ∪ C11 ∪ C31 5

7 6 4 C0 ∪ C1 ∪ C5 ∪ C19 ∪ C47 ∪ C63 5

8 7 6 C0 ∪ C1 ∪ C5 ∪ C25 ∪ C95 ∪ C55 ∪ C3 3,5

9 9 8 C0 ∪ C1 ∪ C9 ∪ C17 ∪ C25 ∪ C51 ∪ C85 ∪ C103 ∪ C127 3,5,9,17

10 11 11 C0 ∪ C1 ∪ C3 ∪ C9 ∪ C17 ∪ C45 ∪ C69 ∪ C85 ∪ C207 ∪ C219 ∪ C447 3,5,9,17

Optimized CRV parameters

8 8 5 C0 ∪ C1 ∪ C5 ∪ C25 ∪ C95 ∪ C55 ∪ C3 ∪ C9 3,5

10 13 9 C0 ∪ C1 ∪ C3 ∪ C15 ∪ C17 ∪ C27 ∪ C51 ∪ C57 ∪ C85 ∪ C123 ∪ C159 ∪ C183 ∪ C205 3,5,9,17

Table 9 compares the performances of the original CRV method and the improved versions for our
implementation of ISW (half-table and exp-log variants) and CPRR.8 For the improved methods, we give
the ratio of asymptotic performances with respect to the original version. This ratio ranks between 79%
and 94% for the improved version and between 75% and 93% for the improved version with optimized
parameters.

Table 9. Performances of CRV original version and improved version (with and without optimized parameters).

Original CRV ([15]) CRV with CPRR ([11]) Optimized CRV with CPPR

# ISW # CPRR clock cycles # ISW # CPRR clock cycles ratio # ISW # CPRR clock cycles ratio

n = 6 (HT) 5 0 142.5 d2 +O(d) 2 3 132 d2 +O(d) 93% 2 3 132 d2 +O(d) 93%

n = 6 (EL) 5 0 167.5 d2 +O(d) 2 3 142 d2 +O(d) 85% 2 3 142 d2 +O(d) 85%

n = 8 (HT) 10 0 285 d2 +O(d) 5 5 267.5 d2 +O(d) 94% 4 6 264 d2 +O(d) 93%

n = 8 (EL) 10 0 335 d2 +O(d) 5 5 292.5 d2 +O(d) 87% 4 6 284 d2 +O(d) 85%

n = 10 (EL) 19 0 997.5 d2 +O(d) 10 9 858 d2 +O(d) 86% 8 11 827 d2 +O(d) 83%

n = 8 (HT) �4 10 0 775 d2 +O(d) 5 5 657.5 d2 +O(d) 85% 4 6 634 d2 +O(d) 82%

n = 8 (EL) �4 10 0 935 d2 +O(d) 5 5 737.5 d2 +O(d) 79% 4 6 698 d2 +O(d) 75%

5.2 Algebraic Decomposition Method

The algebraic decomposition method was recently proposed by Carlet, Prouff, Rivain and Roche in [11].
It consists in using a basis of polynomials (g1, g2, . . . , gr) that are constructed by composing polynomials

8 We only count the calls to ISW and CPRR since other operations are similar in the three variants and have
linear complexity in d.
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fi as follows {
g1(x) = f1(x)
gi(x) = fi

(
gi−1(x)

) (13)

The fi’s are of given algebraic degree s. In our context, we consider the algebraic decomposition method
for s = 2, where the fi’s are (algebraically) quadratic polynomials. The method then consists in repre-
senting an s-box S(x) over F2n [x]/(x2

n − x) as

S(x) =

t∑
i=1

pi
(
qi(x)

)
+

r∑
i=1

`i
(
gi(x)

)
+ `0(x) , (14)

with

qi(x) =

r∑
j=1

`i,j
(
gj(x)

)
+ `i,0(x) , (15)

where the pi’s are quadratic polynomials over F2n [x]/(x2
n − x), and where the `i’s and the `i,j ’s are

linearized polynomials over F2n [x]/(x2
n − x).

As explain in [11], such a representation can be obtained by randomly picking some fi’s and some
`i,j ’s (which fixes the qi’s) and then search for pi’s and `i’s satisfying (14). As for the CRV method, this
amounts to solve a linear system with 2n equations where the unknowns are the coefficients of the pi’s
and the `i’s. Without loss of generality, we can assume that only `0 has a constant terms. In that case,
each pi is composed of 1

2n(n+ 1) monomials, and each `i is composed of n monomials (plus a constant
term for `0). This makes a total of 1

2 n (n+1) · t+n ·r+1 unknown coefficients. In order to get a solvable
system we hence have the following condition: (1) 1

2 n (n + 1) · t + n · r + 1 ≥ 2n. A second condition is
(2) 2r+1 ≥ n, otherwise there exists some s-box with algebraic degree greater than 2r+1 that cannot be
achieved with the above decomposition i.e. the obtained system is not solvable for every target S.

Based on the above representation, the s-box can be evaluated using r + t evaluations of quadratic
polynomials (the fi’s and the qi’s). In the masking world, this is done thanks to CPRR evaluations. The
rest of the computation are additions and (tabulated) linearized polynomials which are applied to each
share independently with a complexity linear in d. The cost of the algebraic decomposition method is
then dominated by the r + t calls to CPRR.

We implemented the search of sound algebraic decompositions for n ∈ [[4, 10]]. Once again, we looked
for full rank systems i.e. systems that would work with any target s-box. For each value of n, we set r to
the smallest integer satisfying condition (2) i.e. r ≥ log2(n)− 1, and then we looked for a t starting from

the lower bound t ≥ 2(2n−rn−1)
n(n+1) (obtained from condition (1)) and incrementing until a solvable system

can be found. We then increment r and reiterate the process with t starting from the lower bound, and so
on. For n ≤ 8, we found the same parameters as those reported in [11]. For n = 9 and n = 10 (these cases
were not considered in [11]), the best parameters we obtained were (r, t) = (3, 14) and (r, t) = (4, 22)
respectively. All these parameters are recalled in Table 10.

Table 10. Obtained parameters for the algebraic decomposition method.

n (r, t) pi’s DoF `i’s DoF

4 (1, 2) 30 = 24 + 14 5

5 (2, 2) 45 = 25 + 13 12

6 (2, 3) 84 = 26 + 20 14

7 (2, 6) 196 = 27 + 68 16

8 (2, 9) 360 = 28 + 104 18

9 (3, 14) 675 = 29 + 163 30

10 (4, 22) 1265 = 210 + 241 44

Saving linear terms. In our experiments, we realized that the linear terms `i
(
gi(x)

)
could always be

avoided in (14). Namely, for the best known parameters (r, t) for every n ∈ [[4, 10]], we could always find a
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decomposition S(x) =
∑t
i=1 pi

(
qi(x)

)
hence saving r+ 1 linearized polynomials. This is not surprising if

we compare the number of degrees of freedom brought by the pi’s in the linear system (i.e. 1
2 n (n+1) · t)

to those brought by the `i’s (i.e. n · r). These figures are illustrated in Table 10 . We see that the degrees
of freedom of the pi’s are sufficient to reach the 2n threshold with some margin that is always greater
than the degrees of freedom from the `i’s.

5.3 Specific Methods for AES and PRESENT

Rivain-Prouff (RP) method for AES. Many works have proposed masking schemes for the AES
s-box and most of them are based on its peculiar algebraic structure. It is the composition of the
inverse function x 7→ x254 over F28 and an affine function: S(x) = Aff(x254). The affine function being
straightforward to mask with linear complexity, the main issue is to design an efficient masking scheme
for the inverse function.

In [26], Rivain and Prouff introduced the approach of using an efficient addition chain for the inverse
function that can be implemented with a minimal number of ISW multiplications. They show that the
exponentiation to the 254 can be performed with 4 nonlinear multiplications plus some (linear) squarings,
resulting in a scheme with 4 ISW multiplications. In [14], Coron et al. propose a variant where two of
these multiplications are replaced CPRR evaluations (of the functions x 7→ x3 and x 7→ x5).9 This
was further improved by Grosso et al. in [20] who proposed the following addition chain leading to
3 CPRR evaluations and one ISW multiplications: x254 = (x2 · ((x5)5)5)2. This addition chain has the
advantage of requiring a single function x 7→ x5 for the CPRR evaluation (hence a single LUT for masked
implementation). Moreover it can be easily checked by exhaustive search that no addition chain exists
that trades the last ISW multiplication for a CPRR evaluation. We therefore chose to use the Grosso et
al. addition chain for our implementation of the RP method.

Kim-Hong-Lim (KHL) method for AES. This method was proposed in [22] as an improvement of
the RP scheme. The main idea is to use the tower field representation of the AES s-box [28] in order to
descend from F28 to F24 where the multiplications can be fully tabulated. Let δ denotes the isomorphism
mapping F28 to (F24)2 with F28 ≡ F24 [x]/p(x), and let γ ∈ F28 and λ ∈ F24 such that p(x) = x2 + x+ λ
and p(γ) = 0. The tower field method for the AES s-box works as follows:

1. ahγ + al = δ(x), ah, al ∈ F24 4. a′h = d′ aj ∈ F24

2. d = λ a2h + al · (ah + al) ∈ F24 5. a′l = d′(ah + al) ∈ F24

3. d′ = d14 ∈ F24 6. S(x) = Aff(δ−1(a′hγ + a′l)) ∈ F28

At the third step, the exponentiation to the 14 can be performed as d14 = (d3)4 · d2 leading to one
CPRR evaluation (for d 7→ d3) and one ISW multiplication (plus some linear sqrarings).10 This gives a
total of 4 ISW multiplications and one CPRR evaluation for the masked AES implementation.

F◦G method for PRESENT. As a 4-bit s-box, the PRESENT s-box can be efficiently secured with
the CRV method using only 2 (full table) ISW multiplications. The algebraic decomposition method
would give an less efficient implementation with 3 CPRR evaluations. Another possible approach is to
use the fact that the PRESENT s-box can be expressed as the composition of two quadratic functions
S(x) = F ◦ G(x) which are given in Table 19 (see Appendix D, page 36). This representation was put
forward by Poschmann et al. in [24] to design an efficient threshold implementation of PRESENT. In our
context, this representation can be used to get a masked s-box evaluation based on 2 CPRR evaluations.
Note that this method is asymptotically slower than CRV with 2 full-table ISW multiplications. However,
due to additional linear operations in CRV, F ◦G might actually be better for small values of d.

9 The original version of the RP scheme [26] actually involved a weak mask refreshing procedure which was
exploited in [14] to exhibit a flaw in the s-box processing. The CPRR variant of ISW was originally meant
to patch this flaw but the authors observed that using their scheme can also improve the performances. The
security of the obtained variant of the RP scheme was recently verified up to masking order 4 using program
verification techniques [3].

10 The authors of [22] suggest to perform d3 = d2 · d with a full tabulated multiplication but this would actually
imply a flaw as described in [14]. That is why we use a CPRR evaluation for this multiplication.
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5.4 Implementations and Performances

We have implemented the CRV method and the algebraic decomposition method for the two most
representative values of n = 4 and n = 8. For n = 4, we used the full-table multiplication for ISW
(256-byte table), and for n = 8 we used the half-table multiplication (8-KB table) and the exp-log
multiplication (0.75-KB table). Based on our analysis of Section 5.1, we used the original CRV method
for n = 4 (i.e. (`, t) = (3, 2) with 2 ISW multiplications), and we used the improved CRV method with
optimized parameters for n = 8 (i.e. (`, t) = (8, 5) with 6 CPRR evaluations and 4 ISW multiplications).
We further implemented parallel versions of these methods, which mainly consisted in replacing calls to
ISW and CPRR by calls to their parallel versions (see Section 4.3), and replacing linear operations by
their parallel counterparts. The obtained performances for the generic methods are given in Table 11 for
n = 4 and in Table 12 for n = 8.

Table 11. Performances of secure s-box computations for n = 4.

F ◦G (PRESENT) CRV-(3, 2) (ISW-FT) Algebraic decomp.

clock cycles (1 s-box) 50 d2 − 16 d+ 97 49 d2 + 117 d+ 209 75 d2 + 97 d+ 293

clock cycles (8 × s-boxes) 400 d2 − 128 d+ 776 392 d2 + 936 d+ 1672 600 d2 + 856 d+ 2344

clock cycles (8 � s-boxes) 188 d2 − 84 d+ 102 168.5 d2 + 281.5 d+ 217 282 d2 + 135 d+ 330

code size (serial) 280 B 0.84 KB 0.73 KB

code size (parallel) 708 B 2.1 KB 1 KB

Table 12. Performances of generic secure s-box computations for n = 8.

CRV-(8, 5) (ISW-HT) CRV-(8, 5) (ISW-EL) Algebraic decomp.

clock cycles (1 s-box) ≤ 274 d2 + 591 d+ 607 294 d2 + 591 d+ 607 275 d2 + 594 d+ 1279

clock cycles (4 × s-boxes) 1096 d2 + 2364 d+ 2428 1176 d2 + 2364 d+ 2428 1100 d2 + 2376 d+ 5116

clock cycles (4 � s-boxes) 644 d2 + 1369 d+ 632 716 d2 + 1369 d+ 632 594 d2 + 845 d+ 1445

code size (serial) 9.5 KB 2.3 KB 10.1 KB

code size (parallel) 10.9 KB 3.4 KB 10.3 KB

We also implemented the specific methods described in Section 5.3 for the AES and PRESENT s-
boxes, as well as their parallel counterparts. Specifically, we implemented the F ◦G method for PRESENT
and the RP and KHL methods for AES. The RP method was implemented with both the half-table and
the exp-log methods for the ISW multiplication. Our implementation results are given in Table 11 for
the PRESENT s-box and in Table 13 for the AES s-box. For the KHL method, the ISW multiplications
and the CPRR evaluation are performed on 4-bit values. It was then possible to perform 8 evaluations
in parallel. Specifically, we first apply the isomorphism δ on 8 s-box inputs to obtain 8 pairs (ah, al). The
ah values are grouped in one register and the al values are then grouped in a second register. The KHL
method can then be processed in a 8-parallel version relying on the parallel ISW and CPRR procedures
for n = 4.

Table 13. Performances of secure AES s-box computations.

KHL RP (ISW-HT) RP (ISW-EL)

clock cycles (1 s-box) 111 d2 + 72 d+ 247 103.5 d2 + 32.5 d+ 139 108.5 d2 + 42.5 d+ 139

clock cycles (4 × s-boxes) n/a 414 d2 + 130 d+ 564 434 d2 + 130 d+ 564

clock cycles (4 � s-boxes) n/a 239.5 d2 + 99.5 d+ 146 257.5 d2 + 135.5 d+ 146

clock cycles (8 × s-boxes) 888 d2 + 576 d+ 2000 n/a n/a

clock cycles (8 � s-boxes) 383 d2 + 256 d+ 269 n/a n/a

code size (serial) 1.2 KB 9.2 KB 2 KB

code size (parallel) 2 KB 9.4 KB 2.6 KB
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For the sake of illustration, we plot the obtained timings in Figures 15 and 11 for n = 4 (with the
F ◦ G method as a particular case), in Figures 12 and 13 for n = 8, and in Figures 14 and 15 for the
AES s-box.
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Fig. 10. Timings for one s-box (n = 4).
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Fig. 11. Timings for 8 s-boxes (n = 4).
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Fig. 12. Timings for one s-box (n = 8).
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Fig. 13. Timings for 4 s-boxes (n = 8).

We observe that the CRV method is clearly better than the algebraic decomposition method for
n = 4 in both the serial and parallel case. This is not surprising since the former involves 2 calls to
ISW-FT against 3 calls to CPRR for the latter. For n = 8, CRV is only slightly better than the algebraic
decomposition, which is due to the use of CPRR and optimized parameters, as explained in Section 5.1.
On the other hand, the parallel implementation of the algebraic decomposition method becomes better
than CRV which is due to the efficiency of the CPRR parallelization.

Regarding the specific case of PRESENT, we see that the F ◦G method is actually better than CRV
for d ∈ [[2, 10]] thought it is asymptotically slower. It can be checked from the timings given in Table
11 that CRV becomes faster only after d ≥ 38. In parallel, F ◦ G is also faster than CRV until d ≥ 11.
This shows that the F ◦ G method offers a valuable alternative to the CRV method for PRESENT in
practice. Note that many 4-bit s-boxes have a similar decomposition (see [6] for an extensive analysis),
so this method could be applied to further blockciphers.

For the AES, we observe that the RP method is better than KHL, which means that the gain
obtained by using full-table multiplications does not compensate the overhead implied by the additional
multiplication required in KHL compared to RP. We also see that the two versions of RP are very closed,
which is not surprising since the difference regards a single multiplication (the other ones relying on
CPRR). Using ISW-HT might not be interesting in this context given the memory overhead. For the
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Fig. 15. Timings for 8 AES s-boxes.

parallel versions, KHL becomes better since it can perform 8 evaluations simultaneously, whereas RP is
bounded to a parallelization degree of 4. This shows that though the field descent from F28 to F24 might
be nice for full tabulation, it is mostly interesting for increasing the parallelization degree.

Eventually as a final and global observation, we clearly see that using parallelism enables significant
improvements. The timings of parallel versions rank between 40% and 60% of the corresponding serial
versions. In the next section, we push the parallelization one step further, namely we investigate bitslicing
for higher-order masking implementations.

6 Bitslice Methods for S-boxes

In this section, we focus on the secure implementation of AES and PRESENT s-boxes using bitslice.
Bitslice is an implementation strategy initially proposed by Biham in [5]. It consists in performing several
parallel evaluations of a Boolean circuit in software where the logic gates can be replaced by instructions
working on registers of several bits. As nicely explained in [23], “in the bitslice implementation one
software logical instruction corresponds to simultaneous execution of m hardware logical gates, where m
is a register size [...] Hence bitslice can be efficient when the entire hardware complexity of a target cipher
is small and an underlying processor has many long registers.”

In the context of higher-order masking, bitslice can be used at the s-box level to perform several
secure s-box computations in parallel. One then need a compact Boolean representation of the s-box,
and more importantly a representation with the least possible nonlinear gates. These nonlinear gates can
then be securely evaluated in parallel using the ISW scheme as detailed hereafter. Such an approach was
applied in [19] to design blockciphers with efficient masked computations. To the best of our knowledge,
it has never been applied to get fast implementations of classical blockciphers such as AES or PRESENT.
Also note that a bitsliced implementation of AES masked at first and second orders was described in [2]
and used as a case study for practical side-channel attacks on a ARM Cortex-A8 processor running at 1
GHz.

6.1 ISW Logical AND

The ISW scheme can be easily adapted to secure a bitwise logical AND between two m-bit registers.
From two d-sharings (a1, a2, . . . , ad) and (b1, b2, . . . , bd) of two m-bit strings a, b ∈ {0, 1}m, the ISW
scheme computes an output d-sharing (c1, c2, . . . , cd) of c = a ∧ b as follows:

1. for every 1 ≤ i < j ≤ d, sample an m-bit random value ri,j ,
2. for every 1 ≤ i < j ≤ d, compute rj,i = (ri,j ⊕ ai ∧ bj)⊕ aj ∧ bi ,
3. for every 1 ≤ i ≤ d, compute ci = ai ∧ bi ⊕

⊕
j 6=i ri,j .

On the ARM architecture considered in this paper, registers are of size m = 32 bits. We can hence
perform 32 secure logical AND in parallel. Moreover a logical AND is a single instruction of 1 clock
cycle in ARM so we expect the above ISW logical AND to be faster than the ISW field multiplications.
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Table 14 gives the performances of our ISW-AND implementation, and recall the performances of our
ISW-FT (full-table multiplication) and ISW-EL (exp-log multiplication) for comparison. We observe that
the ISW-AND is faster than the fastest ISW field multiplication (i.e. ISW-FT). Moreover it does not
require any precomputed table and is hence lighter in code than the ISW field multiplications (except
for the binary multiplication which is very slow). We further explain in Appendix E, how to simply get
ISW-based bitwise OR, NAND, and NOR operations.

Table 14. Performances of ISW-AND.

Clock cycles Code Size (bytes) Registers usage

ISW-AND 18d2 − 3 124 10

ISW-FT 21.5 d2 − 0.5 d 132 + 22n 11

ISW-AND 33.5 d2 − 3 d 156 + 3 · 2n 11

6.2 Secure Bitslice AES S-box

For the AES s-box, we based our work on the compact representation proposed by Boyar et al. in [8].
Their circuit is obtained by applying logic minimization techniques to the tower-field representation of
Canright [9]. It involves 115 logic gates including 32 logical AND. The circuit is composed of three parts:
the top linear transformation involving 23 XOR gates and mapping the 8 s-box input bits x0, x1, . . . ,
x7 to 23 new bits x7, y1, y2, . . . , y21; the middle non-linear transformation involving 30 XOR gates and
32 AND gates and mapping the previous 23 bits to 18 new bits z0, z1, . . . , z17; and the bottom linear
transformation involving 26 XOR gates and 4 XNOR gates and mapping the 18 previous bits to the
8 s-box output bits s0, s1, . . . , s7. In particular, this circuit improves the usual count of 34 AND gates
involved in previous tower-field representations of the AES s-box.

Using this circuit, we can perform the 16 s-box computations of an AES round in parallel. That is,
instead of having 8 input bits mapped to 8 output bits, we have 8 (shared) input 16-bit words X0, X1,
. . . , X7 mapped to 8 (shared) output 16-bit words S1, S2, . . . , S8. Each word Xi (resp. Si) contains the
ith bits input bit (resp. output bit) of the 16 s-boxes. Each XOR gate and AND gate of the original
circuit is then replaced by the corresponding (shared) bitwise instruction between two 16-bit words.

Parallelizing AND gates. For our masked bitslice implementation, a sound complexity unit is one
call to the ISW-AND since this is the only nonlinear operation, i.e. the only operation with quadratic
complexity in d (compared to other operations that are linear in d). In a straightforward bitslice imple-
mentation of the considered circuit, we would then have a complexity of 32 ISW-AND. This is suboptimal
since each of these ISW-AND is applied to 16-bit words whereas it can operates on 32-bit words. Our
main optimization is hence to group together pairs of ISW-AND in order to replace them by a single
ISW-AND with fully filled input registers. This optimization hence requires to be able to group AND
gates by pair that can be computed in parallel. To do so, we reordered the gates in the middle non-linear
transformation of the Boyar et al. circuit, while keeping the computation consistent. We were able to fully
parallelize the AND gates, hence dropping our bitslice complexity from 32 down to 16 ISW-AND. We
thus get a parallel computation of the 16 AES s-boxes of one round with a complexity of 16 ISW-AND,
that is one single ISW-AND per s-box. Since an ISW-AND is (significantly) faster than any ISW multi-
plication, our masked bitslice implementation breaks through the barrier of one ISW field multiplication
per s-box. Our reordered version of the Boyar et al. circuit is described in Figure 16. It can be checked
that every two consecutive AND gates can be performed in parallel.

Remark 2. The Boyar et al. circuit involves many intermediate variables (denoted by ti) that are some-
times needed multiple times. This strongly impact the performances in practice by requiring several
loads and stores, which –as mentioned earlier– are the most expensive ARM instructions, and further
implies a memory overhead. In order to minimize this impact, we also reordered the gates in the linear
transformations so that all the intermediate variables can be kept in registers. This is only possible for
linear transformations since they are applied on each share independently. On the other hand, the shares
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– top linear transformation –

y14 = x3 ⊕ x5 y1 = t0 ⊕ x7 y15 = t1 ⊕ x5 y17 = y10 ⊕ y11
y13 = x0 ⊕ x6 y4 = y1 ⊕ x3 y20 = t1 ⊕ x1 y19 = y10 ⊕ y8
y12 = y13 ⊕ y14 y2 = y1 ⊕ x0 y6 = y15 ⊕ x7 y16 = t0 ⊕ y11
y9 = x0 ⊕ x3 y5 = y1 ⊕ x6 y10 = y15 ⊕ t0 y21 = y13 ⊕ y16
y8 = x0 ⊕ x5 t1 = x4 ⊕ y12 y11 = y20 ⊕ y9 y18 = x0 ⊕ y16
t0 = x1 ⊕ x2 y3 = y5 ⊕ y8 y7 = x7 ⊕ y11

– middle non-linear transformation –

t2 = y12 ∧ y15 t23 = t19 ⊕ y21 t34 = t23 ⊕ t33 z2 = t33 ∧ x7
t3 = y3 ∧ y6 t15 = y8 ∧ y10 t35 = t27 ⊕ t33 z3 = t43 ∧ y16
t5 = y4 ∧ x7 t26 = t21 ∧ t23 t42 = t29 ⊕ t33 z4 = t40 ∧ y1
t7 = y13 ∧ y16 t16 = t15 ⊕ t12 z14 = t29 ∧ y2 z6 = t42 ∧ y11
t8 = y5 ∧ y1 t18 = t6 ⊕ t16 t36 = t24 ∧ t35 z7 = t45 ∧ y17
t10 = y2 ∧ y7 t20 = t11 ⊕ t16 t37 = t36 ⊕ t34 z8 = t41 ∧ y10
t12 = y9 ∧ y11 t24 = t20 ⊕ y18 t38 = t27 ⊕ t36 z9 = t44 ∧ y12
t13 = y14 ∧ y17 t30 = t23 ⊕ t24 t39 = t29 ∧ t38 z10 = t37 ∧ y3
t4 = t3 ⊕ t2 t22 = t18 ⊕ y19 z5 = t29 ∧ y7 z11 = t33 ∧ y4
t6 = t5 ⊕ t2 t25 = t21 ⊕ t22 t44 = t33 ⊕ t37 z12 = t43 ∧ y13
t9 = t8 ⊕ t7 t27 = t24 ⊕ t26 t40 = t25 ⊕ t39 z13 = t40 ∧ y5
t11 = t10 ⊕ t7 t31 = t22 ⊕ t26 t41 = t40 ⊕ t37 z15 = t42 ∧ y9
t14 = t13 ⊕ t12 t28 = t25 ∧ t27 t43 = t29 ⊕ t40 z16 = t45 ∧ y14
t17 = t4 ⊕ t14 t32 = t31 ∧ t30 t45 = t42 ⊕ tt41 z17 = t41 ∧ y8
t19 = t9 ⊕ t14 t29 = t28 ⊕ t22 z0 = t44 ∧ y15
t21 = t17 ⊕ y20 t33 = t33 ⊕ t24 z1 = t37 ∧ y6

– bottom linear transformation –

t46 = z15 ⊕ z16 t49 = z9 ⊕ z10 t61 = z14 ⊕ t57 t48 = z5 ⊕ z13
t55 = z16 ⊕ z17 t63 = t49 ⊕ t58 t65 = t61 ⊕ t62 t56 = z12 ⊕ t48
t52 = z7 ⊕ z8 t66 = z1 ⊕ t63 s0 = t59 ⊕ t63 s3 = t53 ⊕ t66
t54 = z6 ⊕ z7 t62 = t52 ⊕ t58 t51 = z2 ⊕ z5 s1 = t64 ⊕ s3
t58 = z4 ⊕ t46 t53 = z0 ⊕ z3 s4 = t51 ⊕ t66 s6 = t56 ⊕ t62
t59 = z3 ⊕ t54 t50 = z2 ⊕ z12 s5 = t47 ⊕ t65 s7 = t48 ⊕ t60
t64 = z4 ⊕ t59 t57 = t50 ⊕ t53 t67 = t64 ⊕ t65
t47 = z10 ⊕ z11 t60 = t46 ⊕ t57 s2 = t55 ⊕ t67

Fig. 16. AES s-box circuit for efficient bitslice implementation.

of the intermediate variables in input of an ISW-AND must be stored in memory as they would not fit
altogether in the registers.

Mask refreshing. As for the CRV method, our bitslice AES s-box makes calls to ISW with input
sharings that might be linearly related. In order to avoid any flaw, we systematically refreshed one of the
input sharings in our masked implementation. Here again, the implied overhead is mitigated (between
5% and 10%).

6.3 Secure Bitslice PRESENT S-box

For our masked bitslice implementation of the PRESENT s-box, we used the compact representation
given by Courtois et al. in [16], which was obtained from Boyar et al. ’s logic minimization techniques
improved by involving OR gates. This circuit is composed of 4 nonlinear gates (2 AND and 2 OR) and 9
linear gates (8 XOR and 1 XNOR). As explained in Appendix E, each OR gate is replaced by an AND
gate followed by two XOR gates in our masked bitslice implementation.
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PRESENT has 16 parallel s-box computations per round, as AES. We hence get a bitslice imple-
mentation with 16-bit words that we want to group for the calls to ISW-AND. However for the chosen
circuit, we could not fully parallelize the nonlinear gates because of the dependency between three of
them. We could however group the two OR gates after a slight reordering of the operations. We hence
obtain a masked bitslice implementation computing the 16 PRESENT s-boxes in parallel with 3 calls
to ISW-AND. Our reordered version of the circuit is depicted in Figure 17. We clearly see that the two
successive OR gates can be computed in parallel. For the sake of security, we also refresh one of the
two input sharings in the 3 calls to ISW-AND. As for the bitslice AES s-box, the implied overhead is
manageable.

t1 = x2 ⊕ x1 t7 = x3 ⊕ t5
t2 = x1 ∧ t2 t8 = x3 ∨ t5
t3 = x0 ⊕ t2 t9 = t7 ∨ t6
y3 = x3 ⊕ t3 y2 = t6 ⊕ t8
t4 = t1 ∧ t3 y0 = y2 ⊕ t7
t5 = t4 ⊕ x1 y1 = t3 ⊕ t9
t6 = t1 ⊕ y3

Fig. 17. PRESENT s-box circuit for efficient bitslice implementation.

6.4 Implementation and Performances

Table 15 gives the performances obtained for our masked bitslice implementations of the AES and
PRESENT s-boxes. For comparison, we also recall the performances of the fastest polynomial methods
for AES and PRESENT (i.e. parallel versions of KHL and F ◦G) as well as the fastest generic methods
for n = 8 and n = 4 (i.e. parallel versions of the algebraic decomposition method for n = 8 and CRV for
n = 4). The timings are further plotted in Figures 18 and 19 for the sake of illustration.

Table 15. Performances of secure bitsliced s-boxes and comparison.

Clock cycles Code size

Bitslice AES s-box (16�) ≤ 328 d2 + 1137 d+ 1112 3.1 KB

KHL (2× 8�) 764 d2 + 512 d+ 538 4 KB

Alg. decomp. for n = 8 (4× 4�) 2376 d2 + 3812 d+ 5112 10.3 KB

Bitslice PRESENT s-box (16�) 61.5 d2 + 178.5 d+ 193 752 B

F ◦G (2× 8�) 376 d2 − 168 d+ 204 1.4 KB

CRV for n = 4 (2× 8�) 295 d2 + 667 d+ 358 2.1 KB

These results clearly demonstrate the superiority of the bitslicing approach. Our masked bitslice im-
plementations of the AES and PRESENT s-boxes are significantly faster than state-of-the art polynomial
methods finely tuned at the assembly level.

7 Cipher Implementations

This section finally describes masked implementations of the full PRESENT and AES blockciphers.
These blockciphers are so-called substitution-permutation networks, where each round is composed of a
key addition layer, a nonlinear layer and a linear diffusion layer. For both blockciphers, the nonlinear layer
consists in the parallel application of 16 s-boxes. The AES works on a 128-bit state (which divides into
sixteen 8-bit s-box inputs) whereas PRESENT works on a 64-bit state (which divides into sixteen 4-bit
s-box inputs). For detailed specifications of these blockciphers, the reader is referred to [18] and [7]. For
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Fig. 18. Timings for 16 AES s-boxes.
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Fig. 19. Timings for 16 PRESENT s-boxes.

both blockciphers, we follow two implementation strategies: the standard one (with parallel polynomial
methods for s-boxes) and the bitslice one (with bitslice s-box masking).

For the sake of efficiency, we assume that the key is already expanded, and for the sake of security
we assume that each round key is stored in (non-volatile) memory under a shared form. In other words,
we do not perform a masked key schedule. Our implementations start by masking the input plaintext
with d − 1 random m-bit strings (where m is the blockcipher bit-size) and store the d resulting shares
in memory. These d shares then compose the sharing of the blockcipher state that is updated by the
masked computation of each round. When all the rounds have been processed, the output ciphertext is
recovered by adding all the output shares of the state. For the bitslice implementations, the translation
from standard to bitslice representation is performed before the initial masking so that it is done only
once. Similarly, the translation back from the bitslice to the standard representation is performed a single
time after unmasking.

The secure s-box implementations are done as described in previous sections. It hence remains to
deal with the key addition and the linear layers. These steps are applied to each share of the state
independently. The key-addition step simply consists in adding each share of the round key to one share
of the state. The linear layer implementations are described hereafter.

Standard AES linear layer. We based our implementation on a classical optimized version of the
unmasked blockcipher. We use a transposed representation of the state matrix in order to store each row
in a 32-bit register. The MixColumns can then be processed for each column simultaneously by working
with row registers, and the ShiftRows simply consists of three rotate instructions.

Bitslice AES linear layer. The MixColumns step can be efficiently computed in bitslice representa-
tionby transforming the state matrix (bi,j)i,j into a new state matrix:

ci,j = xtimes(bi,j ⊕ bi+1,j)⊕ bi+1,j ⊕ bi+2,j ⊕ bi+3,j , (16)

where xtimes denotes the multiplication by x over F28 ≡ F2[x]/p(x) with p(x) = x8 + x4 + x3 + x + 1.
The xtimes has a simple Boolean expression, which is:

(b7, b6, . . . , b0)2
xtimes−−−−−→ (b6, b5, b4, b3 ⊕ b7, b2 ⊕ b7, b1, b0 ⊕ b7, b7)2 (17)

Let Wk denotes the word corresponding to the kth bits of the state bytes bi,j , and let W
(i,j)
k denotes the

(4 · i+ j)th bit of Wk (that is the kth bit of the state byte bi,j). The words Zk in output of the bitslice
MixColumns satisfy

Z
(i,j)
k = X

(i,j)
k ⊕W (i+1,j)

k ⊕W (i+2,j)
k ⊕W (i+3,j)

k , (18)

where X
(i,j)
k is the kth bit of the output of xtimes(bi,j ⊕ bi+1,j). This gives

Zk = Xk ⊕ (Wk ≪ 4)⊕ (Wk ≪ 8)⊕ (Wk ≪ 12) , (19)
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where ≪ denotes the rotate left operator on 16 bits. Following the Boolean expression of xtimes, the
word Xk satisfies Xk = Yk−1 if k ∈ {7, 6, 5, 2}, Xk = Yk−1 ⊕ Y7 if k ∈ {4, 3, 1}, and X0 = Y7, with
Yk = Wk ⊕ (Wk ≪ 4).

The above equation can be efficiently evaluated in ARM assembly, taking advantage of the barrel
shifter. The only subtlety is that the above rotate operations are on 16 bits whereas the ARM rotation
works on 32 bits. But this can be simply circumvented by using left shift instead of left rotate with a
final reduction of the exceeding bits. The obtained implementation takes 43 one-cycle instructions for
the overall bitslice MixColumns.

The ShiftRows is the most expensive step of the AES linear layer in bitslice representation. It must
be applied on the bits of each vector Wk (since each nibble of Wk correspond to a different row of the
state). Each row can be treated using 6 ARM instructions (6 clock cycles) as shown in Appendix F. This
must be done for 3 rows, which makes 18 clock cycles per word Wk, that is a total of 8× 18 = 144 clock
cycles.

PRESENT linear layer. The linear layer of PRESENT, called the pLayer, consists in a permutation of
the 64 bits of the state. In both representations, our implementation of this step use the straightforward
approach where each bit is taken at a given position i in a source register and put at given position j
in a destination register. Such a basic operation can be done in two ARM instructions (2 clock cycles),
with a register $one previously set to 1, as follows:

AND $tmp , $src , $one , LSR #i

EOR $dst , $tmp , LSL #j

In both representations, our pLayer implementation is hence composed of 64 × 2 instructions as
above, plus the initialization of destination registers, for a total of 130 instructions for the standard
representation and 132 for the bitslice representation.11

Bitslice translation. For both blockciphers the bitslice translations (forward and backward) can be
seen as bit permutations. They are hence implemented using a similar approach as for the pLayer of
PRESENT. This requires around 2× 64 = 128 cycles for PRESENT and 2× 128 = 256 clock cycles for
AES. Further note that in the case of PRESENT, the forward bitslice translation is exactly the pLayer
transformation, which allows some code saving.

7.1 Performances

In our standard implementation of AES, we used the parallel versions of KHL and RP (with ISW-EL)
for the s-box. For the standard implementation of PRESENT, we used the parallel versions of the F ◦G
method and of the CRV method. The obtained performances are summarized in Table 16. The timings
are further plotted in Figures 20 and 21.

Table 16. Performances of masked blockciphers implementation.

Clock cycles Code size

Bitslice AES 3280 d2 + 14075 d+ 12192 7.5 KB

Standard AES (KHL �) 7640 d2 + 6229 d+ 6311 4.8 KB

Standard (AES RP-HT �) 9580 d2 + 5129 d+ 7621 12.4 KB

Standard (AES RP-EL �) 10301 d2 + 6561 d+ 7633 4.1 KB

Bitslice PRESENT 1906.5 d2 + 10972.5 d+ 7712 2.2 KB

Standard PRESENT (F ◦G �) 11656 d2 + 341 d+ 9081 1.9 KB

Standard PRESENT (CRV �) 9145 d2 + 45911 d+ 11098 2.6 KB

11 We do not count the initialization of the register $one which is done once and not for each share.
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Fig. 20. Timings of masked AES.
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Fig. 21. Timings of masked PRESENT.

These results clearly confirm the superiority of the bitslice implementations in our context. The bitslice
AES implementation asymptotically takes 38% of the timings of the standard AES implementation using
the best parallel polynomial method for the s-box (namely KHL). This ratio reaches 18% for PRESENT
(compared to the F ◦G method). It is also interesting to observe that PRESENT is slower than AES for
standard masked implementations whereas it is faster for masked bitslice implementations. In the latter
case, a PRESENT computation asymptotically amounts to 0.58 AES computation. This ratio directly
results from the number of calls to ISW-AND which is 10 × 16 = 160 for AES (16 per round) and
31× 3 = 93 for PRESENT (3 per round).

In order to illustrate the obtained performances in practice, Table 17 gives the corresponding timings
in milliseconds for a clock frequency of 60 MHz. For a masking order of 10, our bitslice implementations
only take a few milliseconds.

Table 17. Timings for masked bistlice AES and PRESENT with a 60 Mhz clock.

d = 2 d = 3 d = 4 d = 5 d = 10

Bitslice AES 0.89 ms 1.39 ms 1.99 ms 2.7 ms 8.01 ms

Bitslice PRESENT 0.62 ms 0.96 ms 1.35 ms 1.82 ms 5.13 ms

8 Security Aspects

The security of practical implementations of probing-secure masking schemes can be considered at three
different levels:

– theoretical probing security : the considered algorithms are probing-secure (any set of less than d
intermediate variables computed by the algorithm provide no sensitive information);

– practical probing security : the considered implementations are probing secure on a given chip (any
set of less than d signals processed by the chip provide no sensitive information);

– security against practical attacks: a practical (higher-order) attack against the implementation re-
quires some amount of leakage measurements and some amount of computing power.

Theoretical probing security. Until recently, probing security proofs for full blockciphers only achieved
security at order (d− 1)/2 for d shares [21, 17, 13]. As discussed in Section 4, a single ISW multiplication
is actually secure at order d − 1 provided that its input sharings are independent [26], but flaws might
appear when composing ISW multiplications and linear transformations [14]. In our implementations, we
avoid such flaws by using either CPRR evaluations or ISW-based refreshing (i.e. ISW multiplication by
(1, 0, . . . , 0)). It was recently shown in [4] that using such a strategy actually provides tight compositional
security (i.e. at the order d− 1).
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Remark 3. Note that using parallelization in our implementations does not compromise the probing
security. Indeed, we pack several bytes/nibbles within one where of the cipher state but we never pack
(part of) different shares together. The probing security proofs hence apply similarly to the parallel
implementations.

From theoretical to practical probing security. The implementation of a probing-secure masking
scheme on a given chip might introduce practical flaws leading to a lower security order. As explained
in [1], these flaws are typically due to transition leakage. In practice, one should definitely address this
issue and either use bus/register pre-charging where necessary to avoid these flaws, or accept to loose a
factor up to 2 in the security order [1]. This is clearly a chip-dependent matter whereas our study does not
focus on a particular chip but on generic ARM assembly. That is why we do not solve this issue for our
implementation. We stress that solving this issue on a given chip might be a time-consuming engineering
problem but we expect that a hardened implementation should have performances close to our original
implementation. Indeed, and as aforementioned, the update merely consists in clearing the data path at
some specific points in the assembly, which should not imply a very strong overhead. We hence believe
that the performances of our implementations should not strongly suffer a practical probing-security
hardening and that our conclusions should not be too much impacted by such a process.

Practical attacks. Once the practical probing security is taken care of, one can still perform practical
higher-order attacks. These attacks target the joint distribution of at least d leakage signals (for a probing
security order d− 1) in order to extract sensitive information. To the best of our knowledge, no previous
works focused on practical attack at orders greater than 2 or 3. We think that practical attacks of
order d > 3 are a very appealing research subject. However this is a subject in itself, beyond the scope
of our paper, and we should address it in future research. We hope that, by putting forward efficient
implementations of standard blockciphers with masking orders up to 10, our paper will motivate further
research in that direction.
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Order Masking: Application to a Verifying Masking Compiler. Cryptology ePrint Archive, Report 2015/506,
2015.

5. E. Biham. A Fast New DES Implementation in Software. In E. Biham, editor, Fast Software Encryption –
FSE ’97, volume 1367 of LNCS, pages 260–272. Springer, 1997.

6. B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. Stütz. Threshold Implementations of All 3×3 and 4×4
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A ARM Code

MACRO

mult_bin $opA ,$opB ,$res ,$tmp ,$i,$mod

;; init phase

MOV $res , #0

LSL $opB , #(32 -(n+1))

set_mod_poly $mod

MOV $i , #(n-1)

loopl2r

;; res <- x * res mod p(x)

LSL $tmp , $res , #32-n

AND $tmp , $mod , $tmp , ASR #32

EOR $res , $tmp , $res , LSL #1

;; res <- res + b_i * a(x)

ROR $opB , #31

AND $tmp , $mod , $opB , ASR #3

EOR $res , $tmp

;; loop processing

SUBS $i , #1

BPL loopl2r

MEND

Fig. 22. Basic binary multiplication.
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MACRO

mult_bin2 $opA ,$opB ,$res ,$tmp ,$i ,$tab

;; init phase

LDR $tab , = l2rTable

MOV $res , #0

LSL $opB , #31

MOV $cpt , #(n-1)

loopl2r2

;; res <- x * res + b_i * a(x)

ROR $opB , #31

AND $tmp , $opA , $opB , ASR #32

EOR $res , $tmp , $res , LSL #1

;; loop processing

SUBS $i , #1

BPL loopl2r2

;; res <- res mod p(x)

LDRB $tmp , [$tab ,$res , LSR #n]

EOR $res , $tmp

AND $res , #(2^n-1)

MEND

Fig. 23. Binary multiplication with reduction LUT.

MACRO

mult_exp1 $opA ,$opB ,$res ,$pttab ,$tmp

;; init phase

LDR $pttab , =LogTable

;; tmp0 <- log(opA) + log(opB) mod (2^n-1)

LDRB $tmp , [$pttab , $opA]

LDRB $res , [$pttab , $opB]

ADD $tmp , $res

ADD $tmp , $tmp , LSR #n

AND $tmp , #(2^n-1)

;; res <- exp (tmp)

ADD $pttab , #(2^n)

LDRB $res , [$pttab , $tmp]

;; treat the a=0 or b=0 case

RSB $tmp , $opA , #0

AND $tmp , $opB , $tmp , ASR #32

RSB $tmp , #0

AND $res , $tmp , ASR #32

MEND

Fig. 24. Exp-Log multiplication.
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MACRO

mult_exp2 $opA ,$opB ,$res ,$pttab ,$tmp

;; init phase

LDR $pttab , =LogTable

;; log(opA) + log(opB)

LDRB $tmp , [$pttab , $opA]

LDRB $res , [$pttab , $opB]

ADD $tmp , $res

;; res <- alog (tmp0)

ADD $pttab , #(2^n)

LDRB $res , [$pttab , $tmp0]

;; check if opA or opB is 0

RSB $tmp , $opA , #0

AND $tmp , $opB , $tmp , ASR #32

RSB $tmp , #0

AND $res , $tmp , ASR #32

MEND

Fig. 25. Exp-Log multiplication with doubled exp table.

MACRO

mult_kara $opA , $opB , $res , $pttab , $tmp0 , $tmp1

;;init phase

LDR $pttab , =KaraTable2

;; (x,y) -> [(x1,y1);(x0,y0);(x1+x0,y1+y0)]

EOR $tmp0 , $opA , $opB , LSR #(n/2)

EOR $tmp1 , $opB , $tmp0 , LSL #(n/2)

BIC $tmp1 , #0((2^n)<<n)

EOR $tmp0 , $tmp1 , LSR #(n/2)

;; res <- T1(tmp0) + T2(tmp1) + T3(tmp0+tmp1)

LDR $res , [$pttab , $tmp0]

ADD $pttab , #(2^n)

LDRB $res , [$pttab , $tmp1]

EOR $reg , $tmp1

EOR $tmp0 , $tmp1

SUB $pttab , #(2^(n+1))

LDRB $res , [$pttab , $tmp0]

EOR $reg , $tmp0

Fig. 26. Karatsuba multiplication
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MACRO

mult_ft $opA ,$opB ,$res ,$pttab ,$tmp0

;;init phase

LDR $pttab , =FullTable

;; res = T(a,b)

EOR $tmp0 , $opB , $opA , LSL #n

LDRB $res , [$pttab ,$tmp0]

MEND

Fig. 27. Full tabulated multiplication.

MACRO

mult_ht $opA ,$opB ,$res ,$pttab ,$tmp

;;init phase

LDR $pttab , =TdTable1

;; res <- T1[a_h|a_l|b_h]

EOR $tmp , $opB , $opA , LSL #n

LDRB $res , [$pttab , $tmp , LSR #(n/2)]

ADD $pttab , #(2^(2n))

;; tmp <- T2[a_h|a_l|b_l]

EOR $tmp , $opA , $opB , LSL #(32-n/2)

LDRB $tmp , [$pttab , $tmp , ROR #(32-n/2)]

;; res <- res ^ tmp

EOR $res , $tmp

MEND

Fig. 28. Half tabulated multiplication.
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B Secure Multiplication and Quadratic Evaluation Algorithms

Algorithm 2 ISW scheme

Input: shares ai such that
∑

i ai = a, shares bi such that
∑

i bi = b
Output: shares ci such that

∑
i ci = a · b

1. for i = 1 to d do
2. ci ← ai · bi
3. end for
4. for i = 1 to d do
5. for j = i+ 1 to d do
6. s← F
7. s′ ← (s+ (ai · bj)) + (aj · bi)
8. ci ← ci + s
9. cj ← cj + s′

10. end for
11. end for
12. return c1, ..., cd

Algorithm 3 Quadratic Evaluation

Input: shares ai such that
∑

i ai = a, a look-up table for a algebraic degree-2 function h
Output: share ci such that

∑
i ci = h(a)

1. for i = 0 to d do
2. ci = h(ai)
3. end for
4. for i = 0 to d do
5. for j = i+ 1 to d do
6. s← F2n

7. s′ ← F2n

8. t← s
9. t← t+ h(ai + s′)

10. t← t+ h(aj + s′)
11. t← t+ h((ai + s′) + aj)
12. t← t+ h(s′)
13. s′ ← t
14. ci ← ci + s
15. cj ← cj + s′

16. end for
17. end for
18. return c1, ...cd
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C Register Usage for ISW and CPRR Implementations

The register usage of our implementations of ISW and CPRR is given in Table 18. For ISW, the bottleneck
for “temporary variables” is the register usage of the multiplication. From the ISW loop, one can check
that we do not need the multiplication operands once they have been multiplied. This allowed us to save
2 registers in the full-table and exp-log multiplications, and 1 register in the half-table multiplication.
These savings are indicated under brackets in Table 18 (and they are taken into account in the total).

Table 18. Register usage

Input/output LUT & TRNG Loop ISW / CPRR Temporary Total
addresses addresses counters variables variables

ISW-FT/EL 3 2 2 1 5 (-2) 11

ISW-HT 3 2 2 1 5 (-1) 12

CPRR 2 2 2 2 4 12

Regarding parallel versions, ISW implementations need two more registers compared to standard
implementations in order to store the extracted n-bit chunks from packed 32-bit values for ai and bj . In
the case of CPRR, a single additional register is sufficient for xi then for xj . As it can be deduced from
Table 18, our parallel implementations of ISW and CPRR hence uses 13 registers, except for ISW-HT
that needs 14 registers (i.e. it uses the link register), which is pretty tight.
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D Table for the F ◦ G Method

Table 19. PRESENT s-box S(x) = F ◦G(x).

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

G(x) 7 E 9 2 B 0 4 D 5 C A 1 8 3 6 F

F (x) 0 8 B 7 A 3 1 C 4 6 F 9 E D 5 2
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E ISW-based OR, NAND and NOR

The ISW scheme can also be used to perform a bitwise logical OR. It is well known that the OR between
two (m-bit) operands a and b satisfies a∨b = (a∧b)⊕a⊕b. If we substitutes the bitwise AND operations
for bitwise OR operations in the above ISW scheme, we obtain output shares satisfying:⊕

i

ci =
⊕
i,j

ai ∨ bj =
⊕
i,j

(
(ai ∧ bj)⊕ ai ⊕ bj

)
. (20)

If d is even, the ai’s (resp. the bj ’s) vanish in the sum over j (resp. i) so that we get
⊕

i ci = a ∧ b. On
the other hand, if d is odd we get

⊕
i ci = (a ∧ b)⊕ a⊕ b = a ∨ b. An ISW-OR can then be obtained by

replacing the bitwise AND operations by bitwise OR operations in the ISW scheme whenever d is odd.
Otherwise, one can use an ISW-AND, and then add the input shares to output the shares i.e. computing
c′i = ci ⊕ ai ⊕ bi for every 1 ≤ i ≤ d. We adopted this latter strategy in our implementations in order to
have a unique code working for any value of d.

ISW-NAND and ISW-NOR are easily obtained since the negation in the masking world simply consists
in complementing a single of the d shares, which can be efficiently done with a single instruction.
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F Code for Bitslice ShiftRows

;; R3 =b0 b1 b2 b3 ... b16

AND R0 , R3 , #0xF0 ;; R0 = b5 b6 b7 b8

AND R2 , R0 , #0x80 ;; R2 = b8

BIC R0 , R0 , #0x80 ;; R0 = b5 b6 b7 0

EOR R0 , R0 , R2 , LSR #4 ;; R0 = b8 b5 b6 b7

BIC R3 , #0xF0 ;; R3 = b1...b4 0000 b9... b16

EOR R3 , R0 , LSL #1 ;; R3 = b1... b4b8b5b6b7 ... b16
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