
On the Provable Security of
Cryptographic Implementations

Thèse d’habilitation

présentée et soutenue publiquement le 21 juin 2022
pour l’obtention du

Diplôme d’Habilitation à Diriger des Recherches
de l’École normale supérieure

(spécialité Informatique)

par

Matthieu Rivain

devant le jury composé de

Rapporteurs : Pierre-Alain Fouque (Université de Rennes 1)
Yuval Ishai (Technion)
Bart Preneel (KU Leuven)

Examinateurs : Anne Canteaut (INRIA)
Jean-Sebastien Coron (University of Luxembourg)
Elisabeth Oswald (University of Klagenfurt)
David Pointcheval (ENS, CNRS, PSL University)
Emmanuel Prouff (Sorbonne Université)
Francois-Xavier Standaert (UC Louvain)

Travaux effectués au sein de la société CryptoExperts

Remerciements
C’est confortablement installé sur un transat à l’ombre d’un parasol depuis la côte ouest crétoise

observant par interstice la mer Méditerranée que j’écris ces quelques lignes afin de rendre hommage
aux personnes sans qui cette thèse d’habilitation n’existerait pas.
En premier lieu, j’adresse mes remerciements à David Pointcheval pour avoir rendu possible cette

habilitation à diriger des recherches au sein de l’École normale supérieure. Je le remercie pour son
temps, ses conseils et son aide quant à la concrétisation de ce projet.
J’aimerais ensuite exprimer ma gratitude à Anne Canteaut, Jean-Sébastien Coron, Pierre-Alain

Fouque, Yuval Ishai, Elisabeth Oswald, David Pointcheval, Bart Preneel, Emmanuel Prouff et François-
Xavier Standaert qui me font le plaisir et l’honneur de constituer mon jury d’HDR. Je suis notamment
touché par la présence de Yuval dont les résultats fondateurs ont inspiré plusieurs de mes travaux.
Je remercie Bart, Pierre-Alain et Yuval d’avoir pris le temps de relire ce mémoire et d’écrire leurs
rapports soutenant cette habilitation.

Outre leur participation au jury, je tiens à spécialement remercier Jean-Sébastien Coron et Emmanuel
Prouff. Jean-Sébastien a joué un rôle déterminant dans ma carrière de chercheur, en m’offrant
l’opportunité de faire une thèse CIFRE chez Oberthur dont il a été le directeur. Je le remercie pour
son soutien et ses conseils tout au long de ma carrière. Je remercie Emmanuel pour avoir accompagné
mes premiers pas de chercheur, pour ses conseils, nos discussions, et bien sûr, pour son exigence en
matière œnologique (toujours en l’absence de sulfite), sans oublier nos aventures communes de la
confrérie de rois du cryptage avec avec Guénaël Renault.
La recherche est avant tout un effort collectif. Elle avance par la confrontation des points de

vue, l’échange des idées et l’union des forces vers un but commun. Je tiens donc à témoigner ma
reconnaissance envers les différentes personnes avec qui j’ai eu la chance de m’adonner à ce processus
d’échange, de confrontation et de collaboration. Je remercie chaleureusement mes différents coauteurs,
désormais un peu nombreux pour être tous nommés ici. Je remercie tout particulièrement Sonia Belaïd,
Jean-Sébastien Coron, Emmanuel Prouff et Damien Vergnaud pour nos nombreuses et fructueuses
collaborations sans lesquelles cette thèse d’habilitation ne serait pas ce qu’elle est. Merci notamment
à Sonia et Damien pour nos co-encadrements de stagiaires et thésards.
J’ai ici une pensée particulière pour quatre jeunes gens, plein de motivation et de talent, dont

j’ai (eu) le privilège de co-encadrer les thèses ; j’ai nommé Thibauld Feneuil, Dahmun Goudarzi,
Abdel Rahman Taleb et Junwei Wang. Je les remercie de m’avoir octroyé leur confiance dans cette
entreprise. Merci notamment à Dahmun et Abdel pour nos collaborations dont les résultats nourrissent
ce mémoire. Merci à Junwei avec qui nous nous sommes amusés à ouvrir et fermer la boîte blanche (à
défaut de celle de Pandore). Et merci à Thibauld avec qui j’explore de nouveaux horizons sans nulle
divulgation de connaissance (comme on dit en bon français).
Comme tout être vivant, le chercheur gagne à évoluer dans un environnement naturel propice à

son épanouissement. Mon parcours de chercheur depuis la fin de mon doctorat est intimement lié
au projet et à l’aventure que représente CryptoExperts. J’y ai trouvé –et espère avoir contribué à
y construire– un environnement cultivant le savoir et l’innovation scientifiques. Je remercie donc la
personne morale que constitue CryptoExperts de m’offrir un tel environnement depuis 12 ans. Mais
plus personnellement, je tiens à exprimer ma reconnaissance envers mes associés Pascal Paillier et
Louis Goubin qui, à l’origine accompagnés d’Aline Gouget et Christophe Clavier, ont enfanté le projet
CryptoExperts. Merci particulièrement à Pascal qui m’y a accueilli en 2010 et au contact de qui
j’ai beaucoup appris. Sa culture crypto, sa curiosité et son optimisme légendaire ont été une grande

iii

source d’inspiration pour moi. Un grand merci également à Louis pour son écoute, sa bienveillance et
pour nos différentes collaborations.

Cette petite douzaine d’années passées chez CryptoExperts, alias CRX, m’a donné l’occasion
de rencontrer et de travailler avec des personnes dont les qualités personnelles, scientifiques et
professionnelles m’ont beaucoup influencé. Merci donc à Thomas Baignères, Sonia Belaïd, Cécile
Delerablée, Thibauld Feneuil, Matthieu Finiasz, Louis Goubin, Dahmun Goudarzi, Aline Gouget,
Antoine Joux, Tancrède Lepoint, Darius Mercadier, Viet Sang Nguyen, Pascal Paillier, Abdul Rahman
Taleb, Aleksei Udovenko et Junwei Wang ! Avec une pensée particulière pour Cécile et Thomas qui
étaient là au début de l’aventure.

Pour différents échanges et autres collaborations qui ont également marqué mon parcours de
chercheur, je remercie Thomas Roche et Victor Lomné (mes amis les ninjas), Darius Mercadier (et ses
talents de compilateur), Aleksei Udovenko (et ses talents de white boxeur), Antoine Joux, Dan Page
et François-Xavier Standaert.

Il n’y a pas que le travail dans la vie ! Mais quand travail rime avec passion, il est parfois difficile de
tracer une limite ferme et de sacraliser les moments de repos et de partage avec les siens. Je remercie
Claire qui me fait le bonheur de partager ma vie et qui m’aide sans relâche à préserver ces moments
crypto-free (avec plus ou moins de succès dira-t-elle). Merci à mes parents, Françoise et Vincent, à
ma sœur Elsa, à ma famille et mes amis pour leur présence et leur soutien.

Enfin, merci à toi, cher lecteur, qui t’apprête à persister au delà de cette page de remerciements et
grâce à qui je l’espère ce travail de synthèse, au delà de sa stricte nécessité, n’aura pas été vain.

Contents
I. Introduction 0

1. Introduction 1

2. Preliminaries 3
2.1. Basic notions and notations . 3
2.2. Arithmetic circuits . 3
2.3. Sharing and gadgets . 4
2.4. Circuit compilers . 4
2.5. Simulation-based security notions . 6

II. Provable security for masked implementations 8

3. Masking schemes in the probing security paradigm 9
3.1. Introduction . 9
3.2. Masking . 10

3.2.1. Principle . 10
3.2.2. Higher-order masking . 10
3.2.3. Soundness of masking . 10
3.2.4. Masking schemes . 11

3.3. Ishai-Sahai-Wagner (ISW) construction . 11
3.3.1. The ISW circuit compiler . 11
3.3.2. Probing security . 12

3.4. Efficient ISW-based masking schemes . 12
3.4.1. Generalization to arithmetic circuits . 12
3.4.2. Tighter proof for the ISW multiplication gadget 13
3.4.3. Refresh gadgets and the composition issue . 13

3.5. Efficient application to block ciphers . 15
3.5.1. Masking block ciphers . 15
3.5.2. Application to AES . 15
3.5.3. Efficient decomposition of any s-boxes . 16

3.6. Conclusion and related works . 19

4. The noisy leakage model 20
4.1. Introduction . 20
4.2. Motivation . 21
4.3. Noisy leakage definition . 22

4.3.1. Intuition . 22
4.3.2. Formal definition . 22
4.3.3. Discussion . 24

4.4. Some security bounds . 25
4.4.1. Relation to mutual information . 25
4.4.2. Noisy leakage of a shared variable . 25
4.4.3. Noisy leakage of a repeated variable . 26

4.5. From probing to noisy leakage security . 26

Contents v

4.6. Conclusion and related works . 28

III. Secure masking composition 29

5. Secure composition in the region probing model 30
5.1. Introduction . 30
5.2. Composition through input-output separation . 30

5.2.1. Input-output separation . 30
5.2.2. Composition intuition . 31
5.2.3. Composition theorem . 31
5.2.4. Comparison with previous composition approaches 32

5.3. An input-output separative refresh gadget . 33
5.3.1. BCPZ refresh gadget . 33
5.3.2. Proposed variant . 33
5.3.3. Input-output separation . 34

5.4. Conclusion and related works . 34

6. Secure composition in the random probing model 35
6.1. Introduction . 35
6.2. Background notions . 35

6.2.1. Simulation with abort . 35
6.2.2. Simulation failure probability . 36

6.3. Random probing composability . 37
6.3.1. Formal definition . 37
6.3.2. Composition security . 37
6.3.3. Relation with strong non-interference . 38

6.4. Conclusion and related works . 38

IV. Achieving noisy leakage security 40

7. Noisy leakage security in quasilinear complexity 41
7.1. Introduction . 41
7.2. A quasilinear-complexity masking scheme . 41

7.2.1. Encoding . 42
7.2.2. Multiplication gadget . 42
7.2.3. Overall circuit compiler . 43
7.2.4. Field extension and FFT algorithm . 43

7.3. Region probing security . 44
7.3.1. Security reduction . 44
7.3.2. Probing security of the FFT on large fields . 45

7.4. Conclusion and related works . 46

8. Noisy leakage security through random probing expansion 47
8.1. Introduction . 47
8.2. Random probing expandability framework . 48

8.2.1. Expanding compiler . 48
8.2.2. Random probing expandability . 49
8.2.3. Expansion security . 50

8.3. Asymptotic analysis . 50
8.3.1. Amplification order . 51
8.3.2. Eigen-complexity . 51

Contents vi

8.3.3. Complexity of the expanding compiler . 52
8.3.4. Bounding the amplification order . 53

8.4. Generic constructions of RPE gadgets . 53
8.4.1. Generic copy and addition gadgets . 53
8.4.2. Multiplication gadget with maximal amplification order 55

8.5. Efficient instantiation with small RPE gadgets . 56
8.5.1. Three-share gadgets . 57
8.5.2. Five-share gadgets . 58

8.6. Conclusion and related works . 58

V. Conclusion 60

Conclusion 61

Bibliography 63

VI. Appended publications 72

A. Provably Secure Higher-Order Masking of AES 73

B. Higher-Order Masking Schemes for S-boxes 93

C. Masking against Side Channel Attacks: a Formal Security Proof 114

D. How to Securely Compute with Noisy Leakage in Quasilinear Complexity 147

E. Probing Security through Input-OutputSeparation & Revisited Quasilinear Masking 168

F. Random Probing Security: Verification, Composition, Expansion & New Constructions 211

G. On the Power of Expansion: More Efficient Constructions in the RP Model 252

Part I.

Introduction

Chapter 1
Introduction

We live in a world in which cryptography has become ubiquitous. Devices around us are constantly
processing cryptographic computations to ensure the confidentiality and the authenticity of our
communications. As of today, cryptography is widely deployed to secure payment transactions,
phone calls, wireless communications between devices, video and music streaming, and of course
many communications on the Internet (including chat, video calls, user authentication for web
services, etc.). Tomorrow, cryptography might increasingly be involved when accessing our homes
and work offices, unlocking our cars, proving our identities to third parties (with legal value),
sending instructions to our domestic appliances, using privacy-preserving artificial intelligence services,
performing cryptocurrency/blockchain transactions, and much more.

Cryptography has experienced an impressive development in the last forty years. It has become
a full-fledged branch of computer science and has provided the world with practical, reliable and
well-understood tools to build secure communications (such as encryption, authentication, digital
signature). Paradoxically, a strongly imbalanced conception of security persists depending on the
level of abstraction of a cryptographic mechanism: one requires very high assurance for an algorithm
or a protocol but very low assurance for its actual implementation. The scientific community and
the industry (through standardization committees) have converged towards the paradigm of provable
security for cryptographic algorithms and protocols. Under this paradigm, a cryptographic algorithm
or protocol should come with a security proof (or security reduction) that, under some well-studied
computational hardness assumptions, breaking the mechanism requires some considerable computing
power (e.g. 2128 CPU instructions). Such a proof is usually limited to the so-called black-box model in
which the adversary is assumed to have an input-output access to the cryptographic mechanism, the
latter is hence considered as a black box answering some e.g. encryption requests.

In the late 1990’s, Kocher, Jaffe and Jun have demonstrated that information leaking through
so-called side channels could be exploited to practically break (black-box secure) cryptographic
implementations [Koc96, KJJ99]. A side-channel adversary can for instance measure the running time
of an implementation to mount what is known as a timing attack. Many cryptographic implementations
have been (and are still frequently) shown vulnerable to this type of attacks. While designing constant-
time algorithms has become the norm in cryptography, the current challenge resides in ensuring
that timing attacks are systematically avoided even by inexperienced developers (e.g. by selecting
cryptographic standards avoiding these pitfalls and/or developing formal verification tools or compilers
for cryptographic implementations).

Besides the running time, a side-channel adversary might take advantage of a (partial) physical
access to the computing device to monitor the power consumption and/or electromagnetic emanations
of the device a.k.a. the side-channel leakage. This physical access is non-invasive in the sense that
the adversary does not need to tamper with the device but only to passively observe its physical
behavior. When measurable, this leakage enables devastating key-recovery attacks against unprotected
implementations. Moreover, recent advances tend to ease the practice of physical side-channel attacks:
turnkey side-channel equipment is more accessible (and at lower cost) than before. For example,
the progress of far-field electromagnetic attacks relaxes the physical access requirement for potential

Chapter 1. Introduction 2

attackers, the advent of deep-learning based attacks relaxes the necessary expertise of potential
attackers.

To face this threat, we present in this thesis some contributions toward the provable security
of cryptographic implementations in the presence of side-channel leakage. Our approach relies on
masking whose principle is to apply secret sharing at the computation level. The goal of masking
is to randomize the intermediate variables processed by the computation in order to mitigate the
side-channel information leakage. While the first masking countermeasures were ad hoc and of limited
order, the results presented in this thesis have contributed to the formalization of masking security,
the construction of masking schemes secure at any orders, the formalization of practically-relevant
side-channel leakage models, and the construction of masking schemes achieving provable security
under these models.

This thesis is organized as follows: Chapter 2 provides the necessary technical preliminaries.
Chapter 3 introduces the concept of masking and presents the design of masking schemes at any
order in the probing security paradigm. Chapter 4 introduces the noisy leakage model, a formal model
which captures the physical reality of power and electromagnetic leakages. Chapter 5 and Chapter 6
address the composition of elementary masking gadgets into globally secure masking schemes under
different probing security flavors. Chapter 7 and Chapter 8 finally describe concrete masking schemes
achieving provable security in the noisy leakage model.

Chapter 2
Preliminaries

Contents
2.1. Basic notions and notations . 3
2.2. Arithmetic circuits . 3
2.3. Sharing and gadgets . 4
2.4. Circuit compilers . 4
2.5. Simulation-based security notions . 6

2.1. Basic notions and notations
Along this thesis, K shall denote a finite field while Fq shall denote the finite field with q elements. A K-
linear map shall refer to any function f : K` → Km, for some `,m ∈ N, such that f(x+y) = f(x)+f(y)
for every x,y ∈ K`. For any n ∈ N, we shall denote [n] the integer set [n] = [1, n] ∩ Z. For any tuple
x = (x1, . . . , xn) ∈ Kn and any set I ⊆ [n], we shall denote x|I = (xi)i∈I .

For a probability distribution D, the notation x← D means that x is sampled from D. For a finite
set S, the notation x← S means that x is uniformly sampled at random from S. For an algorithm A,
out← A(in) further means that out is obtained by a call to A on input in (using uniform random
coins whenever A is probabilistic).
The statistical distance between any two probability distributions D1 and D2 (with same sample

space), denoted ∆(D1;D2), is defined as

∆(D1;D2) ··=
1
2
∑

x

|pD1(x)− pD2(x)| ,

where pD1(·) and pD2(·) denote the probability mass functions of D1 and D2. Two distributions D1
and D2 are said ε-close, denoted D1 ≈ε D2, if their statistical distance is upper bounded by ε, while
they are identically distributed, denoted D1

id= D2 if their statistical distance is null.

2.2. Arithmetic circuits
An arithmetic circuit over a field K is a labeled directed acyclic graph whose edges are wires and
vertices are arithmetic gates representing operations over K. We consider the following arithmetic
gate:

• an addition gate, of fan-in 2 and fan-out 1, computes an addition over K,
• an subtraction gate, of fan-in 2 and fan-out 1, computes an addition over K,
• a multiplication gate, of fan-in 2 and fan-out 1, computes a multiplication over K,
• a scalar multiplication gate, of fan-in 1 and fan-out 1, computes a multiplication by a constant

over K,

Chapter 2. Preliminaries 4

• a copy gate, of fan-in 1 and fan-out 2, outputs two copies of its input.
A randomized arithmetic circuit is equipped with an additional type of gate:

• a random gate, of fan-in 0 and fan-out 1, outputs a fresh uniform random value of K.
A (randomized) arithmetic circuit is further formally composed of input gates of fan-in 0 and fan-out
1 and output gates of fan-in 1 and fan-out 0.

Along this thesis, the set of wires of a circuit C shall be denoted Wires(C). The size of a circuit C,
denoted |C|, shall refer to the number of wires of C, i.e. |C| = |Wires(C)| (which is always greater
than the number of gates). We shall call output wires the wires of C which are incoming an output
gate. All the other wires are called the internal wires of C.
Evaluating an `-input m-output circuit C consists in writing an input x ∈ K` in the input gates,

processing the gates from input gates to output gates, then reading the output y ∈ Km from the
output gates. Defining y as the output corresponding to an input x is denoted by y = C(x). During
the evaluation process, each wire in the circuit is assigned with a value on K. We call the tuple of all
these wire values a wire assignment of C (on input x). Along this thesis, we will consider the wire
assignment of a circuit C on input x for a subset W of its wires, which we shall denote

AssignWires(C,W,x) ∈ K|W| .

We stress that for a randomized arithmetic circuit, which includes random gates, AssignWires can be
thought of as a probabilistic algorithm (which randomly samples the output of random gates).

2.3. Sharing and gadgets
Let us recall that for some tuple x = (x1, . . . , xn) ∈ Kn and for some set I ⊆ [n], the tuple (xi)i∈I is
denoted x|I .
Definition 1 (Linear Sharing). Let n ∈ N and v ∈ Kn. For any x ∈ K, an v-linear sharing of x
is a vector x ∈ Kn such that 〈v,x〉 = x. A random vector x distributed over Kn is said to be a
uniform v-linear sharing of a variable x if for any set I ⊂ [n], with |I| < n, the tuple x|I is uniformly
distributed over K|I|.

The v-linear decoding mapping is the function mapping x ∈ Kn to 〈v,x〉 ∈ K. A v-linear encoding
is a probabilistic algorithm which on input x ∈ K outputs a uniform v-linear sharing of x. Such an
encoding typically samples n − 1 random values x1, . . . xn−1 over K and computes xn in order to
verify the v-linear decoding relation 〈v,x〉 = x.

Definition 2 (Gadget). Let g : K` → Km. We shall call an (n-share, `-to-m) v-gadget for g, a
randomized arithmetic circuit G that maps an input (x1, . . . ,x`) ∈ (Kn)` to an output (y1, . . . ,ym) ∈
(Kn)m while satisfying (

〈v,yi〉
)

16i6m = g
[(
〈v,xi〉

)
16i6`

]

with probability 1 over the internal randomness of G.

Along this thesis, we shall sometimes drop the v prefix when the vector v is clear from the context.
Most of the time, we shall focus on the particular case v = (1, 1, . . . , 1) for which the decoding function
is simply 〈v,x〉 = x1 + · · ·+xn. In this case, we shall use the terminology of n-linear sharing, n-linear
encoding, and n-linear decoding to refer to the above concepts, while making the number of shares
explicit.

2.4. Circuit compilers
A circuit compiler transforms an input circuit C into a functionally equivalent circuit Ĉ working on
encoded variables in order to satisfy some security properties. In the following definitions, poly(·)

Chapter 2. Preliminaries 5

stands for asymptotically polynomial in the argument(s), i.e. poly(α1, α2) = O(αe1
1 α

e2
2) for some

constants e1, e2.
Definition 3 (Circuit Compiler). A circuit compiler is a triplet of algorithms (CC,Enc,Dec) defined
as follows:

• CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic circuit
C and outputs a randomized arithmetic circuit Ĉ.

• Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ K` to an encoded input
x ∈ K`′ .

• Dec (output decoding) is a deterministic algorithm that maps an encoded output y ∈ Km′ to a
plain output y ∈ Km.

These three algorithms satisfy the following properties:
• Correctness: For every arithmetic circuit C of input length `, and for every x ∈ K`, we have

Pr
(
Dec

(
Ĉ(Enc(x))

)
= C(x)

)
= 1 , where Ĉ = CC(C).

• Efficiency: For some security parameter κ ∈ N, the running time of CC(C) is poly(κ, |C|),
the running time of Enc(x) is poly(κ, |x|) and the running time of Dec

(
y
)
is poly(κ, |y|).

The ratio |C|/|Ĉ| between the size of the original circuit and the size of the output of the circuit
compiler shall be referred to as the complexity overhead of the compiler.

We shall focus on a special kind of circuit compilers which relies on linear sharing of the variables
and replace each gate from the original circuit by a gadget. Such standard circuit compilers are
formally defined hereafter.
Definition 4 (Standard Circuit Compiler). Let κ ∈ N be some security parameter and let n = poly(κ).
Let {G} be a family of n-share gadgets for the different arithmetic gates (addition, multiplication,
copy, etc.) over K. The standard circuit compiler with sharing order n and base gadgets {G} is the
circuit compiler (CC,Enc,Dec) satisfying the following:

1. The input encoding Enc applies a n-share linear encoding to each input of the circuit.
2. The output decoding Dec applies the linear decoding mapping to each output of the circuit.
3. The circuit compilation CC consists in replacing each gate in the original circuit by an n-share

gadget with corresponding functionality from the base {G}, and each wire by a set of n wires
carrying a linear sharing of the original wire. If the input circuit is a randomized arithmetic
circuit, each of its random gates is replaced by n random gates (thus producing an n-linear
sharing of a random value).

For such a circuit compiler, the correctness and efficiency directly follows from the correctness and
efficiency of the gadgets from {G}. In particular we have |Ĉ| 6 |C| ·max |G|, namely the complexity
overhead of the standard circuit compiler is the complexity of its largest base gadget.

We shall further consider standard circuit compiler making use of so-called refresh gadgets. Formally,
a refresh 1-to-1 gadget is a gadget for the identity function. One usually expect some security
properties from a refresh gadget such as the uniformity which holds when the output sharing is
uniform and independent of the input sharing. But as we will see along this thesis, further security
notions are desirable for the refresh gadget.
Definition 5 (Refreshing). A standard circuit compiler with refreshing is defined for a base of n-share
gadgets {G} together with an additional refresh gadget:

• In a standard circuit compiler with partial refreshing, the compilation CC further inserts refresh
gadgets at carefully chosen location in Ĉ.

• In a standard circuit compiler with full refreshing, the compilation CC further inserts a refresh
gadget at the output of every gadget of Ĉ.

Chapter 2. Preliminaries 6

2.5. Simulation-based security notions
Along this thesis, a simulator should formally refer to a probabilistic algorithm. We use this terminology
when the purpose of this algorithm is to produce an output which simulates a given distribution.

Simulation-based security notions consider an adversary that can gain access to a certain number
of leaking wires in a circuit Ĉ taking an encoded input Enc(x) and working on encoded values. While
the topology of those leaking wires depend on the considered leakage model, all the simulation-based
security notions introduced hereafter rely on the fact that those leaking wires can be (perfectly)
simulated without any knowledge on the plain output. Formally, given any distribution Dx of the
plain input x, those security notions require the existence of a simulator which outputs a distribution
identical (or at least statistically close to) the assignment of the leaking wires of Ĉ on input Enc(x)
(where x is not input to the simulator).

In the following definitions, we shall consider an encoding Enc mapping K` to K`′ for some `, `′ ∈ N,
a randomized arithmetic circuit Ĉ with input space K`′ (output space of the encoding), and a
distribution Dx defined over K` (input space of the encoding). Those definition spaces are left implicit
for the sake of simplicity.

Definition 6 (Probing Security). A randomized arithmetic circuit Ĉ is t-probing secure w.r.t. an
encoding Enc if there exists a simulator Sim which, for every set W ⊆Wires(Ĉ), with |W| 6 t, and
for every distribution Dx, satisfies

Sim(W) id= AssignWires(Ĉ,W,Enc(x))

where x is randomly sampled from Dx.
Definition 7 (Region Probing Security). A randomized arithmetic circuit Ĉ is r-region probing
secure w.r.t. an encoding Enc if there exist a circuit partition (C1, C2, . . . , Cm) ≡ Ĉ and a simulator
Sim which, for every sequence of sets W1 ⊆ Wires(C1), W2 ⊆ Wires(C2), . . . , Wm ⊆ Wires(Cm),
with |Wi| 6 dr|Ci|e, and for every distribution Dx, satisfies

Sim(W) id= AssignWires(Ĉ,W,Enc(x)) ,

where W =W1 ∪W2 ∪ . . .∪Wm and x is randomly sampled from Dx. The parameter r is the probing
rate tolerated by Ĉ.

While the above definitions apply to a randomized arithmetic circuit (with respect to an encoding),
they naturally extend to circuit compilers as follows.

Definition 8. A circuit compiler (CC,Enc,Dec) is {t-, r-region} probing secure if for every arithmetic
circuit C, the circuit Ĉ = CC(C) is {t-, r-region} probing secure with respect to Enc.

Note that the above definitions consider perfect (region) probing security in the sense that the
simulator is required to output a perfect simulation of the wire assignment. They naturally generalize
to statistical (region) probing security for which the simulation is only required to be statistically
close to the wire assignment, i.e.

Sim(W) ≈ε AssignWires(Ĉ,W,Enc(x)) ,

for some parameter ε (which should be negligible in the security parameter). In that case, we shall
refer to these notions as (t, ε)-probing security and (t, ε)-region probing security.

The random probing security notion introduced hereafter is statistical in nature. Informally speaking,
in the random probing model, each wire of a circuit Ĉ leaks its value with probability p (the leakage
probability), all these leakage events being mutually independent. To formally define the random
probing security notion, let us first introduce the leaking-wires sampler. For a leakage probability
p ∈ [0, 1] and a randomized arithmetic circuit Ĉ, it outputs a set W, denoted as

W ← LeakingWires(Ĉ, p) ,

Chapter 2. Preliminaries 7

where W is constructed by including each wire from the circuit Ĉ with probability p to W (where all
the probabilities are mutually independent).

Definition 9 (Random Probing Security). A randomized arithmetic circuit Ĉ is (p, ε)-random probing
secure w.r.t. encoding Enc if there exists a simulator Sim which, for every distribution Dx, satisfies

Sim() ≈ε
(
AssignWires(Ĉ,W,Enc(x)) ,W

)
,

where W is randomly sampled from LeakingWires(Ĉ, p) and x is randomly sampled from Dx.

Remark 1. For the constructions described in this thesis, the simulator shall always sample W from
LeakingWires(Ĉ, p), and thus get a perfect distribution forW , from which it then attempts to simulate
AssignWires(Ĉ,W,Enc(x)). For the sake of simplicity and without loss of generality, we shall therefore
make the W output of the simulation implicit and aim for a simulator achieving

Sim() ≈ε AssignWires(Ĉ,W,Enc(x)) .

Here also, we obtain a random probing security definition for compilers as follows.

Definition 10. A circuit compiler (CC,Enc,Dec) is (p, ε)-random probing secure if for every arithmetic
circuit C, the circuit Ĉ = CC(C) is (p, |C| · ε)-probing secure with respect to Enc.

Remark 2. The above security definitions consider the stateless model in which the compiled circuit
has no memory. They can be naturally extended to the stateful model by considering circuits with
memory (see formal definition in [ISW03]). In the stateful model, the circuit has a persistent memory
from one invocation to another, and the compiled circuit is required to remain secure in the presence
of {t-probing, r-region probing, (p, ε)-random probing, ...} leakage for each invocation. This model, is
relevant to the practical context of a cryptographic implementation for which a key must be stored
in memory. We note that secure compilers for the stateless model can generally be extended to the
stateful model. In a nutshell, one applies refreshing of the state encoding from one invocation to
another (see for instance [Cor14, Section 4]). This might be at the cost of a slight degradation of the
achieved security: for instance the probing secure schemes of [ISW03, Cor14] loose a factor 2 in terms
of tolerated probes while turning to the stateful model.

Part II.

Provable security for masked
implementations

Chapter 3
Masking schemes in the probing
security paradigm

Contents
3.1. Introduction . 9
3.2. Masking . 10

3.2.1. Principle . 10
3.2.2. Higher-order masking . 10
3.2.3. Soundness of masking . 10
3.2.4. Masking schemes . 11

3.3. Ishai-Sahai-Wagner (ISW) construction . 11
3.3.1. The ISW circuit compiler . 11
3.3.2. Probing security . 12

3.4. Efficient ISW-based masking schemes . 12
3.4.1. Generalization to arithmetic circuits . 12
3.4.2. Tighter proof for the ISW multiplication gadget 13
3.4.3. Refresh gadgets and the composition issue 13

3.5. Efficient application to block ciphers . 15
3.5.1. Masking block ciphers . 15
3.5.2. Application to AES . 15
3.5.3. Efficient decomposition of any s-boxes . 16

3.6. Conclusion and related works . 19

3.1. Introduction
Masking is one of the most (if not the most) widely deployed countermeasure against power and
electromagnetic side-channel attacks. Many masking schemes have been designed to efficiently protect
cryptographic implementations following the discovery of these attacks in the late nineties. However,
for more than a decade, the proposed schemes were restricted to first (or low) masking orders which
only provide limited security guaranties. In [RP10] we have shown how the private circuits construction
of Ishai, Sahai and Wagner [ISW03] could be instrumental to design efficient masking schemes with
arbitrary security orders. We applied this approach to the specific case of AES and showed in a
subsequent work how to generalize it to further ciphers [CGP+12].

This chapter revisits these works. We first provide some background on the concept of masking as
side-channel countermeasure in Section 3.2 and outline the Ishai-Sahai-Wagner (ISW) construction in
Section 3.3. We then present in Section 3.4 the masking approach suggested in [RP10] which consists
in generalizing and tightening the ISW scheme in view of its efficient implementation. This approach
notably raises the issue of mask refreshing which is further discussed with an overview of relevant

Chapter 3. Masking schemes in the probing security paradigm 10

follow-up works. Finally, Section 3.5 describes the efficient application of ISW-based masking to
AES [RP10] and to further block ciphers [CGP+12].

3.2. Masking
3.2.1. Principle
Soon after the publication of the differential power analysis (DPA) [KJJ99], masking was suggested as a
possible countermeasure in different works. It was patented by Kocher, Jaffe and Jun [KJJ98a, KJJ98b]
and further independently published by Chari, Jutla, Rao and Rohatgi in [CJRR99] as well as Goubin
and Patarin in [GP99].
The principle of masking is to randomize the intermediate variables processed by a cryptographic

algorithm in order to break the statistical dependence between these data and the (mean) side channel
leakage. To be specific, DPA exploits the difference of means E(T | x = 0) 6= E(T | x = 1), where T
is a leakage trace and x is a bit processed by the target implementation which can be predicted by
guessing a small part of the key (e.g. a byte). Note that this difference is not expected to occur in
every sample of T but in the leakage points corresponding to the processing of x. Now masking the
implementation consists in replacing every processing of such bit x by a pair of variables x⊕ r and r,
where r is a uniformly drawn random bit. Some points of T will then depend on x⊕ r, other points
will depend on r, but the randomness of r ensures that no point of T depends on x anymore which
yields E(T | x = 0) = E(T | x = 1) and prevents DPA.

A shortcoming of first-order masking, which relies on a single mask r, is its vulnerability to second-
order attacks. Although no point in the leakage trace T depends on some predictable bit x anymore,
some pairs of points are jointly dependent of x. In other terms, the (multivariate) second-order moment
of T depends on x. This dependency can be exploited through a second-order attack combining the
leakage on x⊕ r together with the leakage on r (see for instance [Mes00, OMHT06, PRB09]).

3.2.2. Higher-order masking
In order to reach higher-order security, a natural idea is to increase the number of masks or equivalently
to rely on secret sharing [Sha79]. Specifically, every sensitive intermediate variable x processed during
the cryptographic computation is randomly split into n shares x1, . . . , xn which satisfy a completeness
relation:

x = x1 + · · ·+ xn , (3.1)

over some additive finite group or field. To share a variable, n− 1 shares are randomly drawn while
the remaining one is derived to satisfy the above relation. Such linear sharing is the most common
choice but other masking relation might be preferred in some contexts (see for instance Chapter 7).
Although such an n-sharing (a.k.a. (n− 1)-order masking) might be vulnerable to a side-channel

attack of order n, it can be argued that the sharing order n provides a sound security parameter
against side-channel attacks.

3.2.3. Soundness of masking
The security of higher-order masking in the presence of noisy leakage was formally argued in the
pioneering work of Chari, Jutla, Rao and Rohatgi in [CJRR99]. They assume a simplified but
still relevant leakage model in which a bit x is masked as n random shares x1, . . . , xn satisfying
Equation 3.1, and an adversary is given a noisy leakage Li = xi+Ni on each share, where Ni ← N (0, σ)
is a random Gaussian noise of standard deviation σ. Under this leakage model, the authors show that
the number of samples required by any adversary to distinguish the distribution (L1, . . . , Ln | x = 0)
from the distribution (L1, . . . , Ln | x = 1) is lower bounded by σn+δ where δ = 4 logα/ log σ for a
success probability α. In other words, extracting some information from such (static) noisy leakage of
the shares is exponentially difficult in the sharing order n (where the base of the exponentiation is

Chapter 3. Masking schemes in the probing security paradigm 11

related to the amount of noise in the leakage). One can further argue about the practical difficulty of
locating the n different leakage points corresponding to the target shares among the many samples
composing a leakage trace, and which are subject to jittering. The combination of these theoretical and
practical arguments make the sharing order a sound security parameter for a masked implementation.

3.2.4. Masking schemes
We call masking scheme an algorithm which applies the masking principle to some specific (crypto-
graphic) comoputation, namely which performs the computation while solely manipulating shared
variables. The goal of such a masking scheme is to be complete, i.e. ensuring that the masked process
computes the correct output (once unmasked), while preserving some security property. In particular,
a masking scheme is said t-th order side-channel secure if it ensures that any t-tuple of intermediate
variables is statistically independent of the algorithm data (e.g. input and secret key). We stress that
this security property is equivalent to the probing security in the circuit model formalized by Ishai,
Sahai and Wagner in [ISW03] which is recalled hereafter.
Following the publication of the DPA attack and the principle of masking, many first-order

masking schemes have designed targeting various algorithms and implementation contexts, see for
instance [GP99, Mes01, AG01, BGK04, OMPR05]. A first attempt to design a generic (higher-order)
masking scheme was made by Schramm and Paar in [SP06] but we showed in a joint work with Coron
and Prouff that it was actually vulnerable to attacks of order 2 and 3 [CPR07]. We further designed
a masking scheme achieving second-order security in a joint work with Dottax and Prouff [RDP08]
but its generalization to higher orders was still open at that time, which was addressed by Coron
meanwhile [Cor14].

In the rest of this chapter, we show how we filled this gap in our works [RP10, CGP+12] by relying
on the ISW construction [ISW03].

3.3. Ishai-Sahai-Wagner (ISW) construction
In their pioneering work [ISW03], Ishai, Sahai and Wagner designed the first circuit compiler achieving
what they formalized as t-probing security. In a nutshell, they showed how to compile any Boolean
circuit into a new randomized circuit tolerating up to t probes on its wires without leaking any
information about the processed data.

3.3.1. The ISW circuit compiler
The ISW scheme applies to Boolean circuits composed of AND and NOT gates, which is enough
to represent any Boolean circuit. Each single wire of the original circuit is replaced by n wires
carrying an n-sharing of the original variable. Each NOT gate is replaced by a NOT gadget which
simply consists in applying a NOT gate to one of the input shares. Correctness simply follows since
NOT(x) = NOT(x1)⊕ x2 · · · ⊕ xn for any sharing (x1, . . . , xn) of x. Each AND gate is replaced by an
AND gadget defined as follows.

Let x, y ∈ F2 and let z = AND(x, y) = xy. From two sharings (x1, . . . , xn) and (y1, . . . , yn) of x and
y, we want to compute a sharing (z1, . . . , zn) of z. The AND gadget consists of the following steps:

1. For every 1 6 i < j 6 n, draw a random bit ri,j .
2. For every 1 6 i < j 6 n, compute rj,i = (ri,j ⊕ xiyj)⊕ xjyi.
3. For every 1 6 i 6 d, compute zi = xiyi ⊕

⊕
j 6=i ri,j .

In the above process, the use of brackets indicates the order in which the operations are performed,
which is mandatory for security of the scheme.

Chapter 3. Masking schemes in the probing security paradigm 12

The completeness of the solution follows from:
⊕

i

zi =
⊕

i

(
xiyi ⊕

⊕

j 6=i
ri,j
)

=
⊕

i

(
xiyi ⊕

⊕

j>i

ri,j ⊕
⊕

j<i

(rj,i ⊕ xiyj ⊕ xjyi)
)

=
⊕

i

(
xiyi ⊕

⊕

j<i

(xiyj ⊕ xjyi)
)

=
(⊕

i

xi
)(⊕

i

yi
)
.

3.3.2. Probing security
Consider a Boolean circuit C and its encoded version Ĉ produced by the ISW compiler with parameter
n = 2t+ 1. Ishai et al. show that Ĉ achieves t-probing security (see formal definition in Section 2.5).
Let w ∈ [s] denote a wire index, where s = |C| is the number of wires in C, let xw denote the variable
carried by the wire of index w ∈ [s] in C, and let xw = (xw1 , . . . , xwn) be the sharing of xw which is an
input/output sharing of some gadget in Ĉ. The proof of Ishai, Sahai and Wagner consists in showing
that any wire on Ĉ can be perfectly simulated from the shares (xwi)w∈[s] and (xwj)w∈[s] for two indices
i, j ∈ [n]. Any tuple of t wires can hence be jointly simulated from (xwi)w∈[s],i∈I for a set I ⊆ [n]
containing at most 2t < n share indices. The uniform property of the sharings xw implies that all
these shares can be perfectly simulated with fresh and independent random bits. In other words, any
tuple of t wires can be perfectly simulated independently of the plain variables (xwi)w∈[s].

3.4. Efficient ISW-based masking schemes
3.4.1. Generalization to arithmetic circuits
We first note that although described for Boolean circuits made of AND and NOT gates, the ISW
scheme can be generalized to work on any field K with further arithmetic gates. Specifically, we
consider arithmetic circuits over K made of addition gates, subtraction gates, multiplication gates
and constant gates. Additionally, we consider gates computing K-linear maps, namely functions
f : K` → Km such that f(x + y) = f(x) + f(y) (addition and subtraction are particular cases of
linear K-linear maps from K2 to K).
The generalized compiler represents each variable x of the original circuit by a random n-sharing

(x1, . . . , xn) ∈ Kn and each gate is replaced by a corresponding gadget defined as follows:

• Addition gadget. Given two n-sharings x = (x1, . . . , xn) and y = (y1, . . . , yn), the addition
gadget outputs

x+ y = (x1 + y1, . . . , xn + yn) .
This is done via n addition gates processing each share separately.

• Subtraction gadget. Given two n-sharings x = (x1, . . . , xn) and y = (y1, . . . , yn), the subtraction
gadget outputs

x− y = (x1 − y1, . . . , xn − yn) .
This is done via n subtraction gates processing each share separately.

• Linear gadget. More generally, given a K-linear map f : K` → Km and ` input sharings
xj = (xji)i∈[n], with j ∈ [`], the linear gadget for f outputs m sharings yk = (yki)i∈[n], with
k ∈ [`], such that

(y1
i , . . . , y

m
i) = f(x1

i , . . . , x
`
i)

for every i ∈ [n]. This is done via n linear gates for f processing each share index separately.
• Constant gadget. Given a constant c ∈ K, the constant gadget outputs (c, 0, . . . , 0) ∈ Kn. This

is done via n constant gates.
• Random gadget. The random gadget is simply made of n random gates and outputs a uniform

random n-tuple (r1, . . . , rn), or equivalently a uniform n-sharing of a random value r.

Chapter 3. Masking schemes in the probing security paradigm 13

• Multiplication gadget. The multiplication gadget is similar to the AND gadget described above.
This ISW multiplication gadget is depicted in Algorithm 1.

Algorithm 1 ISW multiplication gadget
Input: Sharings x = (x1, . . . , xn) ∈ Kn and y = (y1, . . . , yn) ∈ Kn
Output: Sharing z = (z1, . . . , zn) s.t.

∑
i zi = (

∑
i xi)(

∑
i yi)

1: for i = 1 . . . n do
2: for j = i+ 1 . . . n do
3: ri,j ← K
4: rj,i ← (xi · yj − ri,j) + xj · yi
5: for i = 1 . . . n do
6: zi ← xiyi
7: for j = 1 . . . n with j 6= i do zi ← zi + ri,j

8: return (z1, . . . , zn)

3.4.2. Tighter proof for the ISW multiplication gadget
Besides the above generalization, we also suggest in [RP10] that the probing security of the ISW
scheme could be made tighter and actually optimal. Namely, we aim at achieving t-probing security
using n-sharings with n = t + 1. We show that the ISW multiplication gadget achieves this tight
probing security assuming that the two input sharing x and y are mutually independent.

Theorem 1. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two n-sharings. For any tuple of wires
w = (w1, . . . , wt) of the ISW multiplication gadget (Algorithm 1) on input x and y, there exist two
sets I ⊆ [n] and J ⊆ [n] with |I|, |J | 6 t such that w can be perfectly simulated from x|I and y|J .

The proof given in [RP10] (see Appendix A) follows the outlines of the proof of Ishai et al. but
instead of building a single set I which gets two indexes per probe, we build two sets I and J (one
per input sharing) each of which gets (at most) one index per probe.
We stress that the above theorem does not prove the tight probing security of the generalized

ISW compiler. Without further precaution, we could face the case of an ISW multiplication gadget
taking as input a sharing x = (x1, . . . , xn) and a sharing y = (f(x1), . . . , f(xn)) for some linear map
f : K→ K (or simply x = y as a special case). In such a context, a perfect simulation of t probes on
the multiplication gadget would require t shares from x and t shares from y, which is 2t shares from
x. Then we would get the same non-tight probing security as the original ISW scheme. To circumvent
this issue, we suggested in [RP10] to use gadgets that refresh one of the input sharings to deal with
cases of dependency between the input sharings.

3.4.3. Refresh gadgets and the composition issue
We propose in [RP10] the refresh gadget depicted in Algorithm 2. It simply consists in remasking n−1
out of n shares with n− 1 fresh random masks and accumulating the sum of masks in the last share.
It is not hard to show that for any input sharing x, Algorithm 2 outputs a fresh uniform sharing of
the same value. Thanks to this property, and as a corollary of Theorem 1, the ISW multiplication of
x and GR(y) is tightly probing secure (i.e. t-probing secure with t = n− 1) whatever the previous
relation between the sharings x and y.

Although this tight probing security holds at the scale of the multiplication gadget, it unfortunately
falls at the global scale. In other words, the refresh gadget depicted in Algorithm 2 is insufficient
to ensure the composition security of the proposed approach. We indeed showed in a joint work
with Coron, Prouff and Roche [CPRR14] that the composition G⊗(x, GR(Gf (x))) is not tightly
probing secure, with G⊗ being the ISW multiplication gadget, GR being our simple refresh gadget

Chapter 3. Masking schemes in the probing security paradigm 14

Algorithm 2 Simple refresh gadget
Input: Sharing x = (x1, . . . , xn) ∈ Kn
Output: Sharing y = (y1, . . . , yn) s.t.

∑
i yi =

∑
i xi

1: (y1, . . . , yn)← (x1, . . . , xn)
2: for i = 1 . . . n− 1 do
3: ri ← K
4: yi ← yi + ri
5: yn ← yn − ri
6: return (y1, . . . , yn)

(Algorithm 2) and Gf being a linear gadget. Specifically, by probing dn−1
2 e variables from G⊗ as well

as 1 variable from from GR, one can recover some information about the plain variable. We further
show that this flaw can be avoided by defining a new ISW-like gadget for a function of the form
x 7→ x · f(x), where f is a K-linear map. This gadget then comes as a replacement of the composition
G⊗(x, GR(Gf (x))) while achieving tight probing security. But the tight probing security of a more
global (and possibly complex) composition was left open in our work [CPRR14].

A more general alternative consists in using the ISW multiplication gadget as a refresh gadget. The
principle which was originally suggested in [DDF14] consists in evaluating GR : x 7→ G⊗(x, (1, 0, . . . , 0))
where G⊗ is the ISW multiplication. By definition, the output GR(x) is a fresh sharing of the variable
encoded by x. Note that this refresh gadget does not formally require the evaluation of an ISW
multiplication but can instead be computed as depicted in Algorithm 3.

Algorithm 3 ISW refresh gadget
Input: Sharing x = (x1, . . . , xn) ∈ Kn
Output: Sharing y = (y1, . . . , yn) s.t.

∑
i yi =

∑
i xi

1: (y1, . . . , yn)← (x1, . . . , xn)
2: for i = 1 . . . n do
3: for j = i+ 1 . . . n do
4: ri,j ← K
5: yi ← yi + ri,j
6: yj ← yj − ri,j

return (y1, . . . , yn)

The issue of secure composition of masking gadgets (with tight probing security) was addressed in
the subsequent work of Barthe, Belaïd, Dupressoir, Fouque, Grégoire, Strub and Zucchini [BBD+16].
They notably introduce the notion of strong non-interference (SNI) for a masking gadget, which
makes it inherently composable to achieve tight probing security. They show that several ISW-based
gadgets (specifically, the ISW multiplication gadget, the ISW refresh gadget, and our ISW-like gadget
for x 7→ x · f(x) functions) all satisfy the SNI property. They further describe a tool maskComp which
automatically places refresh gadgets in order to ensure the tight probing security of the composition.
However, this placement is overconservative and might insert more refresh gadgets than necessary.

Another conservative and systematic approach that we suggested in a joint work with Goudarzi [GR17]
consists in applying an ISW refresh gadget to one input sharing of every multiplication gadget in the
circuit. We conjectured that such an approach provide a tight probing secure composition. We were
able to formally prove this conjecture in a follow-up work with Belaïd and Goudarzi [BGR18] and
to further develop an exact verification tool for the placement of refresh gadgets in an ISW-based
masked circuit.

Chapter 3. Masking schemes in the probing security paradigm 15

3.5. Efficient application to block ciphers
3.5.1. Masking block ciphers
We consider SPN-like block ciphers1 which iterate a round function made of a key addition, an s-box
layer and a linear layer. Such a structure is a widely used to design symmetric ciphers: among others,
DES [FIP99b], AES [AES01] and the SHA3 permutation [FIP99a] are SPN-like block ciphers in this
sense. Such a cipher transforms an input plaintext into an output ciphertext through the repetition
of a key-dependent permutation, called the round transformation. Such a round transformation looks
like ρk : x 7→ λ ◦γ(x+k), where x in the input state, k is the round key, λ is a K-linear map for some
field K, x+ k is the addition on the same field, and γ is a non-linear layer. The latter usually consists
of the parallel application of a function S called the s-box : γ : (x1, . . . , xs) 7→ (S(x1), . . . ,S(xs)). The
s-box is the only non-linear ingredient in such a cipher. Usually, the base field K is an extension of
F2, say K = F2m for some m and the s-box S is an invertible m-bit mapping.

While applying the general ISW-based masking approach described in Section 3.4 to such a cipher,
the linear layer and the key addition are easily dealt with using sharewise linear gadgets. The efficient
implementation of the s-box on the other hand is more tricky. We address this issue hereafter, first
for the special case of AES and then for any s-boxes.

3.5.2. Application to AES
The AES cipher [AES01] follows the above structure over the base field F256. Specifically, the AES state
is composed of 16 elements of F256 and the linear layer is defined as a linear map (F256)16 → (F256)16.
We can therefore naturally apply the ISW-based masking approach described in Section 3.4.
Masking the s-box. The AES S-box is defined as the composition of an affine transformation with
the power function x 7→ x254 over F28 . The affine transformation is an F28 -linear map with a constant
addition, which simply gives rise to a linear sharewise gadget (and a constant gadget).

For the exponentiation, a possible idea is to decompose x 7→ x254 into a sequence of multiplications
by applying an exponentiation algorithm (e.g. the square-and-multiply algorithm). Such an approach
was previously used to design a first-order masking scheme for AES [BGK04]. However, we can do
better here by observing that squaring is a linear map on F28 . In other words, any sharing (x1, . . . , xn)
of x ∈ F28 satisfies:

x2
1 + . . .+ x2

n = x2 .

The square operation can hence be masked using a linear sharewise gadget. This observation further
holds for any power of 2 since x2m

1 + . . .+ x2m

n = x2m for every m ∈ N.
Our masking of the AES s-box hence relies on sharwise gadgets for squares, and more generally for

functions x 7→ x2m , and on ISW multiplication gadgets for standard non-linear F28 multiplications.
From a complexity viewpoint, and for an increasing order n, most of the computation is devoted to
the multiplication gadgets, which involve O(n2) operations and random generations, whereas the
linear gadgets only involve n applications of the original operation. For the sake of efficiency, we aim
at minimizing the number of multiplication gadgets in our computation of x 7→ x254 while tolerating
a broader used of squaring.
It can be checked that an exponentiation to the power 254 on the field F28 requires at least 4

non-linear multiplications (this is argued in Section 3.5.3). Algorithm 4 achieves this lower bound
and requires few additional squares. Algorithm 5 depicts the corresponding masked algorithm where
G⊗ denotes the ISW multiplication gadget, GR denotes a refresh gadget (see Section 3.4.3), and
G(·)2m denotes a sharewise gadget for the x 7→ x2m linear map. We note that this algorithm achieves
tight probing security when GR is the ISW-based refresh gadget (Algorithm 3) which was shown
in [BBD+16].

1SPN meaning substitution-permutation network.

Chapter 3. Masking schemes in the probing security paradigm 16

Algorithm 4 Exponentiation to the 254
Input: x ∈ F256
Output: x254

1: z ← x2 . z = x2

2: y ← z · x . y = x3

3: w ← y4 . w = x12

4: y ← y · w . y = x15

5: y ← y16 . y = x240

6: y ← y · w . y = x252

7: y ← y · z . y = x254

8: return y

Algorithm 5 Masked exponentiation
Input: Sharing x of x ∈ F256
Output: Sharing y of y = x245

1: z ← G(·)2(x)
2: y ← G⊗(x, GR(z))
3: w ← G(·)4(y)
4: y ← G⊗(y, GR(w))
5: y ← G(·)16(y)
6: y ← G⊗(y,w)
7: y ← G⊗(y, z)
8: return y

3.5.3. Efficient decomposition of any s-boxes
As explained above, the linear layer and key addition in an SPN-like cipher can be easily masked with
sharewise gadgets. The s-box on the other hand might be a random-looking m-bit mapping without
particular structure (unlike the AES s-box). We explain hereafter how to derive an efficient masking
for any s-boxes.

We first note that a function S from {0, 1}m to {0, 1}m has a polynomial representation on the field
F2m , that is

S : x ∈ F2m →
2m−1∑

i=0
aix

i . (3.2)

The coefficients ai of this polynomial representation can be obtained from the look-up table of S
by applying Lagrange interpolation theorem. The polynomial representation of the s-box can be
straightly evaluated based on four kinds of operations over F2m : additions, scalar multiplications (i.e.
multiplications by constants), squares, and regular multiplications (i.e. of two different variables).
In the masked setting, the latter operation gives rise to an ISW multiplication gadget, while all the
former ones are F2m -linear which can be efficiently evaluated through sharewise gadgets.

While the above observation already provides a masking scheme for any s-box, a trivial evaluation
of Equation 3.2 results in a high number of (inefficient) non-linear multiplications. This leads us to
the definition of the masking complexity of an s-box [CGP+12] (a.k.a. non-linear complexity [CRV14])
as the minimal number of nonlinear multiplications required to evaluate its polynomial representation.
We note that the masking complexity of an s-box is invariant when composed with Fm2 -affine bijections
in input and/or in output. In other words, affine equivalent s-boxes have the same masking complexity.

We address hereafter the issue of finding polynomial evaluations of an s-box that aim at minimizing
the number of nonlinear multiplications. Those constructions will enable us to deduce upper bounds
on the masking complexity of an s-box. We first study the case of power functions whose polynomial
representation has a single monomial (e.g. the AES s-box). For these functions, we exhibit the exact
masking complexity by deriving addition chains with minimal number of nonlinear multiplications.
We then address the general case and provide efficient heuristics to evaluate any s-box with a low
number of nonlinear multiplications.
The case of power functions. We first consider s-boxes for which the polynomial representation is
a single monomial. These s-boxes are usually called power functions in the literature. We describe a
generic method to compute the masking complexity of such s-boxes. Our method involves the notion
of cyclotomic class.
Definition 11. Let α ∈ [0; 2m − 2]. The cyclotomic class of α is the set Cα defined by:

Cα = {α · 2i mod 2m − 1; i ∈ [0;m− 1]}.
The study of cyclotomic classes is interesting in our context since a power xα can be computed from

a power xβ without any nonlinear multiplication if and only if α and β lie in the same cyclotomic

Chapter 3. Masking schemes in the probing security paradigm 17

class. Hence, all the power functions with exponents within a given cyclotomic class have the same
masking complexity.
To compute the masking complexity for an element in a cyclotomic class, we use the following

observation: determining the masking complexity of a power function x 7→ xα amounts to find the
addition chain for α with the least number of additions which are not doublings (see [Knu88] for an
introduction to addition chains). This kind of addition chain is usually called a 2-addition chain. Let
(αi)i denote some addition chain. At step i, it is possible to obtain any element within the cyclotomic
classes (Cαj

)j6i using doublings only. As we are interested in finding the addition chain with the least
number of additions which are not doublings, the problem we need to solve is the following: given
some α ∈ Cα, find the shortest chain Cα0 → Cα1 → · · · → Cαk

where Cα0 = C1, Cαk
= Cα and for

every i ∈ [1; k], αi ∈
(
∪j<i Cαj

)
+
(
∪j<i Cαj

)
.

We shall denote byMm
k the class of exponents α such that x 7→ xα has a masking complexity equal

to k. The family of classes (Mm
k)k is a partition of [0; 2m − 2] and eachMm

k is the union of one or
several cyclotomic classes. For a small dimension m, we can proceed by exhaustive search to determine
the shortest 2-addition chain(s) for each cyclotomic class. We implemented such an exhaustive search
from which we obtained the masking complexity classesMm

k for m 6 11 (note that in practice most
s-boxes have dimension m 6 8). The results are provided in [CGP+12] (see Appendix B).
Interestingly, the inverse function x 7→ x2m−2 related to the cyclotomic class C2n−1−1 always has

the highest masking complexity. In particular, the inverse function x 7→ x254 (for m = 8) used in the
AES has a masking complexity of 4 (as claimed in Section 3.5.2).
Heuristics for general s-boxes. We describe hereafter some heuristics for minimizing the number
of non-linear multiplications in the evaluation of an s-box without assuming anything about its
mathematical structure (i.e. with possibly random coefficients in its polynomial representation).

Cyclotomic method. Let q denote the number of distinct cyclotomic classes of [0; 2m − 2]. The
polynomial representation of S can be written as:

S(x) = a0 + a2m−1x
2m−1 +

q∑

i=1
Qi(x) , (3.3)

where the Qi’s are polynomials each composed of powers from a single cyclotomic class Cαi
, namely we

can write Qi(x) =
∑
j ai,jx

αi2j for some coefficients ai,j in F2m . Let us then denote Li the linearized
polynomial Li(x) =

∑
j ai,jx

2j which is a Fm2 -linear function of x. The cyclotomic method simply
consists in deriving the powers xαi for each cyclotomic class Cαi as well as x2m−1 if a2m−1 6= 0, and
in evaluating Equation 3.3 with Qi(x) = Li(xαi). The powers xαi can each be derived with a single
nonlinear multiplication. This is obvious for the αi lying inMm

1 . Then it is clear that every power
xαi with αi ∈Mm

k+1 can be derived with a single multiplication from the powers (xαi)αi∈Mm
k
. The

power x2m−1 can then be derived with a single nonlinear multiplication from the power x2m−2. The
cyclotomic method hence involves a number of nonlinear multiplications equal to the number of
cyclotomic classes, minus 2 (as x0 and x1 are obtained without nonlinear multiplication), plus 1 (to
derive x2m−1).

Parity-split method. This method is composed of two stages. The first stage derives a set of powers
(xj)j6q for some q. The second stage essentially consists in a recursive application of the following
equation (known as Knuth-Eve polynomial evaluation [Knu62, Eve64]):

Q(x) = Q1(x2) +Q2(x2)x , (3.4)

where for any polynomial Q of degree t, there exist two polynomials Q1 and Q2 of degree at most bt/2c
satisfying the above equation. The parity-split method consists in applying Equation 3.4 recursively r
times. Those recursive calls involve 2r − 1 non-linear multiplications and the obtained polynomials
are linear combinations of the powers (x2rj)j62m−r−1 which can be derived with 2m−r−1 − 1 non-
linear multiplications. A detailed description of the method is provided in our paper [CGP+12] (see

Chapter 3. Masking schemes in the probing security paradigm 18

Appendix B). We obtain a total number of non-linear multiplications of:

min
06r6n

(2n−r−1 + 2r)− 2 =
{

3 · 2(n/2)−1 − 2 if n is even,
2(n+1)/2 − 2 if n is odd.

where the minimum is reached for r = bn2 c.
CRV method. In a follow-up work [CRV14], Coron, Roy and Vivek introduce an improvement of
the cyclotomic method. The so-called CRV method is today the most efficient heuristic evaluation
method to minimize the number of nonlinear multiplications in a random s-box. In a nutshell, the
CRV method consists in representing an s-box S as

S(x) =
t−1∑

i=1
Pi(x) ·Qi(x) + Pt(x) , (3.5)

where the Pi’s and Qi’s are polynomials whose monomials belong to xL ··= {xα ; α ∈ L} with L being
the union of several cyclotomic classes. This union set is defined as L = Cα1=0∪Cα2=1∪Cα3∪ . . .∪Cα`

such that for every i > 3, αi = αj + αk mod 2m − 1 for some j, k < i. This makes it possible to
compute all the monomials in xL with `− 2 non-linear multiplications. The total number of nonlinear
multiplications in the evaluation of Equation 3.5 is hence of (` − 2) + (t − 1). It can be shown
that minimizing the number of nonlinear multiplications while ensuring the existence of such a
representation leads to parameters t ≈

√
2m/m and ` ≈

√
2m/m.

Table 3.1 summarizes the masking complexity (a.k.a. nonlinear complexity) achieved by the above
methods on the base field F2m for different values of m.

Table 3.1.: Masking complexity of different evaluation methods.

m = 3 4 5 6 7 8 9 10
Cyclotomic 1 3 5 11 17 33 53 105
Parity-Split 2 4 6 10 14 22 30 46
CRV - 2 4 5 7 10 14 19

Extensions of the CRV method. In some follow-up works, we have extended the CRV method to
different notions of masking complexity arising from different implementation contexts. In particular,
we have considered in [CPRR15] the decomposition of an s-box into a few evaluations of low-degree
functions (for which we define a probing-secure gadgets). We have further proposed in [GR16] efficient
CRV-like heuristics to minimize the Boolean multiplicative complexity of an s-box (with application to
bitslice masked implementations). In [GRVV17] we further generalized this approach to minimize the
number of multiplications on any base field from F2 to F2m . Table 3.2 summarizes the achievements
of these different methods.

Table 3.2.: Masking complexities of different CRV-like heuristics.

m = 4 5 6 7 8 9 10
F2m multiplications [CRV14] 2 4 5 7 10 14 19
Quadratic F2m → F2m eval. [CPRR15] 3 4 5 8 11 17 26
Cubic F2m → F2m eval. [CPRR15] 2 3 3 4 4 - -
F2 multiplications [GR16] 6 11 19 33 56 93 143
F4 multiplications [GRVV17] 4 - 12 - 31 - 73
F16 multiplications [GRVV17] 2 - - - 17 - -

Chapter 3. Masking schemes in the probing security paradigm 19

3.6. Conclusion and related works
In this chapter, we have shown how the ISW private circuit framework could be used to design
arbitrary-order masking schemes for cryptographic implementations. Following our first application of
this approach to AES [RP10] and its generalization to any SPN-like block ciphers [CGP+12], many
subsequent works have followed a similar approach to design masking schemes for various algorithms
and contexts. In relation of the issue of refreshing and tight probing security discussed in Section 3.4.3,
a particular line of works has focused on secure masking composition, see in particular [CPRR14,
BBD+16, BGR18, CS20]. Another line of works has focused on the efficient s-box decomposition
and different masking operations, see in particular [RV13, CRV14, CPRR15, GR16, GRVV17], while
dedicated designs of cryptographic primitives amenable to high-order masking have been proposed
in [PRC12, GGNS13, GLSV15, BBB+20, GJK+20]. Alternative probing-secure multiplication gadgets
have further been investigated in [BBP+16, BBP+17, KR18], and probing security has been extended
to capture glitches with the robust probing model [FGP+18, CS21a]. Another important line of
works has focused on building tools to formally verify the probing security of masking gadgets,
see in particular [BBD+15, Cor18, BGI+18, BBC+19, KSM20, CFOS21, BK21]. Efficient low-level
masked implementations and their automatic generation have further been investigated in [MOPT12,
WVGX15, GR17, JS17, GJRS18, BDM+20].

This (non-exhaustive) list of works witnesses that the field of probing-secure masked implementations
has been thoroughly investigated and has reached a certain maturity. Today, several tools have been
developed for the generation of optimized and formally-verified masked implementations achieving
some levels of provable security (in the probing model). From this state of affair, one of the main
challenge that remains to be addressed is to close the gap between the probing model abstraction and
the physical reality of side-channel leakage. This question is explored in the next chapter with the
introduction of a more realistic leakage model, and in the rest of this thesis with the design of secure
masking schemes in this model.

Chapter 4
The noisy leakage model

Contents
4.1. Introduction . 20
4.2. Motivation . 21
4.3. Noisy leakage definition . 22

4.3.1. Intuition . 22
4.3.2. Formal definition . 22
4.3.3. Discussion . 24

4.4. Some security bounds . 25
4.4.1. Relation to mutual information . 25
4.4.2. Noisy leakage of a shared variable . 25
4.4.3. Noisy leakage of a repeated variable . 26

4.5. From probing to noisy leakage security . 26
4.6. Conclusion and related works . 28

4.1. Introduction
We have seen in the previous chapter how to design masking schemes achieving arbitrary security
orders in the probing model. However this model (as well as other existing leakage models) does not
give full satisfaction to capture the physical reality of power and electromagnetic leakages. On the
other hand, the later leakages are often noisy in practice and the soundness of masking in the presence
of noise was formally argued in the seminal work of Chari, Jutla, Rao and Rohatgi in [CJRR99]. In
order to capture this intuition in a more general leakage model, we formalized the noisy leakage model
in a joint work with Prouff at Eurocrypt 2013 [PR13]. Compared to the univariate Gaussian model
considered by Chari et al., our model encompasses any type of (noisy) leakage distribution. In this
work, we further demonstrated the soundness of masking in this more general leakage model and
exhibited a proof of security (under some assumptions) for a masked implementation in this model.
Although our proof suffered some limitations, such as the necessity of a leakage-free component and
a linear scaling of the amount of noise, these limitations could be overcome in follow-up works. In
particular, a major result due to Duc, Dziembowski and Faust [DDF14] subsequently shown that the
noisy leakage security of an implementation could be reduced to its (region) probing security.
This chapter survey our definition of the noisy leakage model. After motivating the necessity

of this model in Section 4.2, we recall its formal definition and discuss it relevance in Section 4.3.
We then provide some useful bounds from our initial paper [PR13] in Section 4.4 and overview the
Duc-Dziembowski-Faust reduction in Section 4.5.

Chapter 4. The noisy leakage model 21

4.2. Motivation
As overviewed in the previous chapter, many works have focused on designing masking schemes
achieving formal security in the t-probing model. In this model, the adversary gets perfect leakage
of exactly t intermediate variables in the computation. Although such a model enjoys some level of
practical relevance (see discussion in Section 3.2) it does not give full satisfaction. In practice a side-
channel adversary gets leakage traces which contain several leakage points from all the intermediate
variables processed in the computation. Such an adversary is clearly out of the scope of the t-
probing model. A particular shortcoming of the probing model is to fail to capture attacks known as
multivariate or horizontal side-channel attacks in which the adversary take advantage of repeated
manipulations of a variable (e.g. a share) in order to average the leakage noise. An implementation
might be perfectly t-probing secure (with possibly high t) while being practically insecure against
this type of attacks. We therefore need a model considering some leakage for all the intermediate
variables in order to capture this type of attacks.

A pioneering work towards the formalization of leaking computation was the physically observable
cryptography framework introduced by Micali and Reyzin in [MR04]. In particular, they formalize the
assumptions that a cryptographic device can at least keep some secrets and that only computation
leaks information (OCLI). In this setting, a cryptographic computation is split into a sequence of
elementary operations that each leaks information on the accessed part of the device state. A few
years later, Dziembowski and Pietrzak introduced the leakage resilient cryptography model [DP08]
(inspired from the bounded retrieval model [DLW06]) in which the leakage function f is assumed to
have a bounded range (i.e. taking values in {0, 1}λ for some parameter λ). In this model, an operation
taking an intermediate variable x ∈ {0, 1}` as input leaks f(x) ∈ {0, 1}λ with λ < `. The work of
Dziembowski and Pietrzak had a huge impact and many follow-up works focused on the design of
leakage resilient cryptographic primitives in this model as well as generic circuit compilers (see for
instance [DP08, Pie09, DP10, DF12, GR12]).

Figure 4.1.: A power consumption trace of an AES computation.
(Source: ChipWhisperer tutorial – https://wiki.newae.com/).

This model might seem conservative in terms of security since it encompasses leakage functions
with complex structures. Unfortunately, this model also fails in capturing the physical reality of
power and electromagnetic leakages for which the leakage is usually substantially larger than the
secret state (but hopefully does not contain its entire entropy). This is illustrated on Figure 4.1 which
depicts a power consumption trace corresponding to an AES encryption. This trace is composed of
∼20.000 points each encoded on several bits. Although the information could be compressed, it would
hardly fit into less that 256 bits (the input size of AES counting the plaintext and the key), thus
invalidating the λ < ` constraint of the bounded range leakage model. Moreover, such leakage traces
can be made more accurate by increasing the sampling rate of the measurement equipment, resulting
in even heavier traces. This further holds at a smaller granularity: a power or electromagnetic trace

https://wiki.newae.com/

Chapter 4. The noisy leakage model 22

corresponding to a single CPU instruction might also be made of several points and clearly exceed
the size of the underlying intermediate variable.

In contrast, power and electromagnetic leakages are known to be noisy and several hiding techniques
exist to increase this amount of noise, see for instance [CCD00, SÖP04, PM05, HOM06, MOP07,
MSQ07, CK10]. This motivates the definition of a leakage model characterizing this noisy feature.
While the pioneering work of Chari, Jutla, Rao and Rohatgi on the soundness of masking [CJRR99]
(see Section 3.2.3) already considered noisy leakage, it was limited to a very narrow type of leakage
functions of the form f : x ∈ {0, 1} 7→ x+N (0, σ2) (i.e. with binary input range, univariate leakage,
and Gaussian noise). In the following, we present the noisy leakage definition that we proposed
in [PR13] which encompasses any leakage distribution. The leakage function f , which can take any
form, is characterized through a single parameter (the bias) which captures the amount of noise in
the leakage.

4.3. Noisy leakage definition
4.3.1. Intuition
Our noisy leakage model is a specialization of the physically observable cryptography framework
[MR04] (and the OCLI assumption) with leakage functions belonging to the class of noisy leakage
functions (as formally defined hereafter). In this model, every step of the processing reveals a leakage
function of the touched part of the device state. The computation is split into several elementary
calculations (in practice, a sequence of few CPU instructions) that each accesses a subpart x of the
device state and leaks a function of x. Starting from the observation that masking is sound when
combined with noise and that many practical solutions exist to amplify leakage noise, we assume the
leakage functions to be noisy. The noisy feature of a leakage function f is captured by assuming
that an observation of f(x) only implies a bounded bias in the probability distribution of x. Namely
the statistical distance between the distributions Pr(x) and Pr

(
x|f(x)

)
is bounded by some noise

parameter δ.
Remark 3. We note that a generalization of the bounded range leakage model exists for which the loss in
terms of min-entropy resulting from the leakage is bounded by λ, that is H∞(X|f(X))−H∞(X) 6 λ.1
This generalization introduced in [NS09] has the advantage of being more general (it encompasses
bounded-range leakage functions) and it does not suffer from the limitations exposed above. Moreover,
it was recently shown that this model is essentially equivalent to the bounded range model [BFO+21].
We note that this model is sometimes refer to as the noisy leakage model in the literature, because
it does capture a form of noisy leakage. However, relying on the min-entropy still makes the
underlying leakage assumption strong and imply a separation with our noisy leakage model (as
recently demonstrated in [BFO+21]).

4.3.2. Formal definition
A leaking computation is modeled by a sequence of elementary calculations (gi)i accessing a common
memory called internal state. Each elementary calculation reads its input and writes its output on
the internal state. When processed on some input x, an elementary calculation gi reveals fi(x) to the
adversary for some noisy leakage function fi. A noisy leakage function is defined as a function that
takes two arguments: the value x held by the accessed part of the internal state and a random string
ρ long enough to model the leakage noise. Each execution leaks the values

(
fi(xi, ρi)

)
i
where the xi’s

are the successive intermediate values (from the internal state) in input of the elementary calculations
gi’s and ρi’s are fresh random strings. We stress that all the ρi’s involved in successive executions are
uniformly and independently drawn (independent noise assumption).

For the sake of simplicity, we shall omit the random string parameter, which leads to the notation
fi(x) where x is the accessed value. Note that fi(x) is not the result of a function but it can be seen

1Here H∞(X|f(X)) is the average conditional min-entropy: H∞(X|f(X)) =
∑

y
Pr(f(X) = y)H∞(X|f(X) = y).

Chapter 4. The noisy leakage model 23

as the output of a probabilistic algorithm. In particular, fi(x) can take several values with a given
probability distribution, and can therefore be considered as a random variable. The noisy property of
f is captured by assuming that the bias introduced in the distribution of a uniform random variable
X given the leakage f(X) is bounded. This is formalized in the next definition:

Definition 12 (Noisy Function). Let X be a finite set and let δ ∈ R. A δ-noisy leakage function f
on X is a function of domain X × {0, 1}|ρ| for some |ρ| ∈ N such that

β(X|Y) ··=
∑

y∈Range(f)

Pr(Y = y) ·∆(X; (X | Y = y)) 6 δ , (4.1)

where ∆ is a statistical distance measure, X is a uniform random variable over X and where
Y = f(X,R) for a uniform random variable R over {0, 1}|ρ|.

On the notion of statistical distance. The above definition depends on the notion of statistical
distance. In our original definition [PR13], we suggested to use a statistical distance based on the
Euclidean norm (or L2 norm), which is:

∆2(X1;X2) ··=
(∑

x∈X
(Pr(X1 = x)− Pr(X2 = x))2

) 1
2

In a follow-up work [DDF14], Duc, Dziembowski and Faust suggested to use L1 norm, normalized by
1
2 , which is:

∆1(X1;X2) ··=
1
2
∑

x∈X
|Pr(X1 = x)− Pr(X2 = x)|

This choice has the advantage to match the standard definition of statistical distance used in
cryptography and it offers additional advantages discussed in [DDF14]. Let us denote by β1 and β2
the bias measures respectively induced by the statistical distances ∆1 and ∆2. From the L1-L2 norm
inequality, these notions are related as follows:

1
2 β2(X|Y) 6 β1(X|Y) 6 1

2
√
|X |β2(X|Y) . (4.2)

We deduce that a δ1-noisy leakage function w.r.t ∆1-distance, is also a δ2-noisy leakage function
w.r.t ∆2-distance, with δ2 = (

√
|X |/2) · δ1. On the other hand, a δ2-noisy leakage function w.r.t

∆2-distance, is also a δ1-noisy leakage function w.r.t ∆1-distance, with δ1 = 2δ2. We note that for a
small definition space X , the two notions are essentially equivalent.
It was further suggested by Prest, Goudarzi, Martinelli and Passelègue in [PGMP19] to use a

statistical distance notion based on the relative error, specifically:

∆RE((X | Y = y);X) = max
x∈X

∣∣∣∣
Pr(X = x | Y = y)

Pr(X = x) − 1
∣∣∣∣ . (4.3)

We note that the above notion of distance is not symmetric and the order of the argument matters:
∆RE((X | Y = y);X) 6= ∆RE(X; (X | Y = y)). Noisy functions based on this distance are referred
to as average relative error (ARE) noisy leakage functions in [PGMP19] since the relative error in
Equation 4.3 is averaged over the distribution of the leakage Y according to Definition 12. The
authors of [PGMP19] argue that using the above notion does not imply a stronger assumption on
the leakage in practice, compared to the definitions based on L1 and L2 norms, whereas it has some
advantages for tight security proofs.
On the choice of the uniform distribution. For the above definition of noisy leakage functions
to be sound, we need to specify the distribution of X while bounding β(X|f(X)), and the uniform
distribution is a natural choice. Of course, this does not constrain the leakage function to only apply

Chapter 4. The noisy leakage model 24

to uniformly distributed inputs. For a non-uniform variable X and a δ1-noisy leakage function f (for
∆1-distance), we obtain the following bound of the bias:2

β1(X|f(X)) 6 |X |β1(UX |f(UX)) = |X | δ1 , (4.4)

where UX denotes a uniform random variable on X . If f is δ2-noisy leakage function for the ∆2-distance,
using Equation 4.2, this bound translates to

β2(X|f(X)) 6 |X | 32 β2(UX |f(UX)) = |X | 32 δ2 . (4.5)

4.3.3. Discussion

Practical relevance. Our model captures power and electromagnetic leakages since it does not
impose any restriction on the form of the leakage distribution. In all generality, an elementary
calculation processing an value x gives rise to a leakage trace Y (x) which is a multivariate random
variable (a.k.a random vector) following a distribution whose parameters depend on x. In most
practical contexts, this distribution is well approximated by a multivariate Gaussian N (mx,Σx) for
some parameters mx (mean vector) and Σx (covariance matrix). Such parameters can be inferred
in practice through a profiling of the device, from which we obtain the bias β(X|Y) of the leakage
Y (x) by evaluating Equation 4.1. Of course, this bias should be small enough if we aim to build a
secure implementation tolerating this leakage but this constraint matches a practical requirement:
the noise in the leakage should be high enough to prevent a side-channel adversary from recovering
the processed variable x with overwhelming probability.

We still need to stress that our model makes two implicit assumptions which might not be verified
in practice without further care:

• Data isolation. The OCLI assumption implies that a leakage fi(xi) corresponding to the
elementary calculation gi(xi) only takes as input the touched part of the state xi and not the
previously accessed parts of the state: ..., xi−2, xi−1. In other words, the leakage is assumed
to respect some data isolation between successive elementary calculations. However, physical
effects exist which are likely to break this implicit assumption. In particular, transitions
occurring on memory buses or CPU registers between a previously processed value xprev and the
current one x usually leak some information correlated to xprev⊕x, which clearly invalidates the
data isolation principle. At the hardware level, glitches further make the leakages of different
successive gates mutually dependent of their respective inputs [MPG05]. At the software level,
the CPU synchronization tackles the issue of glitches (which can further be avoided in hardware
by the addition of synchronization elements. On the other hand, one should take a special care
to transitions that may occur at many places in the CPU and somehow enforce data isolation
for our model to be valid.

• Independent noise assumption. Our model assumes an independence of the leakage noises
from the successive elementary calculations. Formally, the random tape ρi in each fi(xi, ρi)
is sampled as a fresh uniform string. Though in practice, if one would cut a leakage trace
into several subtraces corresponding to successive elementary calculations, the noises in the
successive subtraces would hardly be mutually independent. It is indeed known that correlation
exists between successive leakage points, which makes multivariate statistics particularly useful
for side-channel attacks [CRR03].

Computation granularity. In the OCLI model, a computation is divided into several sub-
computations and the leakage function applies to the input of each sub-computation. In leakage-resilient
cryptography constructions [DP08, Pie09, DP10], such a sub-computation is usually a cryptographic

2To see this, note that β1(X|f(X)) =
∑

x
Pr(X = x)δx 6

∑
x
δx 6 |X |

∑
x

Pr(UX = x)δx where we let δx ··=
1
2
∑

y
|Pr(Y = y)− Pr(Y = y|X = x)|.

Chapter 4. The noisy leakage model 25

primitive, such as a (weak) pseudo random function (e.g. the AES cipher in practice). In contrast,
our noisy leakage model is more suited for a finer granularity: the computation of one cryptographic
primitive is divided into several elementary calculations that each leaks a function of its input. In
other words, while leakage-resilient cryptography addresses the issue of constructing secure protocols
from a cryptographic primitive with limited leakage, our motivation with the noisy model is to address
the provably secure implementation of cryptographic primitives composed of leaking elementary
calculations.
RAM vs. circuit model. Note that in our description, we implicitly assumed that the indexes
(or addresses) of the accessed parts of the internal state throughout the computation are fixed and
data-independent. This notably captures a software program avoiding any data-dependent memory
access (a desirable feature for cryptographic implementations). We stress that in terms of information
leakage, this can equivalently be captured by a circuit model with gate leakage (each gate leaks a
noisy leakage function of its inputs). Our model can be extended to deal with random access memory
(RAM) programs in which the accessed part of the internal state may depend on the data (e.g. a table
look-up). But in that case, one should also consider the address leakage (i.e. the leakage function
should apply to both the address and the read/written data) in order to fully capture the information
leakage of such implementations.

4.4. Some security bounds
We provide hereafter some useful security bounds for noisy leakages. Unless otherwise stated, these
results consider our original definition of noisy leakage functions based on the ∆2-distance (i.e.
∆ = ∆2 in Definition 12). The proofs of the following statements are provided in our paper [PR13]
(see Appendix C).

4.4.1. Relation to mutual information
Our notion of bias can be thought of as a measure for the information of X contained in f(X). We
show in the next proposition that it provides an upper bound of the mutual information between X
and f(X).

Proposition 1. Let X be a random variable uniformly distributed over a set X . Let f be a δ-noisy
leakage function. The mutual information between X and f(X) satisfies

MI(X;Y) 6 |X |ln 2β2(X|f(X)) 6 δ |X |
ln 2 . (4.6)

4.4.2. Noisy leakage of a shared variable
The next theorem provides a bound of the bias on a variable induced by the noisy leakage of a sharing
of this variable.

Theorem 2. Let X be a uniform random variable over some field K, let (X1, . . . , Xn) be a uniform
sharing of X. Let f1, . . . , fn be δ-noisy leakage functions defined over K. We have:

β2
(
X
∣∣f1(X1), . . . , fn(Xn)

)
6 |K|n2 δn .

The above theorem shows that the bias of X given the leakages on its shares decreases exponentially
with the order n, provided that the initial bias is sufficiently low, namely lower than 1/

√
|K|. Theorem 2

can be seen as a generalization of the result of Chari et al. [CJRR99] to any type of noisy leakage
function. It shows that masking provides exponential security in the presence of noisy leakage for any
leakage distribution with sufficient noise, seeing the amount of noise as the inverse of the bias.
Our result can also be interpreted in terms of hardness of distinguishing leakage distributions, as

considered in [CJRR99]. Let F be the randomized function mapping some x ∈ K to the random vector

Chapter 4. The noisy leakage model 26

(f1(X1), . . . , fn(Xn)) where (X1, . . . , Xn) is a uniform sharing of x. From Theorem 2, F is a ε-noisy
leakage function with ε = |K|n2 δn. Now consider the game in which an adversary aims to distinguish
F (x0) from F (x1) for two chosen values x0, x1 ∈ K (this is the game considered in [CJRR99] for K
being F2 and for the specific case of univariate Gaussian leakages). We know that the advantage of
such an adversary is upper-bounded by

∆1(F (x0), F (x1)) 6 ∆1(F (x0), F (UK)) + ∆1(F (UK), F (x1))
6 2|K|β1(UK|F (UK))
6 4|K|ε = 4|K|1+ n

2 δn .

where ∆1(F (xi), F (UK)) 6 |K|β1(UK|F (UK)) is obtained from Equation 4.4. We hence get a negligible
distinguishing advantage as the masking order grows.

4.4.3. Noisy leakage of a repeated variable
The next theorem deals with the case of repeated leakages on a variable X.

Theorem 3. Let X be a uniform random variable defined over a finite set X . Let f1, . . . , ft be
δ-noisy leakage functions defined over X with δ 6 α/(t|X |) for some α ∈ [0, 1]. Then we have:

β2(X|f1(X), f2(X), . . . , ft(X)) 6
((eα − 1

α

)
t+ eα

)
δ .

The bound in Theorem 3 shows that the bias of X given t leakages increases linearly with t. A
requirement is that the bias given a single leakage, namely δ, is at least t times lower than 1

|X | or
less, namely δ 6 α

t|X | for some α ∈ [0, 1]. Then the bias of X given t leakages is smaller that λ(t) · δ
where λ is an affine function. The value α provides a trade-off between the constraint on δ and the
coefficients of λ. If α = 1 then λ(t) = (e− 1)t+ e ≈ 1.72 t+ 2.72, while λ(t) tends towards t+ 1 as α
approaches 0.

4.5. From probing to noisy leakage security
One year after our formalization of the noisy leakage model, Duc, Dziembowski, and Faust accomplished
a major step towards the design of provably secure schemes in this model [DDF14]. They could show
that proving the security of a scheme in the noisy leakage model is essentially equivalent as proving
its security in the random probing model, which is conceptually much simpler. Thanks to the Chernoff
bound, random probing security can further be obtained from the simpler region probing security (see
Section 2.5 for the formal definition of these probing security notions). We outline the DDF reduction
hereafter.

The random probing model was first used in [ISW03, Ajt11] and formalized by Duc et al. in [DDF14].
It can be seen as a restriction of the noisy leakage model in which leakage functions leak their entire
input with a given probability. These δ-random-probing functions (δ-identity functions [DDF14]) are
formally defined as follows.

Definition 13. The p-random-probing function is the randomized function φ : X → X ∪ {⊥}
satisfying

φ(x) =
{
⊥ with probability 1− p
x with probability p

(4.7)

Remark 4. Such a function is a special case of δ-noisy leakage function with δ = p (for the ∆1-distance).
To be tighter, a p-random-probing function is a δ-noisy leakage function with δ = p (1− 1

|X |) 6 p. For
the ∆2-distance notion of leakage function, a p-random-probing function is a δ-noisy leakage function
with δ = p (2− 3

|X | + 1
|X |2) 6 2p.

Chapter 4. The noisy leakage model 27

The key result of Duc, Dziembowski, and Faust [DDF14] is to show that every noisy leakage function
f can be expressed as a composition f = f ′ ◦ φ where φ is a random-probing function. This enables
to reduce noisy-leakage security to random-probing security.

Lemma 1 ([DDF14]). Let f : X → Y be a δ-noisy leakage function with δ < 1
|X | . There exists a

p-random-probing function φ : X → X ∪ {⊥} and a randomized function f ′ : X ∪ {⊥} → Y such that
for every x ∈ X we have

f(x) = f ′(φ(x)) and p 6 δ · |X | . (4.8)

The reduction. Consider a computation giving rise to a sequence of intermediate variables x1, . . . ,
xs. This computation is ε-secure against δ-noisy leakage if there exists a simulator Simnl such that

∆1(Simnl(), (f1(x1), . . . , fs(xs))) 6 ε , (4.9)

for any set of δ-noisy leakage functions {fi}. This computation is ε-secure against p-random probing
leakage if there exists a simulator Simrp such that

∆1(Simrp(), (φ(x1), . . . , φ(xs))) 6 ε , (4.10)

where φ is the p-random-probing function.
We can show that any computation which is ε-secure against p-random probing leakage is also

ε-secure against δ-noisy leakage with δ = p/|X |. The reduction consists in constructing Simnl from
Simrp as follows. Simrp is first called which outputs a vector (y1, . . . , ys). Then Simnl simply outputs
(f ′1(y1), . . . , f ′s(ys)) where the f ′i ’s are defined such that fi = f ′i ◦ φ which is possible by Lemma 1. By
definition, (y1, . . . , ys) is ε-close to (φ(x1), . . . , φ(xs)) which implies that (f ′1(y1), . . . , f ′s(ys)) is ε-close
to (f ′1(φ(x1)), . . . , f ′s(φ(xs))) which is in turn identically distributed as (f1(x1), . . . , fs(xs)).

To sum-up we have:
1. δ-noisy leakage security ⇒ p-random probing security, for any p 6 δ/2,
2. p-random probing security ⇒ δ-noisy leakage security, for any δ 6 p/|X |,

where X is input space of elementary calculations decomposing the computation. Some ways to
mitigate the loss factor 1/|X | have been suggested in [DFS15, GJR18, PGMP19].
Remark 5. In the original version of Lemma 1, the authors make an additional (weak) assumption
on f so that f ′ is efficiently computable in the above simulation.3 We note that this requirement is
only necessary for computational security (which requires the simulation to be efficient) and can be
relaxed for statistical security (considering adversaries with unlimited computational power).

One step further. In the random-probing model, the total number of leaking operations can be
statistically bounded using the Chernoff bound as suggested in [ISW03, DDF14].

Theorem 4 (Chernoff Bound [Che52]). Consider the δ-random probing leakage of a computation
composed of s elementary calculations. The probability that this leakage reveals more than ` > δs
variables is upper bounded by

ψ(`, s) = exp
(
− (`− δ s)2

`+ δ s

)
. (4.11)

Taking ` = 3δs we get
ψ(`, s) = exp

(
− 1

3δs
)
. (4.12)

3Precisely, they require that f is efficiently decidable by which they mean that f can be computed in polynomial time
as well as Pr(f(x) = y) for any pair (x, y) ∈ X × Y.

Chapter 4. The noisy leakage model 28

Using the above theorem, any computation εp-secure against t-probing leakage is further εrp-secure
against p-random probing leakage with

p = t

3s and εrp = εp + exp
(
− 1

3δs
)
.

Let us stress that a direct application of the Chernoff bound to a t-probing secure circuit Ĉ results
in a p-random probing security with p = Θ(t/|Ĉ|). Namely, the tolerated leakage probability linearly
scales down with the size of Ĉ, which is not satisfactory. This is the motivation to consider region
probing security which requires that each gadget G in the circuit can tolerate up to t probes (see
formal definition in Section 2.5). We then get a p-random probing security with p = Θ(r) where
r = t/|G| is known as the probing rate, which is not affected by the total size of Ĉ and hence provides
a much tighter reduction. We thus have:

r-region probing security
⇒ p-random probing security, with p = Θ(r)

⇒ δ-noisy leakage security, with δ = Θ(p) = Θ(r)

We observe that, up to constant factors, the probing rate r translates the leakage probability p, which
in turns translates to the bias δ in the noisy model. For this reason, we shall jointly refer to those
parameters as the tolerated leakage rate of the implementation. Ideally, we would like this leakage
rate to be constant and as close as possible to 1.

4.6. Conclusion and related works
In this chapter, we have introduced a formal leakage model which arguably captures the physical
reality of power an electromagnetic leakages. In a remarkable follow-up work [DDF14] overviewed in
Section 4.5, Duc, Dziembowski and Faust have shown that the security of an implementation in this
noisy model can be reduced to its security in the conceptually simpler random probing and region
probing models. This reduction motivates the design of new masking schemes achieving these stronger
variants of probing security. This is explored in the next chapters of the present thesis, by first focusing
on secure masking composition in these models and then proposing actual masking schemes achieving
(quasi)constant leakage rates. While Duc et al.’s work unifies our noisy model and probing-like
models, it was recently shown in [BFO+21] that our noisy model is separated from the bounded range
leakage model [DP08] as well as the “noisy” generalization of the bounded range model [NS09] (which
bounds the loss in min-entropy due to the leakage). Another interesting follow-up work due to Prest,
Goudarzi, Martinelli and Passelègue [PGMP19] has investigated alternative definitions of the bias
metric for noisy leakage functions based on the Rényi divergence. While the noisy leakage model
introduce in this chapter and its generalizations [DDF14, PGMP19] have reduced the gap between
the theory and practice of side-channel security, more research is still to be made to close this gap.
In particular, more investigation is needed to evaluate the noisy leakage functions (and their bias)
observed in practice for common elementary calculations on a wide range of devices. Another related
research direction is to relax and/or practically enforce the ideal hypothesis implicitly made by the
noisy leakage model in terms of data isolation and noise independence.

Part III.

Secure masking composition

Chapter 5
Secure composition in the region
probing model

Contents
5.1. Introduction . 30
5.2. Composition through input-output separation 30

5.2.1. Input-output separation . 30
5.2.2. Composition intuition . 31
5.2.3. Composition theorem . 31
5.2.4. Comparison with previous composition approaches 32

5.3. An input-output separative refresh gadget 33
5.3.1. BCPZ refresh gadget . 33
5.3.2. Proposed variant . 33
5.3.3. Input-output separation . 34

5.4. Conclusion and related works . 34

5.1. Introduction
As exposed in the previous chapters, the probing security model is widely used to formally prove
the security of masking schemes. Whenever a masked implementation can be proven secure in this
model with a reasonable leakage rate, it is also provably secure in the realistic noisy leakage model
introduced in Chapter 4. In a joint work with Goudarzi, Prest and Vergnaud [GPRV21], we have
introduced a new framework for the composition of probing-secure circuits. Specifically, we have
introduced the security notion of input-output separation (IOS) for a refresh gadget. From this notion,
one can easily compose gadgets satisfying the classical probing security notion –which does not ensure
composability on its own– to obtain a region probing secure circuit. Such a circuit is secure against
an adversary placing up to t probes in each gadget composing the circuit, which ensures a tight
reduction to the more realistic noisy leakage model. This chapter presents the IOS composition
framework. We first introduce the IOS notion as well as the secure composition result in Section 5.2.
In Section 5.3, we then show that a variant of the Battistello, Coron, Prouff and Zeitoun (BCPZ)
refresh gadget [BCPZ16a] achieves IOS security in quasilinear complexity O(n logn).

5.2. Composition through input-output separation
5.2.1. Input-output separation
We introduce hereafter the input-output separation (IOS) security notion for a refresh gadget, which is
a variant of the input-output linear separability that we originally introduced [GJR18]. We first define

Chapter 5. Secure composition in the region probing model 31

the notion of uniformity for a gadget which will be a requirement for the IOS notion. These notions
are introduced for v-linear sharings (for which the encoding relation is x = 〈v,x〉) and v-gadgets
(which process v-linear sharings) as formally introduced in Section 2.3.

Definition 14 (Uniformity). Let v ∈ (K∗)n. A v-refresh gadget G is uniform, if for every x ∈ Kn,
the output G(x) is a uniform v-linear sharing of 〈v,x〉.

In the following, we shall say that a pair of vector (x,y) ∈ (Kn)2 is admissible for a gadget G if there
exists a random tape ρ (i.e. an assignment of the random gates’ outputs) such that y = Gρ(x). For an
admissible pair (x,y) and a set W of wires of G, the wire assignment distribution of G in W induced
by (x,y), denoted AssignWires(G,W,x,y) ∈ K|W|, is the random vector AssignWires(G,W,x) (as
introduced in Section 2.2) constrained to y = Gρ(x), i.e. the wire assignment distribution obtained
for a uniform drawing of ρ among {ρ ; GρW(x) = y}. We note that for a uniform v-refresh gadget, an
admissible pair is any (x,y) ∈ (Kn)2 such that 〈v,x〉 = 〈v,y〉.

Definition 15 (Input-Output Separation). Let v ∈ (K∗)n and let G be a v-refresh gadget. G is
said t-input-output separative (t-IOS), if it is uniform and if for every distribution D(x,y) sampling
admissible pairs for G and for every set of wires W of G with |W| 6 t, there exists a (two-stage)
simulator Sim =

(
Sim1,Sim2

)
such that

1. given Sim1(W) = (I, J) where I, J ⊆ [n], with |I| 6 |W| and |J | 6 |W|,
2. and for (x,y)← D(x,y), we have:

Sim2(W,x|I ,y|J) id= AssignWires(G,W,x,y)

A v-refresh gadget is simply said to be IOS if it is n-IOS.

5.2.2. Composition intuition
The intuition behind the IOS notion can be understood as follows. Any probing leakage from an
IOS refresh gadget can be simulated given a subset of its input shares and output shares. We can
therefore reduce the standard region probing security game to a game in which the refresh gadget
does not leak anything but its surrounding gadgets leak more. The uniformity property then implies
that the leakages from two gadgets separated by a refresh gadget are mutually independent. One can
then achieve a perfect simulation of the full leakage through independent simulations of the separated
leakages from the two gadgets.
This is illustrated on Figure 5.1. The full probing leakage (w1,wR,w2) can be simulated from

(w1,y|I ,y′|J ,w2). Moreover, the refresh uniformity implies that, given x, the separated leakages
(w1,y|I) and (w2,y

′|J) are mutually independent. Therefore, if one can simulate (w1,y|I) on the
one hand and (w2,y

′|J) on the other hand, then one can simulate the full leakage.

5.2.3. Composition theorem
The IOS composition approach relies on standard circuit compilation with full refreshing, i.e. inter-
leaving a refresh gadget in output of every operation gadget (see formal definition in Section 2.4).
Specifically, we consider a set {Gg} of base gadgets, one per type of gate g, as well as a refresh gadget
GR. The compilation process replaces each gate of type g by a gadget Gg followed by a refresh gadget
GR. Copy gadgets (which have fan-out 2) give rise to 2 refresh gadgets, one per output copy.
Let us first recall that a circuit composed of gadgets {Gi} that jointly tolerates {ti} probes is

r-region probing secure with r = min(ti/|Gi|) (see Section 2.5 for a formal definition of region probing
security). The following composition theorem shows that a standard circuit compiler based on {Gg}
and GR achieves region probing security if GR is IOS and if the gadgets {Gg} are probing secure.

Chapter 5. Secure composition in the region probing model 32

Plain world Encoded world

x

g1

y

y

g2

z

⇒

x

G1

y

Refresh

y′

G2

z

w1

wR

w2

x

G1

y

y′

G2

z

(w1,y|I)

(w2,y
′|J)

Figure 5.1.: Illustration of the IOS property.

Theorem 5 (IOS Composition). Let {Gg} be tg-probing secure and let GR be tR-IOS. Then the
standard circuit compiler with full refreshing defined from the base gadgets {Gg} and the refresh gadget
GR satisfies r-region probing security with

r = max
t6tR

min
((tg − 3t

|Gg|
)
g
,

t

|GR|

)
. (5.1)

The proof follows the intuition given above. Note that for each operation (or copy) gadget, the
sum of fan-in and fan-out is three. This implies that after applying the IOS property to replace
internal probes of refresh gadgets by probes on input/output sharings, each operation gadget Gg
has to tolerate 3t probes on its input/output shares (t per surrounding refresh gadget) plus its own
probes. The number of its own probes can hence be at most tg − 3t if the gadget is tg-probing secure,
which leads to a probing rate of (tg − 3t)/|Gg| for this gadget. On the other hand the probing rate
of the refresh gadget is of t/|GR|. One can then choose t in order to maximize the minimum rate
among the different gadgets. The formal proof of Theorem 5 can be found in our paper [GPRV21]
(see Appendix E).

5.2.4. Comparison with previous composition approaches
It is well-known that composition of probing secure gadgets is not always probing secure, which was
a motivation to introduce refresh gadgets as discussed in Chapter 3. Stronger security definitions
have been proposed to achieve secure composition in the probing model. In particular, the notion
of (strong) non-interference, or (S)NI, was proposed in [BBD+16] and the notion of probe isolating
non-interference (PINI) was also recently introduced in [CS20].

While the composition approaches considered in these previous works aim at achieving standard
t-probing security for the composition, our aim here is to achieve region probing security, i.e. to
tolerate some amount of probes in all the gadgets (rather than a total of t probes on the circuit). We
provide a detailed comparison of the composition approaches in our paper [GPRV21] (see Appendix E).
In particular, while SNI refresh gadgets composed with NI operation gadgets can provide region
probing security, PINI gadgets are limited to standard probing security (but without requiring any
refresh gadgets). In contrast our composition approach achieves region probing security by composing
IOS refresh gadgets with any probing secure operation gadgets.

Chapter 5. Secure composition in the region probing model 33

5.3. An input-output separative refresh gadget
5.3.1. BCPZ refresh gadget
Battistello, Coron, Prouff and Zeitoun (BCPZ) introduced in [BCPZ16a] (long version of [BCPZ16b])
a refresh gadget which achieves SNI in complexity O(n logn). This refresh gadget is defined recursively
as:

GR(x) =
(
GR(x1 + r) + s ‖ GR(x2 − r)− s

)
(5.2)

for any x = (x1 ‖ x2) ∈ Kn with n > 1, with randomly sampled r ← Kn/2 and s ← Kn/2, and
GR(x) = x for n = 1. While this definition implicitly assumes that n is a power of 2, this refresh
gadget is defined more generally for any n ∈ N (see description in [BCPZ16a]).

We show hereafter that a variant of this gadget –which is defined for any v-linear sharing and which
requires half the randomness of the original gadget– achieves the IOS property.

5.3.2. Proposed variant
The modified refresh gadget GR is described in Algorithm 7. It consists in a simple generalization of
BCPZ to the case of v-linear sharings (for any vector v ∈ Kn) and which further saves half of the
randomness compared to the original version. Moreover, this variant is used to generate an v-linear
sharing of 0, denoted z, which is then added to x to refresh it.
Specifically, our IOS refresh gadget is defined as:

GR(x) 7→ y = x+ z with z ← ZeroEncoding(v) , (5.3)

where ZeroEncoding(v) outputs a fresh v-linear sharing of 0 using a variant of BPCZ gadget applied to
the all-0 vector. This variant is defined recursively as follows: for n = 2, it outputs z = (r,−r ·(v1v

−1
2))

such that 〈z,v〉 = 0 and for n > 4 a power of 2, ZeroEncoding is called recursively to produce two
halves of the sharing (Steps 4-5) and a post-processing layer is applied to the whole sharing (Steps
6-9). Note that the original refresh gadget proposed in [BCPZ16b] makes use of an additional and
similar pre-processing layer before the two recursive calls. It results that our variant is twice more
efficient in terms of computation and randomness generation.

Algorithm 6 ZeroEncoding (variant of BCPZ)
Input: v = (v1, . . . , vn)
Output: z = (z1, . . . , zn) such that 〈z,v〉 = 0

1: if n = 2 then
2: r ← K
3: return (r,−(v1v

−1
2) · r)

4: (s1, . . . , sn
2

)← ZeroEncoding(v1, . . . , vn
2

) . Recursive call
5: (sn

2 +1, . . . , sn)← ZeroEncoding(vn
2 +1, . . . , vn) . Recursive call

6: for i = 1, . . . , n2 do
7: ri ← K
8: zi ← si + ri
9: zi+ n

2
← si+ n

2
− (viv−1

i+ n
2

) · ri

Algorithm 7 IOS refresh gadget
Input: x = (x1, . . . , xn), v = (v1, . . . , vn),
Output: y = (y1, . . . , yn) such that 〈y,v〉 = 〈x,v〉

1: z ← ZeroEncoding(v)
2: y ← x+ z

Chapter 5. Secure composition in the region probing model 34

Let us denote R(n), A(n) and M(n) the randomness complexity, the number of additions and the
number of scalar multiplications of the ZeroEncoding algorithm for length-n linear sharing. We have
R(2) = 1, A(2) = 0 and M(2) = 1 and R(n) = 2R(n2)+ n

2 , A(n) = 2A(n2)+n and M(n) = 2M(n2)+ n
2

for all n > 2. By induction, we thus have for any n > 2, a power of 2,

R(n) = M(n) = n

2 log(n) and A(n) = n log n2 . (5.4)

We have n further additions in Algorithm 7.

5.3.3. Input-output separation
The following theorem states the IOS security of the above refresh gadget. The proof is provided in
our paper [GPRV21] (see Appendix E).

Theorem 6. The refresh gadget from Algorithm 7 is input-output separative.

We thus obtain a quasilinear-complexity refresh gadget achieving the IOS property for any v-linear
sharings. We note that the leakage rate (i.e. the ratio t/|G|) tolerated by such a gadget is Θ(1/ logn)
which is not constant but only quasiconstant.

5.4. Conclusion and related works
In this chapter, we have introduced a simple composition approach to obtain region probing security.
The advantage of our approach resides in the fact that given a refresh gadget satisfying our IOS
security property, all the other gadgets composing the scheme only require to satisfy the weak notion
of probing security (as opposed to a stronger composition notion such as e.g. SNI). We have further
shown that a variant of the BCPZ refresh gadget achieves IOS security in quasilinear complexity
O(n logn) and with a quasiconstant leakage rate Θ(1/ logn). In Chapter 7, we will present a specific
instantiation of the IOS composition framework which results in a region probing secure scheme with
quasilinear complexity overhead and quasiconstant leakage rate.

Chapter 6
Secure composition in the random
probing model

Contents
6.1. Introduction . 35
6.2. Background notions . 35

6.2.1. Simulation with abort . 35
6.2.2. Simulation failure probability . 36

6.3. Random probing composability . 37
6.3.1. Formal definition . 37
6.3.2. Composition security . 37
6.3.3. Relation with strong non-interference . 38

6.4. Conclusion and related works . 38

6.1. Introduction
While many works have addressed the issue of secure masking composition in the probing model, until
recently, no composition notions have been proposed for the random probing model. The latter is
arguably more tricky to deal with since any set of wires in a gadget might leak with a given probability.
At Crypto 2020, we filled this gap in a joint work with Belaïd, Coron, Prouff and Taleb by formilizing
the notion of random probing composability. This notion is reminiscent to composition notions for the
probing model, like (S)NI, but integrates the probabilistic nature of the random probing model.

This chapter presents this formalization. We first introduce in Section 6.2 the notion of simulation
with abort and simulation failure probability which are at the core of our definition. Then we formally
define the random probing composability (RPC) notion and state the associated composition theorem
in Section 6.3. We further exhibit a relation between the RPC notion and the strong non-interference
(SNI) notion which is widely used for secure composition in the probing model.

6.2. Background notions
6.2.1. Simulation with abort
As formally introduced in Section 2.5, a randomized circuit Ĉ is (p, ε)-random probing secure (w.r.t.
encoding Enc) if there exists a simulator Sim which satisfies

Sim() ≈ε AssignWires(Ĉ, LeakingWires(Ĉ, p),Enc(x)) , (6.1)

Chapter 6. Secure composition in the random probing model 36

where x← Dx (for any given distribution Dx) and where LeakingWires(Ĉ, p), the so-called leaking-
wires sampler, outputs a set W constructed by including each wire from the circuit Ĉ with probability
p to W (with all the probabilities being mutually independent).
For our composition notion, we shall consider a particular simulation strategy called simulation

with abort [AIS18]. In this approach, the simulator first calls the leaking-wires sampler to get a set W
and then either aborts with probability ε or outputs the exact distribution of the wire assignment
corresponding to W. Formally, for any leakage probability p ∈ [0, 1], the simulator Sim is defined as

Sim() = SimAW(LeakingWires(Ĉ, p)) (6.2)

where SimAW, the wire assignment simulator, either returns ⊥ (simulation failure) or a perfect
simulation of the requested wires. More precisely, the experiment

W ← LeakingWires(Ĉ, p)
out← SimAW(Ĉ,W)

leads to
ε = Pr[out = ⊥] (6.3)

and (
out | out 6= ⊥

) id=
(
AssignWires(Ĉ,W,Enc(x)) | out 6= ⊥

)
.

It is not hard to see that if we can construct such a simulator SimAW for a randomized circuit Ĉ, then
the simulator Sim defined in Equation 6.2 satisfies Equation 6.1 and hence the circuit is (p, ε)-random
probing secure.

6.2.2. Simulation failure probability
The probability in Equation 6.3 is called the simulation failure probability, which we characterize
hereafter. We consider a randomized circuit Ĉ composed of s wires labeled from 1 to s and a wire
assignment simulator SimAW. For any sub-set W ⊆ [s] we denote by δW the value defined as:

δW =
{

1 if SimAW(W) = ⊥,
0 otherwise.

The simulation failure can then be explicitly expressed as a function of p. Namely, we have ε = f(p)
with f defined for every p ∈ [0, 1] by:

f(p) =
∑

W⊆[s]

δW · p|W| · (1− p)s−|W| . (6.4)

Letting ci be the number of sub-sets W ⊆ [s] of cardinality i for which δW = 1, namely for which the
simulation fails, we have ci =

∑
|W|=i δW and hence Equation 6.4 simplifies to

f(p) =
s∑

i=1
ci · pi · (1− p)s−i 6

s∑

i=1
ci · pi . (6.5)

We note that for any circuit Ĉ achieving t-probing security, the values δW with |W| 6 t are equal
to zero which implies c1 = c2 = · · · = ct = 0. Moreover, by definition, the coefficients ci satisfy the
upper bound ci 6

(
s
i

)
which leads to the following upper-bound for t-probing secure circuits:

f(p) 6
s∑

i=t+1

(
s

i

)
· pi · (1− p)s−i 6

s∑

i=t+1

(
s

i

)
· pi

More generally the bound ci 6
(
s
i

)
can be used to derive an upper bound of f(p) given the knowledge

of a limited number of low-degree coefficients ci.

Chapter 6. Secure composition in the random probing model 37

6.3. Random probing composability
6.3.1. Formal definition
We introduce hereafter the random probing composability notion for a gadget. In the following
definition, for an n-share, `-to-m gadget, we denote by I a collection of sets I = (I1, . . . , I`) with
I1 ⊆ [n], . . . , I` ⊆ [n] where n ∈ N refers to the number of shares.

Definition 16 (Random Probing Composability). Let n, `,m ∈ N. An n-share gadget G : (Kn)` →
(Kn)m is (t, p, ε)-random probing composable (RPC) for some t ∈ N and p, ε ∈ [0, 1] if there exists a
deterministic simulator Sim1 and a probabilistic simulator Sim2 such that for every distribution Dx
over (Kn)` and for every set collection J1 ⊆ [n], . . . , Jm ⊆ [n] of cardinals |J1| 6 t, . . . , |Jm| 6 t, the
random experiment

W ← LeakingWires(G, p)
I ← Sim1(W,J)
(x1, . . . ,x`)← Dx
out← Sim2

(
x1|I1 , . . . ,x`|I`

)

yields
Pr
(
(|I1| > t) ∨ . . . ∨ (|I`| > t)

)
6 ε (6.6)

and
out

id=
(
AssignWires(G,W, (x1, . . . ,x`)) , (y1|J1 , . . . ,ym|Jm

)
)

where J = (J1, . . . , Jm) and (y1, . . . ,ym) = G(x1, . . . ,x`). Let f : R→ R. The gadget G is (t, f)-RPC
if it is (t, p, f(p))-RPC for every p ∈ [0, 1].

In the above definition, the first-pass simulator Sim1 determines the necessary input shares (through
the returned collection of sets I) for the second-pass simulator Sim2 to produce a perfect simulation
of the leaking wires defined by the set W together with the output shares defined by the collection
of sets J . Note that there always exists such a collection of sets I since I = ([n], . . . , [n]) trivially
allows a perfect simulation whatever W and J . However, the goal of Sim1 is to return a collection of
sets I with cardinals at most t. The idea behind this constraint is to keep the following composition
invariant: for each gadget we can achieve a perfect simulation of the leaking wires plus t shares of
each output sharing from t shares of each input sharing.
We shall call failure event the event that at least one of the sets I1, . . . , I` output of Sim1 has

cardinality greater than t. When (t, p, ε)-RPC is achieved, the failure event probability is upper
bounded by ε according to Equation 6.6. We stress that this failure probability can be characterized
in the same way as the failure probability for random probing simulation as detailed in Section 6.2.2
but with δW defined as:

δW =
{

1 if I = Sim1(W,J) with (|I1| > t) ∨ . . . ∨ (|I`| > t)
)
,

0 otherwise.

6.3.2. Composition security
According to the RPC definition, a failure event occurs whenever Sim2 requires more than t shares of
one input sharing to be able to produce a perfect simulation of the leaking wires (i.e. the wires with
label in W) together with the output shares in (y1|J1 , . . . ,ym|Jm

). Whenever such a failure occurs,
the composition invariant is broken. In the absence of failure event, the RPC notion implies that a
perfect simulation can be achieved for the full circuit composed of RPC gadgets.

This is formalized in the following theorem. The proof is available in the full version of [BCP+20]
(see Appendix F).

Chapter 6. Secure composition in the random probing model 38

Theorem 7 (Random Probing Composition). Let t ∈ N, p, ε ∈ [0, 1], and CC be a standard circuit
compiler with (t, p, ε)-RPC base gadgets. For every (randomized) arithmetic circuit C, the randomized
circuit CC(C) is (p, |C| · ε)-random probing secure. Equivalently, the standard circuit compiler CC is
(p, ε)-random probing secure.

6.3.3. Relation with strong non-interference
We recall the strong non-interfering (SNI) security notion that was introduced in [BBD+16] to
make masking gadgets composable into probing-secure circuits. Informally, a gadget is t-strong
non-interfering (t-SNI) if and only if any set of at most t probes, among which t1 are on internal wires
(i.e. all wires except the output ones) and t2 are on output wires, can be perfectly simulated from at
most t1 shares of each input. The following definition formalizes the SNI notion for 2-input 1-output
gadgets (see Chapter 2 for the formal definitions of gadgets and wires assignment).

Definition 17 (Strong Non-Interference). Let G be a 2-to-1 n-share gadgets. G is said t-Strong
Non-Interferent (t-SNI), if for every distribution D(x1,x2) over Kn × Kn, every set W of internal
wires of G such that |W| 6 t1, and every set J ⊆ [n] of output share indices such that |J | 6 t2 and
t1 + t2 6 t, there exists a (two-stage) simulator Sim =

(
Sim1,Sim2

)
such that

1. given Sim1(W, J) = (I1, I2) where I1, I2 ⊆ [n], with |I1|, |I2| 6 t1,
2. and for (x1,x2)← D(x1,x2) and y ← G(x1,x2), we have:

Sim2(W, J,x1|I1 ,x2|I2) id=
(
AssignWires(G,W, (x1,x2)), y|J

)

A gadget is simply said to be SNI if it is (n− 1)-SNI.

The following result exhibits a relation between the SNI notion and our random probing composition
notion. We show that t-SNI gadgets are also RPC for specific parameters that we explicit in the
following proposition.

Proposition 2. Let n, ` and t be positive integers and let G be an `-to-1 n-share gadget. If G is
t-SNI, then it is also (t/2, p, ε)-RPC for any probability p and ε satisfying:

ε =
s∑

i=b t
2 +1c

(
s

i

)
pi(1− p)s−i , (6.7)

where s = |G| is the number of wires in G.

In a nutshell, the t-SNI definition implies the existence of a perfect simulation of the out distribution
in the RPC definition (see Definition 16) for any sets J andW of cardinalities |J | 6 t/2 and |W| 6 t/2
based on sets I1, . . . I` of cardinalities |Ij | 6 t/2 for every j ∈ [`]. The formal proof is available in the
full version of [BCP+20] (see Appendix F).

6.4. Conclusion and related works
In this chapter, we have introduced the first composition notion for masking gadgets in the random
probing model. Although a close formula for the simulation failure probability, the function f(p),
might be hard to derive for generic gadgets (which are defined for any number of shares n), its
coefficients can be computed (or at least approximated) for small gadgets, which might be enough
in some contexts. In particular, Chapter 8 presents an approach where arbitrary levels of random
probing security can be obtained by bootstrapping small gadgets. In our paper [BCP+20], we further
describe a tool VRAPS which can verify the random probing composability and characterize the
function f for small masking gadgets. In a recent follow-up work [CFOS21], Cassier, Faust, Orlt

Chapter 6. Secure composition in the random probing model 39

and Standaert refine our RPC notion with the concept of probe distribution table (PDT). Instead
of using a composition invariant based on a threshold t (i.e. the leaking wires plus t output shares
must be simulatable from t input shares), their PDT computes the failure probability for any pair of
input set(s) of shares and output set(s) of shares. Their approach results in a much tighter random
probing composition. One of its down side thought is that the PDT computation quickly explodes
when several gadgets are composed or when the number of shares increases. Finding good trade-offs
between the PDT accuracy and an efficient scaling is an interesting direction for future research.

Part IV.

Achieving noisy leakage security

Chapter 7
Noisy leakage security in quasilinear
complexity

Contents
7.1. Introduction . 41
7.2. A quasilinear-complexity masking scheme 41

7.2.1. Encoding . 42
7.2.2. Multiplication gadget . 42
7.2.3. Overall circuit compiler . 43
7.2.4. Field extension and FFT algorithm . 43

7.3. Region probing security . 44
7.3.1. Security reduction . 44
7.3.2. Probing security of the FFT on large fields 45

7.4. Conclusion and related works . 46

7.1. Introduction
Most probing secure schemes existing in the literature imply a quadratic or beyond quadratic
complexity overhead of the number of gates in the protected circuit. In a joint work with Goudarzi
and Joux [GJR18] we have introduced a scheme achieving a quasilinear complexity overhead. The
original version of this scheme was further extended in a joint work with Goudarzi, Prest and
Vergnaud [GPRV21] to make it applicable to any base field and to fit it in the IOS composition
framework introduced in Chapter 5. When instantiated with n-sharings, our scheme has complexity
overhead O(n logn) (with fairly small constant factor) and achieves region probing security with
leakage rate Θ(1/ logn).

This chapter presents this (generalized) quasilinear-complexity scheme. The scheme is described in
Section 7.2 while it security is analyzed in Section 7.3.

7.2. A quasilinear-complexity masking scheme
Our scheme is an instantiation of the IOS composition framework (see Chapter 5) for arithmetic
ciricuits on a base field K. Specifically our scheme consists of a standard circuit compiler using full
refreshing, i.e. interleaving a refresh gadget between any two gadgets, as introduced in Section 2.4.
While linear gadgets (additions, subtractions, multiplications by constants, etc.) apply sharewisely
in complexity O(n) and the IOS refresh gadget described in Section 5.3 has complexity O(n logn),
the core idea of our scheme is a way to further achieve O(n logn) complexity for the multiplication
gadget. This is obtained by relying on a special form of linear sharings which are compatible with
fast polynomial evaluation methods.

Chapter 7. Noisy leakage security in quasilinear complexity 42

7.2.1. Encoding
Let K be the base field of the considered arithmetic circuit and let ω ∈ K. Our scheme is based on
vω-linear sharings (a.k.a. ω-encodings in [GJR18]) for a vector vω defined as:

vω = (1, ω, . . . , ωn−1) .

For such a vector, a sharing x = (x1, x2, . . . , xn) of a plain value x ∈ K satisfies

x = 〈vω,x〉 .

The sharing x can further be seen as the coefficients of a polynomial Px =
∑n
i=1 xiθ

i−1 ∈ K[θ] such
that Px(ω) = x. The quasilinear complexity can then be achieved by using efficient FFT-based
polynomial multiplication.
Remark 6. Note that such encoding is close to –but different from– Shamir’s secret sharing [Sha79].
In the latter the shares are defined as evaluations of a polynomial in fixed points and for which the
plain value is the degree-0 coefficient.
Our scheme makes use of a Fast Fourier Transform (FFT) algorithm that, given any polynomial

P ∈ K[θ] of degree < 2n, maps the coefficients of P to the evaluations of P in 2n points of K, with a
complexity of Õ(n) operations. That is:

FFTα : (x1, x2, . . . , x2n) 7→ (u1, u2, . . . , u2n) with uj =
2n∑

i=1
xi · αi−1

j

for every j ∈ [2n], for some α = (α1, α2, . . . , α2n) ∈ K2n. We further require that this FFT
algorithm can be written as an arithmetic circuit on K solely composed of additions, subtractions
and multiplication by constants in K, and that it features an inverse FFT algorithm with the same
properties (in terms of type and number of operations). Possible FFT algorithms matching those
criteria are discussed in Section 7.2.4.

7.2.2. Multiplication gadget
Let v′ω ∈ K2n be the vector defined as

v′ω = FFT−1
α (1, ω, ω2, . . . , ω2n−1) .

Let Refresh(v′ω, ·) be a vω-sharing refresh gadget, such as the BCPZ variant introduced in Section 5.3.
Let Compress be the K×K2n → Kn mapping defined as

Compress(ω; t1, t2, . . . , t2n) = (t1 + ωn · tn+1, t2 + ωn · tn+2, . . . , tn + ωn · t2n) .

Given two vω-sharings x and y, the multiplication gadget produces an output vω-sharing z as
follows:

1. r ← FFTα(x ‖ 0)
2. s← FFTα(y ‖ 0)
3. u← r ⊗ s
4. u′ ← Refresh(v′ω;u)
5. t← FFT−1

α (u′)
6. z ← Compress(ω; t)

where 0 denotes the n-dimensional all-0 vector, ‖ denote the concatenation operator and ⊗ denote the
coordinatewise product. Note that r, s, u, u′, t are (2n)-dimensional sharings. Only the input/output
sharings x, y and z are n-dimensional vectors. The procedure is illustrated on Figure 7.1.

Chapter 7. Noisy leakage security in quasilinear complexity 43

FFT FFT

⊗

Refresh

FFT−1

Compress

x y

r s

u

u′

t

z

Figure 7.1.: Multiplication gadget.

Correctness. Let x and y be the values encoded by x and y respectively and let Px ∈ K[θ] and
Py ∈ K[θ] be polynomials of degree n− 1 whose coefficients are the coordinates of x and y, so that
we have Px(ω) = x and Py(ω) = y.

Let us first assume that Step 4 applies an identity mapping, i.e. u′ = u. Then Steps 1–5 perform a
classical FFT-based polynomial multiplication. Namely, the coordinates of t are the coefficients of the
polynomial Pt ∈ K[θ] such that Pt = Px · Py, and in particular Pt(ω) = x · y. Then Step 6 outputs a
vector z such that 〈vω, z〉 = Pt(ω) = x · y, i.e. a vω-sharing of x · y.

Let v′′ω = (1, ω, ω2, . . . , ω2n−1), then we have

Pt(ω) = 〈v′′ω, t〉 = x · y ⇔ 〈v′ω,FFTα(t)〉 = x · y .

By correctness of the FFT-based polynomial multiplication, we hence have that u = FFTα(t) is a
v′ω-sharing of x · y. Let us now consider the actual multiplication gadget with refreshing at Step 4.
By correctness of the refresh algorithm, u′ is also a v′ω-sharing of x · y, and by the above relation we
have that 〈v′ω,u′〉 = x · y implies 〈v′′ω,FFT−1

α (u′)〉 = x · y, which is 〈v′′ω, t〉 = x · y. We hence get the
correctness of the multiplication gadget.

7.2.3. Overall circuit compiler
Our overall scheme is a standard circuit compiler (see Definition 4) using full refreshing (see Definition 5).
It is based on sharewise gadgets for linear operations (addition, subtraction multiplication by constants,
or any K-linear mapping – see linear gadget description in Section 3.4.1), an IOS quasilinear refresh
gadget of vω-linear sharings (see e.g. Algorithm 7), and the multiplication gadget depicted above.
The value ω might either be a constant parameter of the scheme or randomly sampled from K,

depending on the target security proof or argument (see next section). In any case, the value of ω is
assumed to be known to the adversary. Note that in case of a random ω, the adversary probes are
placed independently of the drawing of ω (since we do not consider an adaptive probing adversary).

7.2.4. Field extension and FFT algorithm
In order to instantiate our scheme with sharing order n over a finite field K we need an FFT algorithm
which allows quasilinear multiplication of polynomials of degree at most n with coefficients in K and

Chapter 7. Noisy leakage security in quasilinear complexity 44

which can be written as an arithmetic circuit on K solely composed of additions, subtractions and
multiplications by constants.

A possible approach suggested in our original paper [GJR18] (see Appendix D) is to consider finite
fields K = Fq that contain the (2n)-th roots of unity (i.e. such that 2n | q − 1). We can then use the
so-called number theoretic transform (NTT) which requires 3N logN arithmetic gates for an input of
size N = 2n. Any computation can then be embedded into such a field. See [GJR18] (Appendix D)
for details.
In some contexts, we might want to protect a cryptographic primitive defined on a specific base

field K while avoiding a (practically inefficient) embedding in a field Fq containing the (2n)th root of
unity. To extend the original scheme to any finite field K, we can use the general additive FFT due to
Cantor [WZ88, Can89]. For a sharing order n and a base field K = Fpm , this FFT can be instantiated
over the extension Fp` where ` is the minimum even value greater than m such that p` > 2n.

For the particular case of a binary base field K = F2m (which is of particular practical importance
e.g. to protect AES), we can use the Gao-Mateer additive FFT [GM10] which is a variant of Cantor
additive FFT that efficiently addresses binary fields. Using this transform, if m is even with 2m > 2n,
then we can use directly our technique over K = F2m and otherwise we can simply instantiate it over
K = F2` where ` is the smallest even integer for which 2` > 2n and m | ` (see [GPRV21] – Appendix E
for details).

7.3. Region probing security
7.3.1. Security reduction
This section provides a security reduction for our scheme. We show that under the probing security of
the FFT, the scheme achieves region probing security. More formally, the reduction is based on the
following hypothesis on the FFT algorithm.
Hypothesis 1 (FFT Probing Security). The circuits processing

FFTα : (x ‖ 0) 7→ r and FFT−1
α : u′ 7→ t

are tFFT-probing secure w.r.t. the vω-encoding and the v′ω-encoding respectively.
We can then state our reduction theorem. The meaning of Hypothesis 1 is further discussed

in [GPRV21] – Appendix E.

Theorem 8. Under Hypothesis 1 and the tR-IOS property of the refresh gadget, our compiler is
r-region probing secure with

r = max
t6tR

min
(tFFT − 6t

2 · |FFT| ,
t

|GR|
)

(7.1)

where |FFT| denotes the (maximum) number of wires in the FFT circuits for 2n input sharings.

Note that the IOS refresh gadget described in Section 5.3 satisfies tR = n− 1 and |GR| = 3n logn.
Assuming the FFT algorithm is quasilinear and that it can tolerate a linear number of probes (in the
encoding order n) and denoting

|FFT| = α · n logn
|GR| = β · n logn
tFFT = γ · n

for some constants α, β and γ (with γ < 1), one can check that the minimum in Equation 7.1 is
reached for

t =
(βγ

2(α+ 3β)

)
· n =⇒ r =

(γ

2(α+ 3β)

)
· 1

logn . (7.2)

In particular, we obtain a probing rate r = Θ(1/ logn).

Chapter 7. Noisy leakage security in quasilinear complexity 45

The proof of Theorem 8 is based on the two following lemmas (see proofs in [GPRV21] – Appendix E)
and by applying the IOS composition theorem (see Theorem 5).

Lemma 2. Under Hypothesis 1 the circuit processing

(x,y) 7→ u = FFTα(x ‖ 0)⊗ FFTα(y ‖ 0)

is tFFT-probing secure w.r.t. the vω-encoding.

Lemma 3. Under Hypothesis 1 the circuit processing

u′ 7→ z = Compress(ω; FFT−1
α (u′))

is (tFFT/2)-probing secure w.r.t. the v′ω-encoding.

Theorem 8 formally shows that if probing security can be demonstrated for the FFT algorithm,
then we obtain region probing security for our scheme. Unfortunately, it is not clear whether the
classical FFT algorithms are probing secure or not. To some extent, this open issue is related to the
choice of ω: some choices clearly lead to probing insecurity (e.g. ω = 0 or to some nth power of unity
when the NTT is used) while it is not clear whether some choices exist for which we can get the
desired t-probing security (i.e. with t = O(n) to get a probing rate Θ(1/ logn)).

While the question of a probing secure FFT is still open with respect to a given choice of ω, we can
tackle this issue with a random choice of ω on a large-enough base field K. We thus obtain (statistical)
region probing security without relying on Hypothesis 1, as detailed hereafter.

7.3.2. Probing security of the FFT on large fields
The region-probing security of our scheme simply holds from the IOS property of the refresh gadget
and assuming that the underlying FFT algorithm is somehow linear. This is captured by the following
definition.

Definition 18 (Linear FFT). An FFT algorithm is said linear if the circuits processing

FFTα : (x ‖ 0) 7→ r and FFT−1
α : u′ 7→ t

are composed of additions, subtractions and multiplications by constants on K.

The above definition implies that the value carried by each wire in the FFT circuit can be expressed
as a linear combination of the coordinates of the input sharing. This property is necessary to apply
our security argument. Note that this requirement is relatively weak since it is satisfied by classical
FFT algorithms such as the NTT and the Gao-Mateer additive FFT [GM10].
For a linear FFT algorithm, every value v taken by a wire of FFTα (resp. FFT−1

α) on input a
vω-sharing x (resp a v′ω-sharing u′) can be expressed as

v =
n−1∑

i=0
aixi (7.3)

where the ai’s are constant coefficients over K. The lemmas use the following notation

[v] = (a0, a1, . . . , an−1)T (7.4)

for the column vector of coefficients of such a wire value. Moreover, [v0, v1, . . . , v`] shall denote the
matrix with column vectors [v0], [v1], . . . , [v`].

Chapter 7. Noisy leakage security in quasilinear complexity 46

Lemma 4. Let v1, v2, . . . , v` be the values taken by ` < n wires of FFTα on input a uniform vω-
sharing of a variable x. The distribution of the tuple (v1, v2, . . . , v`) is statistically independent of x
iff

vω /∈ span(v1, . . . , v`) , (7.5)
where span(·) refers to the linear span of the input vectors. The same proposition holds for FFT−1

α

with v′ω in place of vω.
Lemma 5. Let ω be a uniform random element in K∗. And let v1, v2, . . . , v` be a set of ` < n
intermediate variables of FFTα. We have:

Pr
(
vω ∈ span(v1, . . . , v`)

)
6 `

|K| − 1 <
n

|K| , (7.6)

where the above probability is defined over a uniform random choice of ω. The same proposition holds
for FFT−1

α with v′ω in place of vω.
The proofs of these lemmas are given in [GJR18] (see Appendix D).
From these two lemmas, the values taken by any set of ` < n wires of FFTα or FFT−1

α can be
perfectly simulated without knowledge of the underlying plain value. The simulation simply works by
taking a random x, picking a random vω-sharing of x, and evaluating the wires v1, . . . , v` accordingly.
By the above lemmas such a simulation fails with probability lower than n/|K|.
Corollary 1. If the FFT circuit is linear, our compiler is (r, ε)-region probing secure with r being
the rate from Theorem 8 and ε = n

|K| .

From the above corollary, we see that to achieve κ-bit security, K should be such that |K| > 2κn,
or equivalently, elements of K should be of size greater than κ+ logn. If this is not ensured by the
desired base field, one needs to consider a field extension satisfying this constraint.

7.4. Conclusion and related works
This chapter has overviewed the quasilinear-complexity masking scheme that we proposed in [GJR18,
GPRV21]. This scheme achieves region probing security with quasiconstant leakage rate Θ(1/ logn)
as long as the underlying base field is large enough, i.e. with elements of size κ logn (for κ-
bit security). The region probing security of our scheme is based on the IOS framework with a
quasilinear refresh gadget which is a variant of the Battistello, Coron, Prouff and Zeitoun (BCPZ)
refresh gadget [BCPZ16a] (see Chapter 5). In [GPRV21] (see Appendix E), we further present some
applications of our scheme to protect the AES and MiMC ciphers and show how its performance
favorably scales compared to a standard quadratic-complexity probing-secure scheme (based on
the ISW construction). Other masking schemes based on polynomial encoding, and in particular
on Shamir’s secret sharing, have been proposed in [GM11, PR11, CPR12, CRZ13]. However their
multiplication gadgets, which are derived from multi-party computation protocols, have at least
a quadratic complexity. In contrast, we could achieve a quasilinear complexity by relying on an
FFT-based polynomial multiplication, with the key idea of using a random evaluation point ω for
decoding. We further show that our scheme is secure for any field and (fixed) evaluation point ω
provided that the underlying FFT achieves probing security with respect to the associated ω-encoding.
Finding such probing-secure FFT for small field and/or fixed ω is an interesting open issue to allow
more efficient instantiation of our scheme in some contexts. Another direction for improvement would
be to achieve a constant leakage rate instead of the quasiconstant Θ(1/ logn). Another approach to
probing security in quasilinear complexity was already proposed in the seminal work of Ishai, Sahai
and Wagner [ISW03]. Their construction uses the principle of wire shuffling to achieve statistical
t-probing security with complexity overhead O(t log t) (with a constant factor κ10 where κ is the
security parameter). This appraoch was recently improved by Coron and Spignoli in [CS21b]. They
notably achieve t-probing security with a linear complexity overhead O(t) by relying on the RAM
model.

Chapter 8
Noisy leakage security through
random probing expansion

Contents
8.1. Introduction . 47
8.2. Random probing expandability framework 48

8.2.1. Expanding compiler . 48
8.2.2. Random probing expandability . 49
8.2.3. Expansion security . 50

8.3. Asymptotic analysis . 50
8.3.1. Amplification order . 51
8.3.2. Eigen-complexity . 51
8.3.3. Complexity of the expanding compiler . 52
8.3.4. Bounding the amplification order . 53

8.4. Generic constructions of RPE gadgets . 53
8.4.1. Generic copy and addition gadgets . 53
8.4.2. Multiplication gadget with maximal amplification order 55

8.5. Efficient instantiation with small RPE gadgets 56
8.5.1. Three-share gadgets . 57
8.5.2. Five-share gadgets . 58

8.6. Conclusion and related works . 58

8.1. Introduction
Among the few schemes providing random probing security [ISW03, Ajt11, DDF14, ADF16, AIS18,
GJR18], some tolerate a non-constant leakage probability, which needs to decrease with the number
of shares, e.g. p = O(1/n) [ISW03, DDF14] or p = O(1/ logn) [GJR18], in order to reach exponential
security ε = exp(O(n)), while others achieve the desirable feature of tolerating a constant leakage
probability p = O(1) [Ajt11, ADF16, AIS18]. Prior to the work presented in this chapter, a single
work had introduced such a scheme for which the tolerated (constant) leakage probability was made
explicit. This scheme due to Ananth, Ishai and Sahai [AIS18] is based on an expansion strategy,
which consists in applying a base compiler –using a fixed (small size) encoding– several times to a
circuit until reaching the desired security level. According to the analysis we made in [BCP+20], the
instantiation of this approach proposed in [AIS18] tolerates a leakage probability of 2−26 and has
asymptotic complexity of O(κ8.2) to achieve a security ε = 2−κ.
In [BCP+20, BRT21] we have revisited this expansion approach and introduce the framework of

random probing expandability (RPE). We have shown that the expanding compiler can bootstrap
simple base gadgets as long as they satisfy our new RPE security notion. We have further shown that

Chapter 8. Noisy leakage security through random probing expansion 48

the obtained complexity rely on the so-called amplification order of the base RPE gadgets, and we
have exhibited some bounds for this parameter. We have then introduced generic gadget constructions
achieving RPE with optimal amplification order for any number of shares. We have further put
forward concrete instantiations of our framework based on gadgets with small number of shares (3
and 5) which today achieve the highest leakage probability reported so far.
This chapter gives an overview of these works. We first introduce the random probing expansion

framework in Section 8.2. Section 8.3 details our asymptotic analysis and provides related bounds. Sec-
tion 8.4 presents our generic gadget constructions while Section 8.5 provides our concrete instantiation
results.

8.2. Random probing expandability framework
Constructing random-probing-secure circuit compilers with an expansion strategy has been proposed
by Ananth, Ishai and Sahai in [AIS18]. Such a strategy was previously used in the field of multi-party
computation (MPC) with different but close security goals [HM00, CDI+13]. Note that this approach
is called composition in [AIS18] since it roughly consists in composing a base circuit compiler several
times. We prefer the terminology of expansion here to avoid any confusion with the notion of
composition for masking gadgets as usually considered in the masking literature (and in Part III of
the present thesis).

8.2.1. Expanding compiler
The basic principle of the expansion strategy is as follows. Assume that we have a family of n-share
gadgets {Gg} for some base of gates B and consider the underlying standard circuit compiler CC (as
formally defined in Section 2.4). Let us recall that CC simply consists in replacing each gate g in the
original circuit by the corresponding gadget Gg and replacing each wire by n wires carrying a sharing
of the original value. We shall call CC the base circuit compiler in what follows. We can derive new
n2-share gadgets by simply applying CC to each gadget Gg: G(2)

g = CC(Gg) for every g ∈ B. This
process can be iterated an arbitrary number of times, say k, to an input circuit C:

C
CC−−−→ Ĉ1

CC−−−→ · · · CC−−−→ Ĉk .

The first output circuit Ĉ1 is the original circuit in which each gate g is replaced by a base gadget Gg.
The second output circuit Ĉ2 is the original circuit C in which each gate is replaced by an n2-share
gadget G(2)

g . Equivalently, Ĉ2 is the circuit Ĉ1 in which each gate is replaced by a base gadget. In the
end, the output circuit Ĉk is hence the original circuit C in which each gate has been replaced by a
k-expanded gadget G(k)

g and each wire has been replaced by nk wires carrying an (nk)-linear sharing
of the original wire. The underlying compiler is called expanding compiler which is formally defined
hereafter (we refer to Section 2.4 for the definition of standard circuit compiler).

Definition 19 (Expanding Compiler). Let CC be the standard circuit compiler with n-share base
gadgets. The expanding compiler with expansion level k and base compiler CC is the circuit compiler
(CC(k),Enc(k),Dec(k)) satisfying the following:

1. The input encoding Enc(k) is an (nk)-linear encoding.
2. The output decoding Dec is the (nk)-linear decoding mapping.
3. The circuit compilation is defined as

CC(k)(·) = CC ◦ CC ◦ · · · ◦ CC︸ ︷︷ ︸
k times

(·)

The goal of the expansion strategy in the context of random probing security is to replace the leakage
probability p of a wire in the original circuit by the failure event probability ε in the subsequent gadget

Chapter 8. Noisy leakage security through random probing expansion 49

simulation. If this simulation fails then one needs the full input sharing for the gadget simulation,
which corresponds to leaking the corresponding wire value in the base case. The security is thus
amplified by replacing the probability p in the base case by the probability ε (assuming that we have
ε < p). Let pmax < 1 denote some maximal tolerated probability parameter such that the failure
event probability ε can be upper bounded by some function of the leakage probability: ε 6 f(p) for
every leakage probability p ∈ [0, pmax]. Then the expanding compiler with expansion level k shall
result in a security amplification as

p = ε0
f−−→ ε1

f−−→ · · · f−−→ εk = f (k)(p) , (8.1)

which for an adequate function f (for instance f : p 7→ p2) provides exponential security. In order
to get such a security expansion, the gadgets must satisfy a stronger notion than random probing
security or the random probing composability notion introduced in Chapter 6. We call this notion
random probing expandability.

8.2.2. Random probing expandability
The random probing expandability notion can be seen as a stronger version of the random probing
composability notion (see Definition 16) that supports the expansion security and specifically Equa-
tion 8.1. In the context of random probing composability, the failure event occurs whenever more
than t shares from an input sharing are necessary to complete a perfect simulation (see Chapter 6).
For a gadget to be expandable we need further conditions. As a first requirement, a two-input gadget
should have a failure probability which is independent for each input. This is because in the base
case, each wire as input of a gate leaks independently. On the other hand, in case of failure event in
the subsequent gadget, the simulator should be able to produce a perfect simulation of the full output
(that is the full input for which the failure occurs). To do so, the simulator is given the clear output
(which is obtained from the simulation of the base case) plus any set of n− 1 output shares. This
means that whenever the set J (output shares indices) is of cardinal greater than t, which means a
failure in the subsequent gadget, the simulator can replace it by any set J ′ of cardinal n− 1. Formally,
we define random probing expandability as follows:

Definition 20 (Random Probing Expandability). Let f : R→ R. An n-share gadget G : Kn ×Kn →
Kn is (t, f)-random probing expandable (RPE) if there exists a deterministic simulator Sim1 and
a probabilistic simulator Sim2 such that for every distribution D(x,y) over Kn × Kn, for every set
J ⊆ [n] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)
(I1, I2, J ′)← Sim1(W, J)
(x,y)← D(x,y)

out← Sim2(W, J ′,x|I1 ,y|I2)

ensures that
1. the failure events F1 ≡

(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (8.2)

with ε = f(p) (in particular F1 and F2 are mutually independent),
2. J ′ is such that J ′ = J if |J | 6 t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,
3. the output distribution satisfies

out
id=
(
AssignWires(G,W, (x,y)) , z|J′

)
(8.3)

where z = G(x,y).

Chapter 8. Noisy leakage security through random probing expansion 50

The parameter t in the above definition is referred to as the RPE threshold. Note that a gadget can
achieve the notion for different RPE thresholds (each leading to different functions f).

The RPE notion can be simply extended to gadgets with 2 outputs: the Sim1 simulator takes two
sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′1 and J ′2 satisfying the same property
as J ′ in the above definition (w.r.t. J1 and J2). The Sim2 simulator must then produce an output
including z1|J′1 and z2|J′1 where z1 and z2 are the output sharings. The RPE notion can also be
simply extended to gadgets with a single input: the Sim1 simulator produces a single set I so that the
failure event (|I| > t) occurs with probability lower than ε (and the Sim2 simulator is then simply
given x|I where x is the single input sharing). A formal definition of RPE for 1-to-2 gadgets (e.g.
copy gadgets) is provided in the full version of [BCP+20] (see Appendix F).

It is not hard to check that the above expandability notion is stronger that the composability notion
introduced in Chapter 6. Formally, we have the following proposition:

Proposition 3. Let f = R→ R and n ∈ N. Let G be an n-share gadget. If G is (t, f)-RPE then G
is (t, f ′)-RPC, with f ′(·) = 2 · f(·).

Relaxation. The requirement of the RPE property that the failure events F1 and F2 are mutually
independent might seem too strong. In practice it might be easier to show or verify that some gadgets
satisfy a weaker notion. We say that a gadget is (t, f)-weak random probing expandable (wRPE) if
the failure events verify Pr(F1) 6 ε, Pr(F2) 6 ε and Pr(F1 ∧ F2) 6 ε2 instead of Equation 8.2 in
Definition 20. Although being easier to achieve and to verify, the latter is actually not much weaker
than the original RPE notion. We have the following reduction of RPE to wRPE. The proof is
available in the full version f [BCP+20] (see Appendix F).

Proposition 4. Let f = [0, 1] → [0, 0.14]. Let G : Kn × Kn → Kn be an n-share gadget. If G is
(t, f)-wRPE then G is (t, f ′)-RPE with f ′(·) = f(·) + 3

2f(·)2.

Assume that we can show or verify that a gadget is wRPE with the following failure event
probabilities

Pr(F1) = f1(p) , Pr(F2) = f2(p) and Pr(F1 ∧ F2) = f12(p) ,
for every p ∈ [0, 1]. Then the above proposition implies that the gadget is (p, f)-RPE with

f : p 7→ fmax(p) + 3
2fmax(p)2 with fmax = max(f1, f2,

√
f12) .

8.2.3. Expansion security
In [BCP+20] we show that level-k gadgets G(k) = CC(k−1)(G) achieve a variant of RPE (in which the
output set J must belong to the adequate subsets of [nk]). While this variant is a restriction of the
general RPE notion, it is still stronger than random probing composability. In particular, if the base
gadgets are (t, f)-RPE then the level-k gadgets G(k) achieve (t′, 2f (k))-RPC for some t′ < nk. The
random probing security of the expanding compiler can then be deduced from the random probing
composition theorem (see Theorem 7). Formally, we get:

Theorem 9. Let n ∈ N and f : R → R. Let CC be the standard circuit compiler with base gadget
{Gg}g∈B. Let CC(k) be the expanding compiler with base compiler CC. If the base gadgets {Gg}g∈B
are (t, f)-RPE, then CC(k) is (p, 2 · f (k)(p))-random probing secure.

The proof is provided in [BCP+20] (see Appendix F).

8.3. Asymptotic analysis
In this section we show that the asymptotic complexity of a randomized circuit Ĉ = CC(k)(C) is
|Ĉ| = O

(
|C| · κe

)
, where κ is the security parameter we want to reach (i.e. Ĉ is (p, ε)-random probing

Chapter 8. Noisy leakage security through random probing expansion 51

secure with ε = 2−κ) and where the exponent e is a constant that we make explicit hereafter. In
particular, we show that e is determined by two parameters: the amplification order and eigen-
complexity of the base compiler.

8.3.1. Amplification order
The complexity of the expanding compiler relates to a parameter called amplification order of the
gadgets, which is formally define as follows.

Definition 21 (Amplification Order).
• Let f : R→ R which satisfies

f(p) = cd p
d +O(pd+Θ(1))

as p tends to 0, for some cd > 0. Then d is called the amplification order of f .
• Let t > 0 and G a gadget. Let d be the maximal integer such that G achieves (t, f)-RPE for

f : R→ R of amplification order d. Then d is called the amplification order of G (with respect
to t).

We stress that the amplification order of a gadget is defined with respect to its RPE threshold t.
Namely, different RPE thresholds t are likely to yield different amplification orders d (or equivalently
d can be thought of as a function of t).

8.3.2. Eigen-complexity
Let {Gg}g∈B be the base gadgets of CC. For every gate g ∈ B, let us define the gate-count vector of
the gadget Gg as:

Ng ··= (Ng,g1 , . . . , Ng,g|B| , Ng,r)T

where, given an indexing B = {g1, . . . , g|B|}, Ng,gi
denotes the numbers of gates gi in the gadget Gg,

while Ng,r denotes the number of random gates in the gadget Gg. Let us further define the complexity
matrix M associated to the base compiler CC as

M =
(
Ng1 | · · · |Ng|B| |Nr

)
with Nr = (0, . . . , 0, n)T ,

where Nr is the gate-count vector for the gadget replacing random gates when applying CC, which is
simply composed of n random gates (by definition of the standard circuit compiler –see Section 2.4).
In the following we shall assume that M is diagonalizable (which is always the case in practice for
considered sets of gadgets).
It can be checked that applying the standard circuit compiler with base gadgets {Gg}g∈B to a

circuit C with gate-count vector NC gives a circuit Ĉ with gate-count vector N
Ĉ

= M ·NC . It
follows that the kth power of M gives the gate counts for the level-k gadgets as:

Mk = M ·M · · ·M︸ ︷︷ ︸
k times

=
(
N (k)
g1 | · · · |N (k)

g|B| |N
(k)
r

)
with N (k)

r = (0, . . . , 0, nk)T

where N (k)
gi is the gate-count vector of the level-k gadget G(k)

gi for every i. Let us denote the
eigendecomposition of M as M = Q ·Λ ·Q−1. We get

Mk = Q ·Λk ·Q−1 with Λk =



λk1

. . .
λk|B|+1




where λ1, . . . , λ|B|+1 are the eigenvalues of M . We then obtain an asymptotic complexity of

|Ĉ| = O
(
|C| ·

∑
i
|λi|k

)
= O

(
|C| · λkmax

)
with λmax ··= max

i
(|λi|) (8.4)

Chapter 8. Noisy leakage security through random probing expansion 52

for a randomized circuit Ĉ = CC(k)(C). The parameter λmax is called the eigen-complexity of the base
compiler. We note that the constant in the above O(·) solely depends on the matrix of eigenvectors
Q and shall be fairly small in practice.
Characterization for arithmetic circuits. Let us consider the particular case of arithmetic circuits
for fields of characteristic 2, which are composed of addition, copy and multiplication gates. And let
us assume that the addition and copy gadgets do not involve multiplication gates. In this setting, the
eigenvalues of the complexity matrix M are the following:

(λ1, λ2) = eigenvalues(Mac) , λ3 = Nm,m and λ4 = n

where Mac is the 2× 2 block matrix of M i.e.

Mac =
(
Na,a Nc,a
Na,c Nc,c

)
,

where a stands for addition, c for copy and m for multiplication, and Nx,y the number of gates y in
the gadget for gate x. We hence get

λmax = max(eigenvalues(Mac), Nm,m, n) .

Interestingly, the number of random gates used by the operation gadgets does not impact λmax, and
hence does not impact the complexity of the expanding compiler. Similarly, the number of addition
and copy gates in the multiplication gadget does not impact λmax either. Those observations are
helpful while searching for base gadgets yielding an efficient instantiation of the random probing
expansion framework.

8.3.3. Complexity of the expanding compiler
In order to reach a security level ε = 2−κ for some target security parameter κ and assuming that we
have a security expansion p→ f (k)(p), the expansion level k must be chosen so that f (k)(p) 6 2−κ.

Let d be the amplification order of f , i.e. the (minimum) amplification order of the gadgets {Gg}g∈B.
We have

f(p) =
∑

i>d

ci p
i 6 (cd + o(1)) pd 6 c′d p

d ,

where c′d = cd + o(1), as p tends to 0. In other words, for any p < 1, there exists a constant c′d
satisfying the above inequality. This upper bound implies f (k)(p) < (c′d p)d

k . Hence, to satisfy the
required security f (k)(p) 6 2−κ while assuming c′d p < 1, the number k of expansion steps must satisfy:

k > logd(κ)− logd(− log2(c′d p)) .

We can then rewrite Equation 8.4 as

|Ĉ| = O
(
|C| · κe

)
with e = log λmax

log d . (8.5)

We thus obtain an explicit formula for the asymptotic complexity of the expanding compiler with
respect to the amplification order of the base gadgets as well as the maximal eigenvalue of the
complexity matrix associated to the base compiler.
Remark 7. Equation 8.5 is obtained by considering the leakage probability as a constant. If the
leakage probability is not considered as a constant but as a parameter, the formula generalizes as:

|Ĉ| = O
(
|C| ·

(κ

log p

)e)
with e = log λmax

log d .

We see that the exponent e applies to the ratio of the security level we want to reach, i.e. κ = log ε,
over the security level we start from, i.e. log p.

Chapter 8. Noisy leakage security through random probing expansion 53

8.3.4. Bounding the amplification order
According to the above analysis, the complexity of the expanding compiler is tightly related to the
notion of amplification order of its base gadgets. Given the gate counts of base gadgets (and associated
λmax), the higher the amplification order d, the lower the complexity exponent e. It is therefore of
interest to search for gadgets with maximal amplification orders. In this regards, the following lemma
gives a generic upper bound on the amplification order. The proof is available in the full version
of [BRT21] (see Appendix G).
In the following we will say that a function g : K` → Km is complete if at least one of its m

outputs is functionally dependent on the ` inputs. Similarly, we say that a gadget G is complete if its
underlying function g is complete.
Lemma 6. Let f : R→ R, n ∈ N and `,m ∈ {1, 2}. Let G : (Kn)` → (Kn)m be an `-to-m n-share
complete gadget achieving (t, f)-RPE. Then its amplification order d is upper bounded as

min((t+ 1), (3− `) · (n− t)).
We deduce from the above lemma that for a randomized arithmetic circuit composed of 1-input

(copy) and 2-input (operation) gadgets, the amplification order is upper bounded as

d 6 min
(

2(n+ 1)
3 ,

n+ 1
2

)
= n+ 1

2 .

This upper bound can only be achieved for an odd number of shares by taking t = n−1
2 as RPE

threshold.

8.4. Generic constructions of RPE gadgets
This section provides constructions of RPE gadgets which achieve the maximal amplification order for
any number of shares n. We first introduce natural constructions of copy and addition gadgets from
a refresh gadget and show that these constructions achieve maximal amplification order for specific
refresh gadgets. We then argue that common multiplication gadgets from the literature cannot reach
maximal amplification order and introduce a new construction to fill this gap.

8.4.1. Generic copy and addition gadgets

Tight random probing expandability. Let us first introduce a tighter version of the RPE security
property that shall be instrumental to obtain generic RPE constructions. The so-called tight random
probing expandability (TRPE) is such that a failure occurs when the simulation requires more than t
input shares (as in the original RPE notion) but also whenever this number of shares is greater than
the size of the leaking set W. Formally, the failure event Fj in Definition 20 is defined for every j as

Fj ≡
(
|Ij | > min(t, |W|)

)
.

We then have the two following relations with the standard RPE notion:
1. G is (t, f)-TRPE of amp. order d =⇒ G is (t, f ′)-RPE of amp. order d′ > d,
2. G is (t, f)-TRPE of amp. order d = t+ 1 ⇐⇒ G is (t, f)-RPE of amp. order d = t+ 1.

A formal definition of TRPE and a proof of the above relations can be found in [BRT21] (see
Appendix G).
Generic copy gadget. Our generic copy gadget simply consists in applying a refresh gadget GR
to the input sharing twice in order to obtain two fresh copies. Formally, from GR, the generic copy
gadget G Yis defined as

G Y(x) = (GR(x), GR(x)) . (8.6)
We have the following lemma (whose proof is given in the full version of [BRT21] – see Appendix G).

Chapter 8. Noisy leakage security through random probing expansion 54

Lemma 7. Let GR be an n-share (t, f)-TRPE refresh gadget of amplification order d. Then, the copy
gadget G Ydisplayed in Equation 8.6 is (t, f ′)-TRPE also of amplification order d.

As a consequence of this result, a TRPE refresh gadget directly yields a TRPE copy gadget achieving
the same amplification order. If the refresh gadget is RPE with amplification order reaching the upper
bound for 1-input gadgets, which is d = t+ 1 = 2(n− t) = 2(n+1)

3 , then the copy gadget is also RPE
with same (maximal) amplification order.
Generic addition gadget. Our generic addition gadget simply consists in applying a refresh gadget
GR to each of the two input sharings before adding them. Formally, from GR, the generic addition
gadget G⊕ is defined as

G⊕(x,y) = GR(x) +GR(y) . (8.7)
We have the following lemma (whose proof is given in the full version of [BRT21] – see Appendix G).

Lemma 8. Let GR be an n-share refresh gadget and let G⊕ be the corresponding addition gadget
displayed in Equation 8.7. Then if GR is (t, f)-RPE (resp. (t, f)-TRPE) of amplification order d,
then G⊕ is (t, f ′)-RPE (resp. (t, f ′)-TRPE) for some f ′ of amplification order d′ > bd2c.

The above lemma shows that an RPE refresh gadget of amplification order d directly yields an
RPE addition gadget of amplification order at least bd2c. If the refresh gadget achieves the optimal
d = 2(n+1)

3 , then the generic addition gadget has an amplification order at least bn3 c which is not far
from the upper bound for two-input gadgets of n+1

2 .
Although Lemma 8 is insufficient to ensure an optimal amplification order for the generic addition

gadget, it can still be obtained for specific instantiations of the refresh gadget GR as we explicit
hereafter.
Instantiation from ISW refresh gadget. Let us recall that the ISW refresh gadget consists in
evaluating GR : x 7→ G⊗(x, (1, 0, . . . , 0)) where G⊗ is the ISW multiplication gadget. This gadget is
depicted in Algorithm 3 (see Section 3.4.3). We have the following result:

Theorem 10. Let t, n ∈ N with t 6 n− 2. Let GR be the n-share ISW refresh gadget, G Ybe the copy
gadget of Equation 8.6 and G⊕ the addition gadget of Equation 8.7. We have

1. GR is (t, f)-TRPE of amplification order d = min(t+ 1, n− t);
2. G Yis (t, f)-RPE of amplification order d = min(t+ 1, n− t);
3. G⊕ is (t, f)-RPE of amplification order d = min(t+ 1, n− t).
The first item is proven in [BRT21, Corollary 3], the second item holds from the first one and

Lemma 7 above, while the third item is a consequence of [BRT21, Lemma 11] (see Appendix G).
Instantiation from BCPZ refresh gadget. In [BCPZ16a], Battistello, Coron, Prouff and Zeitoun
introduced a refresh gadget with quasilinear complexity O(n logn). This refresh gadget (already
overviewed in Section 5.3.1) is defined recursively as:

GR(x) =
(
GR(x1 + r) + s ‖ GR(x2 − r)− s

)
(8.8)

for any x = (x1 ‖ x2) ∈ Kn with n > 1, with randomly sampled r ← Kn/2 and s ← Kn/2, and
GR(x) = x for n = 1. While this definition implicitly assumes that n is a power of 2, this refresh
gadget is defined more generally for any n ∈ N (see description in [BCPZ16a]).
We have the following result:

Theorem 11. Let t, n ∈ N with t 6 n − 1. Let GR be the n-share BCPZ refresh gadget, G Ybe the
copy gadget of Equation 8.6 and G⊕ the addition gadget of Equation 8.7. We have

1. GR is (t, f)-TRPE of amplification order d = min(t+ 1, n− t);
2. G Yis (t, f)-RPE of amplification order d = min(t+ 1, n− t);

Chapter 8. Noisy leakage security through random probing expansion 55

3. G⊕ is (t, f)-RPE of amplification order d = min(t+ 1, n− t).
The first item is proven in [BRTV21, Lemma 3], the second item holds from the first one and

Lemma 7 above, while the third item is a consequence of [BRTV21, Lemmas 2 & 3].
The above theorems provide concrete instantiations of the generic copy and addition gadgets (based

on ISW and BCPZ refresh gadgets) reaching the upper bound for the amplification order (for 2-input
gadgets) for any number of shares n. We note that the instantiations from the ISW refresh gadget have
quadratic complexity O(n2) while the instantiations from the BCPZ refresh gadget enjoy quasilinear
complexity O(n logn); one might therefore prefer the latter.
Remark 8. The generic addition gadget of Equation 8.7 might more generally reach the upper bound on
the amplification order from other refresh gadget constructions. We introduce in [BRTV21] the strong
TRPE2 notion which, together with TRPE, is sufficient for GR to ensure a maximal amplification
order for G⊕.

8.4.2. Multiplication gadget with maximal amplification order
Constructing a multiplication gadget with maximal amplification order is tricky. As a matter of
fact, we show in [BRT21] (see Appendix G) that the widely spread ISW multiplication gadget (see
Algorithm 1) achieves RPE but with multiplication order min(t+ 1, n− t)/2 which is not optimal.
We further show in [BRT21, Lemma 2] that any multiplication gadget which computes the cross
products of the input shares have an amplification order upper bounded by min((t+ 1)/2, n− t) which
is strictly lower than the upper bound of Lemma 6 for 2-input gadgets. In order to reach the maximal
amplification order, we must hence build a multiplication gadget avoiding a direct cross-product of
the input shares. As an additional observation, the addition, copy, and random gates are virtually
free in a multiplication gadget since they do not impact the asymptotic complexity of the expanding
compiler (see Section 8.3). This suggests that we can be greedy in terms of randomness to reach the
maximal amplification order.

From those observations, we describe hereafter a multiplication gadget z = G⊗(x,y) which achieves
the maximal amplification order min(t + 1, n − t) by making greedy use of randomness and input
refreshing. We first describe our core n-share multiplication gadget and then explain how we avoid
the initial cross products of shares. First, the gadget constructs the matrix of the cross product of
input shares:

M =




x1 · y1 x1 · y2 · · · x1 · yn
x2 · y1 x2 · y2 · · · x2 · yn

...
...

xn · y1 xn · y2 · · · xn · yn




Then, it picks n2 random values which define the following matrix:

R =




r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n
...

...
rn,1 rn,2 · · · rn,n




It then performs an element-wise addition between the matrices M and R:

P = M +R =




p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

...
pn,1 pn,2 · · · pn,n




At this point, the gadget randomizes each product of input shares from the matrix M with a single
random value from R. In order to generate the correct output, the gadget adds all the columns of P

Chapter 8. Noisy leakage security through random probing expansion 56

into a single column V of n elements, and adds all the columns of the transpose matrix RT into a
single column X of n elements:

V =




p1,1 + · · ·+ p1,n
p2,1 + · · ·+ p2,n

...
pn,1 + · · ·+ pn,n


 , X =




r1,1 + · · ·+ rn,1
r1,2 + · · ·+ rn,2

...
r1,n + · · ·+ rn,n




The n-share output is finally defined as (z1, . . . , zn) = V +X.
In order to further increase the maximal amplification order attainable by the gadget, we need to

avoid performing a direct product of shares. To this aim, we add a pre-processing phase to the gadget
using a refresh gadget GR. Specifically, we refresh the input (y1, . . . , yn) each time it is used. In other
terms, each row of the matrix M uses a fresh copy of (y1, . . . , yn) produced by a new call to GR, that
is

M =




x1 · y(1)
1 x1 · y(1)

2 · · · x1 · y(1)
n

x2 · y(2)
1 x2 · y(2)

2 · · · x2 · y(2)
n

...
...

xn · y(n)
1 xn · y(n)

2 · · · xn · y(n)
n




where (y(j)
1 , . . . , y

(j)
n), j ∈ [n], are the n independent refreshings of the input (y1, . . . , yn).

With this refreshing scheme, we avoid using the same share more than once for one of the two
input sharings. In addition, the asymptotic computational overhead of these n additional refreshes is
negligible compared to the joint contribution of the copy and addition gadgets.
We have the following result [BRT21, Corollary 6] (see Appendix G):

Theorem 12. Let t 6 n − 1. Let GR be a (t, f ′)-TRPE refresh gadget of amplification order
d′ > min(t+ 1, n− t). The above multiplication gadget using GR as refresh gadget is (t, f)-RPE of the
amplification order d = min(t+ 1, n− t).

We note that the weaker notion of TRPE1 is sufficient from GR in the above statement (see [BRT21]
for details). As a corollary of the above theorem and the previous results on ISW and BCPZ refresh
gadgets, the instantiation of our construction with any of these two refresh gadgets yields an RPE
multiplication gadget with maximal amplification order.

In [BRT21] (see Appendix G), we provide an asymptotic analysis of the expanding compiler based
on the generic gadgets introduced in this section. We show that, while increasing the number of shares
n, the asymptotic complexity of the expanding compiler converges towards O(κ2). On the other hand,
the tolerated leakage probability decreases while n grows. In the next section, we provide concrete
instantiations of the RPE framework for small gadgets for which we can exhibit the tolerated leakage
probability.

8.5. Efficient instantiation with small RPE gadgets
This section presents constructions of small RPE gadgets for copy, addition, and multiplication
operations with a low number of shares. It can be checked that RPE security with a relevant
amplification order (i.e. strictly greater than 1) cannot be obtained by a gadget with less than 3
shares. Then, as explained in Section 8.3.4, the highest amplification orders can only be achieved for
gadgets with an odd number of shares. We therefore consider the cases of 3-share and 5-share gadgets.
Each one of these gadgets is experimentally verified using the VRAPS verification tool [BCP+20]
from which we derive the tolerated leakage probability as well as the complexity of the underlying
expanding compiler.
Copy and addition gadgets. For the construction of small 3-share and 5-share addition and copy
gadgets, we use the generic constructions depicted in Equation 8.6 and Equation 8.7 (Section 8.4.1)

Chapter 8. Noisy leakage security through random probing expansion 57

which are based a refresh gadget as building block. We hence start by looking for refresh gadgets that
have a good complexity in terms of gate count, and achieve the upper bound on the amplification
order for the specific cases of 3-share and 5-share constructions (but not necessarily for a higher
number of shares).
Multiplication gadget. For the construction of small 3-share and 5-share multiplication gadgets,
we use the generic construction depicted in Section 8.4.2 which, to the best of our knowledge, is
the only multiplication gadget achieving the maximal amplification order for any number of shares,
and specifically for 3-share and 5-share constructions. As for the refresh gadget GR which is used to
perform n refreshes on the second input, we use the same scheme as for the construction of small
addition and copy gadgets.

While the multiplication gadget from Section 8.4.2 reaches the desired amplification order, we
add another pre-processing phase. In addition to the n refreshes performed on the second input b,
we add another single refresh of the input a before computing the cross-products, using the same
refresh gadget GR. Refreshing the input a before usage experimentally showed a further increase in
the maximum tolerated leakage probability, by adding more randomness to the input shares before
computing the cross-product matrix M .

The above construction achieves the maximal amplification order for 3-share (d = 2) and 5-share
(d = 3) gadgets based on natural refresh gadgets detailed hereafter.

8.5.1. Three-share gadgets
For the 3-share instances, we use the following refresh gadget as building block:

GR : z1 ← r1 + x1

z2 ← r2 + x2

z3 ← (r1 + r2) + x3.

This refresh is sufficient to reach the upper bounds on the amplification orders for the three gadgets
while being more efficient in terms of gate count than e.g. the ISW refresh gadget.
Results. Table 8.1 displays the results for the above gadgets obtained through the VRAPS tool.
The second column gives the complexity, where Na, Nc, Nm, Nr stand for the number of addition
gates, copy gates, multiplication gates and random gates respectively. The third column provides
the amplification order of the gadget. And the last column gives the maximum tolerated leakage
probability. The last row gives the global complexity, amplification order, and maximum tolerated
leakage probability for the expanding compiler using these three gadgets.

Table 8.1.: Results for the 3-share gadgets for (t = 1, f)-RPE, achieving the bound on the amplification
order.

Gadget Complexity
(Na, Nc, Nm, Nr)

Amplification
order

log2 of maximum
tolerated proba

GR (4, 2, 0, 2) 2 −5.14

G⊕ (11, 4, 0, 4) 2 −4.75

G Y (8, 7, 0, 4) 2 −7.50

G⊗ (40, 29, 9, 17) 2 −7.41

Compiler O(|C| · κ3.9) 2 −7.50

Chapter 8. Noisy leakage security through random probing expansion 58

8.5.2. Five-share gadgets
For the 5-shares instances, we use the circular refresh gadget described in [BBD+20, BDF+17] (a.k.a.
block refresh gadget):

GR : z1 ← (r1 + r2) + x1

z2 ← (r2 + r3) + x2

z3 ← (r3 + r4) + x3

z4 ← (r4 + r5) + x4

z5 ← (r5 + r1) + x5.

This gadget only uses n randoms for an n-share construction, and while it does not achieve enough
security in the generic case (unless the refresh block is iterated on the input a certain number of times
[BBD+20, BDF+17]), it proves to be enough to achieve the necessary amplification order for our
5-share constructions. We use a variant of the original version (also suggested in [BBD+20]): we choose
to sum the random values first (thus obtaining a sharing of 0) before adding them to the input shares.
The idea is to avoid using the input shares in any of the intermediate variables, so that input shares
only appear in the input variables {xi}16i6n and the final output variables {zi}16i6n. Intuitively,
this trick allows to have less tuples of intermediate variables resulting in simulation failures because
there are less variables that could leak information about the input. This is validated experimentally
since we obtain better results in terms of amplification order and tolerated leakage probability for
small gadgets.
Results. Table 8.2 gives the results for the above gadgets obtained through the VRAPS tool.

Table 8.2.: Results for the 5-share gadgets for (t = 2, f)-RPE, achieving the bound on the amplification
order.

Gadget Complexity Amplification
order

log2 of maximum
tolerated proba

GR (10, 5, 0, 5) 3 −4.83

G⊕ (25, 10, 0, 10) 3 [−6.43,−3.79]

G Y (20, 15, 0, 10) 3 [−6.43,−5.78]

G⊗ (130, 95, 25, 55) 3 [−12.00,−6.03]

Compiler O(|C| · κ3.23) 3 [−12.00,−6.03]

From Table 8.1 and Table 8.2, we observe that the asymptotic complexity is better for the
instantiation based on 5-share gadgets as they provide a better amplification order with limited
overhead. While this result can seem to be counterintuitive, it actually comes from the fact that
each gadget will be expended less in the second scenario. We stress that we could only obtain an
interval [2−12, 2−6] for the tolerated leakage probability because it was computationally too expensive
to obtain a tighter interval from the VRAPS tool, but this could probably be improved in the future.
Meanwhile, we can consider that our best complexity O(|C| · κ3.2) comes at the price of a lower
tolerated leakage probability of 2−12 (5-share gadget) compared to the O(|C| · κ3.9) complexity and
2−7.5 tolerated leakage probability obtained for our 3-share instantiation.

8.6. Conclusion and related works
In this chapter, we have presented the random probing expandability (RPE) framework introduced
in [BCP+20] and inspired from the work of Ananth, Ishai and Sahai [AIS18]. We have also introduced

Chapter 8. Noisy leakage security through random probing expansion 59

generic gadget constructions achieving the RPE notion as well as concrete instantiations of the RPE
framework based on small gadgets. Those instantiations tolerate the highest leakage probability
exhibited so far, although we expect the state of the art to evolve soon, possibly with better instantia-
tions of the RPE framework. In a recent follow-up work with Belaïd, Taleb and Vergnaud [BRTV21],
we have pushed this approach one step further by exhibiting new RPE gadget constructions with
quasilinear complexity (under some conditions on the base field). We have further formalized the
dynamic expanding compiler which adapts the set of base gadgets throughout the expansion. This
approach can make the most of two different sets of base gadgets, inheriting from the highest tolerated
leakage probability on one hand and from the best asymptotic complexity on the other hand. In
another follow-up work with Belaïd, Mercadier and Taleb [BMRT22], we have introduced a new formal
verification tool, named IronMask, which provides complete RPC/RPE verification for a large class of
relevant gadgets and which is several orders of magnitude faster than VRAPS. Other previous works
have achieved constant leakage probability in the random probing model. Namely, Ajtai proposed a
scheme based on expander graphs [Ajt11], which was further improved by Andrychowicz, Dziembowski
and Faust in [ADF16]. The concrete instantiation and exact leakage probability still remain to be
investigated for these schemes. More generally, the research of new schemes, or improved RPE gadgets,
achieving leakage probability closer to one as well as better asymptotic complexity (while relaxing the
constraint on the base field) is an interesting direction for further researches.

Part V.

Conclusion

Conclusion
Provable security has become a de facto requirement for cryptographic algorithms and protocols

in the scientific literature as well as in the industry. For cryptographic implementations on the
other hand, expectations and achievements in terms of formal security guaranties are much less
ambitious. And yet, side-channel attacks, and in particular power and electromagnetic attacks, are
truly devastating for the security of cryptographic implementations embedded in somehow accessible
devices. Motivated by this challenge, we have presented in this thesis several contributions on the
provable security of cryptographic implementations against those attacks.

Soon after the publication of differential power analysis [KJJ99], masking, a.k.a. secret sharing at
the implementation level, was identified as a sound approach to protect cryptographic implementations
in the presence of power and electromagnetic leakages [CJRR99, GP99]. For one decade, masking
countermeasures were ad hoc and mostly limited to a single mask (a.k.a. first-order masking). In 2010,
we have shown that the probing security framework and the probing-secure scheme both introduced
in the seminal work of Ishai, Sahai and Wagner [ISW03] could provide a practical answer to the open
issue of masking schemes secure against higher-order side-channel attacks. From this observation, our
humble contribution was to make the so-called ISW scheme efficiently applicable to AES [RP10] and
to any SPN-like block ciphers [CGP+12] (see Chapter 3). Many subsequent works have followed a
similar approach and proposed further probing secure masking schemes, masking composition notions,
verification methods and optimized implementations. As of today, probing security has become the
common approach to reason about and formally prove the security of masked implementations.

While the probing security paradigm provides a first level of provable security against side-channel
attacks, it fails to fully capture the ability of an adversary monitoring the power or electromagnetic
leakage of a cryptographic computation. Indeed, in the probing model, the adversary is restricted
to exploit the leakage on a limited number of intermediate variables of the computation, whereas in
practice, a side-channel adversary gets some leakage on all the intermediate variables. To fill this
gap, we have introduced the noisy leakage model [PR13] (see Chapter 4). This model captures any
leakage distribution by quantifying its amount of noise through a simple parameter called the bias. In
a remarkable follow up work [DDF14], Duc, Dziembowski and Faust have unified our noisy model to
strong versions of the probing model, namely the region probing and random probing models. Thanks
to their result, region or random probing secure implementations inherit noisy leakage security, while
designing and proving masking schemes in those models is conceptually much simpler.

Many research works over the last decade have focused on the design, implementation, composition
and verification of masking schemes in the probing model and much less has been done in the
region and random probing models. Only a few schemes have been proposed which achieve provable
security in these models and most of them are theoretical and without concrete instantiation or
concrete evaluation of the tolerated leakage rate. Motivated by this challenge, we have introduced
new composition approaches and new provably secure masking schemes in some recent works [GJR18,
BCP+20, GPRV21, BRT21]. Chapter 5 and Chapter 6 present the masking composition approaches
introduced in these works. Chapter 7 describes a region probing secure scheme with quasilinear
complexity (but which only tolerates quasiconstant leakage rate). Chapter 8 introduces a framework
to bootstrap small masking gadgets into random probing secure implementations. Our instantiations
of this framework achieve concrete leakage rates, which are the highest exhibited so far.

In view of these developments, many interesting and challenging research directions remain open. A
first concrete topic for further investigations is the research of new schemes tolerating higher leakage
rates (as close to 1 as possible) as well as better asymptotic or practical complexity. A promising

62

approach is to search for better instantiations of the random probing expansion framework. Likewise,
a lot remains to be done on the efficient implementation and optimization of existing schemes. As
more constructions and improvements will emerge, the community might further investigate formal
verification and code generation tools for masked implementations with provable security in the
noisy leakage model. Another worthwhile direction is to tighten the gap between the theory and
practice of provably secure masked implementations. In particular, much more work would be needed
on the implicit assumptions underlying the noisy leakage model, namely data isolation and noise
independence, to either enforce them in practice or to relax them with more robust designs. A related
practical issue is the conception of efficient and reliable methods to quantify the noise parameters and
to characterize a wide range of devices in the noisy model.

Finally, and as a more general perspective, while we now have some proof-of-concept provably
secure implementations with respect to passive side-channel attacks, a more challenging question
is that of active attacks. In particular, fault attacks are known to be equally devastating against
unprotected cryptographic implementations [BDL97, BS97] and while many works on fault attacks
and countermeasures have been published in the literature, formal models and provably secure designs
would deserve further investigations. A particularly challenging issue is to capture a wide range
of fault attacks as well as combined side-channel and fault attacks. While pushing the adversary’s
tampering capabilities further, one might consider the so-called white-box model in which an adversary
has complete control over the target implementation [CEJv03, DLPR14]. All attempts to provide
secure implementations in this model have failed. The design of secure white-box cryptography,
possibly in weaken adversarial models (which are still to be defined), is a stimulating open issue.

Bibliography
[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers

with O(1/ log(n)) leakage rate. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 586–615. Springer, Heidelberg,
May 2016.

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and Technology
(NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001.

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of DES and AES,
secure against some attacks. In Çetin Kaya Koç, David Naccache, and Christof Paar,
editors, CHES 2001, volume 2162 of LNCS, pages 309–318. Springer, Heidelberg, May
2001.

[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular approach.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume
10993 of LNCS, pages 427–455. Springer, Heidelberg, August 2018.

[Ajt11] Miklós Ajtai. Secure computation with information leaking to an adversary. In Lance
Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 715–724. ACM Press,
June 2011.

[BBB+20] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, Sébastien Duval,
Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi, Charles Momin, Olivier Pereira,
Thomas Peters, François-Xavier Standaert, Balazs Udvarhelyi, and Friedrich Wiemer.
Spook: Sponge-based leakage-resistant authenticated encryption with a masked tweakable
block cipher. IACR Trans. Symm. Cryptol., 2020(S1):295–349, 2020.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Grégoire, and
François-Xavier Standaert. maskVerif: Automated verification of higher-order masking
in presence of physical defaults. In Kazue Sako, Steve Schneider, and Peter Y. A.
Ryan, editors, ESORICS 2019, Part I, volume 11735 of LNCS, pages 300–318. Springer,
Heidelberg, September 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
and Pierre-Yves Strub. Verified proofs of higher-order masking. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 457–485.
Springer, Heidelberg, April 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed
higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 116–129. ACM Press,
October 2016.

[BBD+20] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Improved parallel mask refreshing algo-
rithms: generic solutions with parametrized non-interference and automated optimizations.
Journal of Cryptographic Engineering, 10(1):17–26, April 2020.

Bibliography 64

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard,
and Damien Vergnaud. Randomness complexity of private circuits for multiplication. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 616–648. Springer, Heidelberg, May 2016.

[BBP+17] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard,
and Damien Vergnaud. Private multiplication over finite fields. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 397–426.
Springer, Heidelberg, August 2017.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Abdul Rah-
man Taleb. Random probing security: Verification, composition, expansion and new
constructions. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 339–368. Springer, Heidelberg, August 2020.

[BCPZ16a] Alberto Battistello, Jean-Sebastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizon-
tal side-channel attacks and countermeasures on the ISW masking scheme. Cryptology
ePrint Archive, Report 2016/540, 2016. https://eprint.iacr.org/2016/540.

[BCPZ16b] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizon-
tal side-channel attacks and countermeasures on the ISW masking scheme. In Benedikt
Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS, pages
23–39. Springer, Heidelberg, August 2016.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier
Standaert, and Pierre-Yves Strub. Parallel implementations of masking schemes and
the bounded moment leakage model. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 535–566. Springer,
Heidelberg, April / May 2017.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of check-
ing cryptographic protocols for faults (extended abstract). In Walter Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 37–51. Springer, Heidelberg, May 1997.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and Raphaël
Wintersdorff. Tornado: Automatic generation of probing-secure masked bitsliced imple-
mentations. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 311–341. Springer, Heidelberg, May 2020.

[BFO+21] Gianluca Brian, Antonio Faonio, Maciej Obremski, João L. Ribeiro, Mark Simkin, Maciej
Skórski, and Daniele Venturi. The mother of all leakages: How to simulate noisy leakages
via bounded leakage (almost) for free. In Anne Canteaut and François-Xavier Standaert,
editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 408–437. Springer,
Heidelberg, October 2021.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan Mangard, and
Johannes Winter. Formal verification of masked hardware implementations in the presence
of glitches. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 321–353. Springer, Heidelberg, April / May 2018.

[BGK04] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure masking of
AES. In Helena Handschuh and Anwar Hasan, editors, SAC 2004, volume 3357 of LNCS,
pages 69–83. Springer, Heidelberg, August 2004.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits: Achieving
probing security with the least refreshing. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 343–372. Springer,
Heidelberg, December 2018.

https://eprint.iacr.org/2016/540

Bibliography 65

[BK21] Nicolas Bordes and Pierre Karpman. Fast verification of masking schemes in characteristic
two. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part II, volume 12697 of LNCS, pages 283–312. Springer, Heidelberg, October 2021.

[BMRT22] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb. IronMask:
Versatile Verification of Masking Security. In 43rd IEEE Symposium on Security and
Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages 142–160. IEEE,
2022.

[BRT21] Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. On the power of expansion:
More efficient constructions in the random probing model. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
313–343. Springer, Heidelberg, October 2021.

[BRTV21] Sonia Belaïd, Matthieu Rivain, Abdul Rahman Taleb, and Damien Vergnaud. Dynamic
random probing expansion with quasi linear asymptotic complexity. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS, pages
157–188. Springer, Heidelberg, December 2021.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 513–525. Springer,
Heidelberg, August 1997.

[Can89] David G. Cantor. On arithmetical algorithms over finite fields. J. Comb. Theory, Ser. A,
50(2):285–300, 1989.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential power analysis
in the presence of hardware countermeasures. In Çetin Kaya Koç and Christof Paar,
editors, CHES 2000, volume 1965 of LNCS, pages 252–263. Springer, Heidelberg, August
2000.

[CDI+13] Gil Cohen, Ivan Bjerre Damgård, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran Raz,
and Ron D. Rothblum. Efficient multiparty protocols via log-depth threshold formulae -
(extended abstract). In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 185–202. Springer, Heidelberg, August 2013.

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-box
cryptography and an AES implementation. In Kaisa Nyberg and Howard M. Heys, editors,
SAC 2002, volume 2595 of LNCS, pages 250–270. Springer, Heidelberg, August 2003.

[CFOS21] Gaëtan Cassiers, Sebastian Faust, Maximilian Orlt, and François-Xavier Standaert.
Towards tight random probing security. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 185–214, Virtual Event, August
2021. Springer, Heidelberg.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and Matthieu
Rivain. Higher-order masking schemes for S-boxes. In Anne Canteaut, editor, FSE 2012,
volume 7549 of LNCS, pages 366–384. Springer, Heidelberg, March 2012.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on a sum
of observations. Ann. Math. Statis., 23(4):493–507, 1952.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound ap-
proaches to counteract power-analysis attacks. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 398–412. Springer, Heidelberg, August 1999.

Bibliography 66

[CK10] Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and improvement of the random
delay countermeasure of CHES 2009. In Stefan Mangard and François-Xavier Standaert,
editors, CHES 2010, volume 6225 of LNCS, pages 95–109. Springer, Heidelberg, August
2010.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 441–458.
Springer, Heidelberg, May 2014.

[Cor18] Jean-Sébastien Coron. Formal verification of side-channel countermeasures via elementary
circuit transformations. In Bart Preneel and Frederik Vercauteren, editors, ACNS 18,
volume 10892 of LNCS, pages 65–82. Springer, Heidelberg, July 2018.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel cryptanalysis
of a higher order masking scheme. In Pascal Paillier and Ingrid Verbauwhede, editors,
CHES 2007, volume 4727 of LNCS, pages 28–44. Springer, Heidelberg, September 2007.

[CPR12] Jean-Sébastien Coron, Emmanuel Prouff, and Thomas Roche. On the use of shamir’s
secret sharing against side-channel analysis. In Stefan Mangard, editor, Smart Card
Research and Advanced Applications - 11th International Conference, CARDIS 2012,
Graz, Austria, November 28-30, 2012, Revised Selected Papers, volume 7771 of Lecture
Notes in Computer Science, pages 77–90. Springer, 2012.

[CPRR14] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-
order side channel security and mask refreshing. In Shiho Moriai, editor, FSE 2013,
volume 8424 of LNCS, pages 410–424. Springer, Heidelberg, March 2014.

[CPRR15] Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Algebraic
decomposition for probing security. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 742–763. Springer, Heidelberg,
August 2015.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.
Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES 2002, volume 2523 of
LNCS, pages 13–28. Springer, Heidelberg, August 2003.

[CRV14] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast evaluation of polynomials over
binary finite fields and application to side-channel countermeasures. In Lejla Batina and
Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages 170–187. Springer,
Heidelberg, September 2014.

[CRZ13] Guilhem Castagnos, Soline Renner, and Gilles Zémor. High-order masking by using coding
theory and its application to AES. In Martijn Stam, editor, 14th IMA International
Conference on Cryptography and Coding, volume 8308 of LNCS, pages 193–212. Springer,
Heidelberg, December 2013.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently composing
masked gadgets with probe isolating non-interference. IEEE Trans. Inf. Forensics Secur.,
15:2542–2555, 2020.

[CS21a] Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware masking in
the transition- and glitch-robust probing model: Better safe than sorry. IACR TCHES,
2021(2):136–158, 2021. https://tches.iacr.org/index.php/TCHES/article/view/
8790.

[CS21b] Jean-Sébastien Coron and Lorenzo Spignoli. Secure wire shuffling in the probing model.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of
LNCS, pages 215–244, Virtual Event, August 2021. Springer, Heidelberg.

https://tches.iacr.org/index.php/TCHES/article/view/8790
https://tches.iacr.org/index.php/TCHES/article/view/8790

Bibliography 67

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models:
From probing attacks to noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 423–440. Springer, Heidelberg,
May 2014.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computational
assumptions. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 230–247.
Springer, Heidelberg, March 2012.

[DFS15] Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy leakage revisited. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 159–188. Springer, Heidelberg, April 2015.

[DLPR14] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain. White-box
security notions for symmetric encryption schemes. In Tanja Lange, Kristin Lauter,
and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages 247–264. Springer,
Heidelberg, August 2014.

[DLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly secure password
protocols in the bounded retrieval model. In Shai Halevi and Tal Rabin, editors, TCC 2006,
volume 3876 of LNCS, pages 225–244. Springer, Heidelberg, March 2006.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th
FOCS, pages 293–302. IEEE Computer Society Press, October 2008.

[DP10] Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-resilient pseudorandom functions and
side-channel attacks on Feistel networks. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 21–40. Springer, Heidelberg, August 2010.

[Eve64] J. Eve. The evaluation of polynomials. Comm. ACM, 6(1):17–21, 1964.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and
François-Xavier Standaert. Composable masking schemes in the presence of physical
defaults & the robust probing model. IACR TCHES, 2018(3):89–120, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/7270.

[FIP99a] FIPS PUB 202. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. National Institute of Standards and Technology, August 1999.

[FIP99b] FIPS PUB 46-3. Data Encryption Standard (DES). National Institute of Standards and
Technology, October 1999.

[GGNS13] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier Standaert.
Block ciphers that are easier to mask: How far can we go? In Guido Bertoni and Jean-
Sébastien Coron, editors, CHES 2013, volume 8086 of LNCS, pages 383–399. Springer,
Heidelberg, August 2013.

[GJK+20] Dahmun Goudarzi, Jeremy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu Rivain,
Yu Sasaki, and Siang Meng Sim. Pyjamask: Block cipher and authenticated encryption
with highly efficient masked implementation. IACR Trans. Symm. Cryptol., 2020(S1):31–
59, 2020.

[GJR18] Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to securely compute with
noisy leakage in quasilinear complexity. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 547–574. Springer, Heidelberg,
December 2018.

https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270

Bibliography 68

[GJRS18] Dahmun Goudarzi, Anthony Journault, Matthieu Rivain, and François-Xavier Standaert.
Secure multiplication for bitslice higher-order masking: Optimisation and comparison.
In Junfeng Fan and Benedikt Gierlichs, editors, COSADE 2018, volume 10815 of LNCS,
pages 3–22. Springer, Heidelberg, April 2018.

[GLSV15] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici. LS-
designs: Bitslice encryption for efficient masked software implementations. In Carlos
Cid and Christian Rechberger, editors, FSE 2014, volume 8540 of LNCS, pages 18–37.
Springer, Heidelberg, March 2015.

[GM10] S. Gao and T. Mateer. Additive fast Fourier transforms over finite fields. IEEE Transac-
tions on Information Theory, 56(12):6265–6272, Dec 2010.

[GM11] Louis Goubin and Ange Martinelli. Protecting AES with Shamir’s secret sharing scheme.
In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS, pages
79–94. Springer, Heidelberg, September / October 2011.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis (the “duplication”
method). In Çetin Kaya Koç and Christof Paar, editors, CHES’99, volume 1717 of LNCS,
pages 158–172. Springer, Heidelberg, August 1999.

[GPRV21] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud. Probing
security through input-output separation and revisited quasilinear masking. IACR
TCHES, 2021(3):599–640, 2021. https://tches.iacr.org/index.php/TCHES/article/
view/8987.

[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. In
53rd FOCS, pages 31–40. IEEE Computer Society Press, October 2012.

[GR16] Dahmun Goudarzi and Matthieu Rivain. On the multiplicative complexity of Boolean func-
tions and bitsliced higher-order masking. In Benedikt Gierlichs and Axel Y. Poschmann,
editors, CHES 2016, volume 9813 of LNCS, pages 457–478. Springer, Heidelberg, August
2016.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be in
software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 567–597. Springer, Heidelberg, April / May 2017.

[GRVV17] Dahmun Goudarzi, Matthieu Rivain, Damien Vergnaud, and Srinivas Vivek. Generalized
polynomial decomposition for S-boxes with application to side-channel countermeasures.
In Wieland Fischer and Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS,
pages 154–171. Springer, Heidelberg, September 2017.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in
perfect multiparty computation. Journal of Cryptology, 13(1):31–60, January 2000.

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart card imple-
mentation resistant to power analysis attacks. In Jianying Zhou, Moti Yung, and Feng
Bao, editors, ACNS 06, volume 3989 of LNCS, pages 239–252. Springer, Heidelberg, June
2006.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
463–481. Springer, Heidelberg, August 2003.

https://tches.iacr.org/index.php/TCHES/article/view/8987
https://tches.iacr.org/index.php/TCHES/article/view/8987

Bibliography 69

[JS17] Anthony Journault and François-Xavier Standaert. Very high order masking: Efficient
implementation and security evaluation. In Wieland Fischer and Naofumi Homma, editors,
CHES 2017, volume 10529 of LNCS, pages 623–643. Springer, Heidelberg, September
2017.

[KJJ98a] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Improved des and other cryptographic
process with leak minimization for smartcards and other cryptosystems. U.S. Patent.
WO 99/67919. 3 June 1998, 1998.

[KJJ98b] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Using unpredictable information to
minimize leakage from smartcards and other cryptosystems. U.S. Patent. WO 99/63696.
3 June 1998, 1998.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer, Heidelberg,
August 1999.

[Knu62] Donald E. Knuth. Evaluation of polynomials by computers. Comm. ACM, 5(12):595–599,
1962.

[Knu88] D.E. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, third edition,
1988.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 104–113.
Springer, Heidelberg, August 1996.

[KR18] Pierre Karpman and Daniel S. Roche. New instantiations of the CRYPTO 2017 masking
schemes. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II,
volume 11273 of LNCS, pages 285–314. Springer, Heidelberg, December 2018.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical independence and
leakage verification. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 787–816. Springer, Heidelberg, December 2020.

[Mes00] Thomas S. Messerges. Using second-order power analysis to attack DPA resistant software.
In Çetin Kaya Koç and Christof Paar, editors, CHES 2000, volume 1965 of LNCS, pages
238–251. Springer, Heidelberg, August 2000.

[Mes01] Thomas S. Messerges. Securing the AES finalists against power analysis attacks. In Bruce
Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 150–164. Springer, Heidelberg,
April 2001.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks – Revealing
the Secrets of Smartcards. Springer, Heidelberg, 2007.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler assisted
masking. In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 58–75. Springer, Heidelberg, September 2012.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage of masked
CMOS gates. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
351–365. Springer, Heidelberg, February 2005.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract).
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 278–296. Springer,
Heidelberg, February 2004.

Bibliography 70

[MSQ07] François Macé, François-Xavier Standaert, and Jean-Jacques Quisquater. Information
theoretic evaluation of side-channel resistant logic styles. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 427–442. Springer,
Heidelberg, September 2007.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Shai
Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 18–35. Springer, Heidelberg,
August 2009.

[OMHT06] Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Practical
second-order DPA attacks for masked smart card implementations of block ciphers. In
David Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 192–207. Springer,
Heidelberg, February 2006.

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent Rijmen. A side-
channel analysis resistant description of the AES S-box. In Henri Gilbert and Helena
Handschuh, editors, FSE 2005, volume 3557 of LNCS, pages 413–423. Springer, Heidelberg,
February 2005.

[PGMP19] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue. Unifying
leakage models on a Rényi day. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 683–712. Springer, Heidelberg,
August 2019.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor,
EUROCRYPT 2009, volume 5479 of LNCS, pages 462–482. Springer, Heidelberg, April
2009.

[PM05] Thomas Popp and Stefan Mangard. Masked dual-rail pre-charge logic: DPA-resistance
without routing constraints. In Josyula R. Rao and Berk Sunar, editors, CHES 2005,
volume 3659 of LNCS, pages 172–186. Springer, Heidelberg, August / September 2005.

[PR11] Emmanuel Prouff and Thomas Roche. Higher-order glitches free implementation of the
AES using secure multi-party computation protocols. In Bart Preneel and Tsuyoshi
Takagi, editors, CHES 2011, volume 6917 of LNCS, pages 63–78. Springer, Heidelberg,
September / October 2011.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal
security proof. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 142–159. Springer, Heidelberg, May 2013.

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical Analysis of Second
Order Differential Power Analysis. IEEE Trans. Computers, 58(6):799–811, 2009.

[PRC12] Gilles Piret, Thomas Roche, and Claude Carlet. PICARO - a block cipher allowing efficient
higher-order side-channel resistance. In Feng Bao, Pierangela Samarati, and Jianying
Zhou, editors, ACNS 12, volume 7341 of LNCS, pages 311–328. Springer, Heidelberg,
June 2012.

[RDP08] Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block ciphers implementa-
tions provably secure against second order side channel analysis. In Kaisa Nyberg, editor,
FSE 2008, volume 5086 of LNCS, pages 127–143. Springer, Heidelberg, February 2008.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES.
In Stefan Mangard and François-Xavier Standaert, editors, CHES 2010, volume 6225 of
LNCS, pages 413–427. Springer, Heidelberg, August 2010.

Bibliography 71

[RV13] Arnab Roy and Srinivas Vivek. Analysis and improvement of the generic higher-order
masking scheme of FSE 2012. In Guido Bertoni and Jean-Sébastien Coron, editors,
CHES 2013, volume 8086 of LNCS, pages 417–434. Springer, Heidelberg, August 2013.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

[SÖP04] François-Xavier Standaert, Siddika Berna Örs, and Bart Preneel. Power analysis of an
FPGA: Implementation of Rijndael: Is pipelining a DPA countermeasure? In Marc Joye
and Jean-Jacques Quisquater, editors, CHES 2004, volume 3156 of LNCS, pages 30–44.
Springer, Heidelberg, August 2004.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the AES. In David Pointcheval,
editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225. Springer, Heidelberg,
February 2006.

[WVGX15] Junwei Wang, Praveen Kumar Vadnala, Johann Großschädl, and Qiuliang Xu. Higher-
order masking in practice: A vector implementation of masked AES for ARM NEON. In
Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 181–198. Springer,
Heidelberg, April 2015.

[WZ88] Y. Wang and X. Zhu. A fast algorithm for the Fourier transform over finite fields and its
VLSI implementation. IEEE Journal on Selected Areas in Communications, 6(3):572–577,
April 1988.

Part VI.

Appended publications

Appendix A
Provably Secure Higher-Order
Masking of AES
Hereafter is appended the full version of our paper [RP10], joint work with Emmanuel
Prouff, published at CHES 2010.

Provably Secure Higher-Order Masking of AES?

Matthieu Rivain1 and Emmanuel Prouff2

1 CryptoExperts
matthieu.rivain@cryptoexperts.com

2 Oberthur Technologies
e.prouff@oberthur.com

Abstract. Implementations of cryptographic algorithms are vulnerable to Side Channel Analysis (SCA).
To counteract it, masking schemes are usually involved which randomize key-dependent data by the ad-
dition of one or several random value(s) (the masks). When dth-order masking is involved (i.e. when d
masks are used per key-dependent variable), the complexity of performing an SCA grows exponentially
with the order d. The design of generic dth-order masking schemes taking the order d as security param-
eter is therefore of great interest for the physical security of cryptographic implementations. This paper
presents the first generic dth-order masking scheme for AES with a provable security and a reason-
able software implementation overhead. Our scheme is based on the hardware-oriented masking scheme
published by Ishai et al. at Crypto 2003. Compared to this scheme, our solution can be efficiently im-
plemented in software on any general-purpose processor. This result is of importance considering the
lack of solution for d > 3.

1 Introduction

Side Channel Analysis exploits information that leaks from physical implementations of cryp-
tographic algorithms. This leakage (e.g. the power consumption or the electro-magnetic em-
anations) may indeed reveal information on the data manipulated by the implementation.
Some of these data are sensitive in the sense that they are related to the secret key, and the
leaking information about them enables efficient key-recovery attacks [7, 19].

Due to the very large variety of side channel attacks reported against cryptosystems and
devices, important efforts have been done to design countermeasures with provable security.
They all start from the assumption that a cryptographic device can keep at least some secrets
and that only computation leaks [25]. Based on these assumptions, two main approaches have
been followed. The first one consists in designing new cryptographic primitives inherently re-
sistant to side channel attacks. In [25], a very powerful side channel adversary is considered
who has access to the whole internal state of the ongoing computation. In such a model, the
authors show that if a physical one-way permutation exists which does not leak any infor-
mation, then it can be used in the pseudo-random number generator (PRNG) construction
proposed in [4] to give a PRNG provably secure against the aforementioned side channel ad-
versary. Unfortunately, no such leakage-resilient one-way permutation is known at this day.
Besides, the obtained construction is quite inefficient since each computation of the one-way
permutation produces one single random bit. To get more practical constructions, further
works focused on designing primitives secure against a limited side channel adversary [13].
The definition of such a limited adversary is inspired by the bounded retrieval model [10, 22]
which assumes that the device leaks a limited amount of information about its internal state
for each elementary computation. In such a setting, the block cipher based PRNG construc-
tion proposed in [30] is provably secure assuming that the underlying cipher is ideal. Other

? Full version of the paper published in the proceedings of CHES 2010.

constructions were proposed in [13,31] which do not require such a strong assumption but are
less efficient [40]. The main limitations of these constructions is that they do not enable the
choice of an initialization vector (otherwise the security proofs do not hold anymore) which
prevents their use for encryption with synchronization constraints or for challenge-response
protocols [40]. Moreover, as they consist in new constructions, these solutions do not allow
for the protection of the implementation of standard algorithms such as DES or AES [14,15].

The second approach to design countermeasures provably secure against side channel
attacks consists in applying secret sharing schemes [2,39]. In such schemes, the sensitive data
is randomly split into several shares in such a way that a chosen number (called the threshold)
of these shares is required to retrieve any information about the data. When the SCA threat
appeared, secret sharing was quickly identified as a pertinent protection strategy [6, 17] and
numerous schemes (often called masking schemes) were published that were based on this
principle (see for instance [1,3,18,23,26,29,34,38]). Actually, this approach is very close to the
problem of defining Multi Party Communication (MPC) schemes (see for instance [9,12]) but
the resources and constraints differ in the two contexts (e.g. MPC schemes are often based on
a trusted dealer who does not exist in the SCA context). A first advantage of this approach is
that it can be used to secure standard algorithms such as DES and AES. A second advantage
is that dth-order masking schemes, for which sensitive data are split into d + 1 shares (the
threshold being d + 1), are sound countermeasures to SCA in realistic leakage model. This
fact has been formally demonstrated by Chari et al. [6] who showed that the complexity
of recovering information by SCA on a bit shared into several pieces grows exponentially
with the number of shares. As a direct consequence of this work, the number of shares (or
equivalently of masks) in which sensitive data are split is a sound security parameter of the
resistance of a countermeasures against SCA.

The present paper deals with the problem of defining an efficient masking scheme to
protect the implementation of the AES block cipher [11]. Until now, most of works published
on this subject have focused on first-order masking schemes where sensitive variables are
masked with a single random value (see for instance [1, 3, 23, 26, 29]). However, this kind
of masking have been shown to be efficiently breakable in practice by second-order SCA
[24,27,42]. To counteract those attacks, higher-order masking schemes must be used but a very
few have been proposed. A first method has been introduced by Ishai et al. [18] which enables
to protect an implementation at any chosen order. Unfortunately, it is not suited for software
implementations and it induces a prohibitive overhead for hardware implementations. A
scheme devoted to secure the software implementation of AES at any chosen order has been
proposed by Schramm and Paar [38] but it was subsequently shown to be secure only in the
second-order case [8]. Alternative second-order masking schemes with provable security were
further proposed in [34], but no straightforward extension of them exist to get efficient and
secure masking scheme at any order. Actually, at this day, no method exists in the literature
that enables to mask an AES implementation at any chosen order d > 3 with a practical
overhead; the present paper fills this gap.

2 Preliminaries on Higher-Order Masking

2.1 Basic Principle

When higher-order masking is involved to secure the physical implementation of a crypto-
graphic algorithm, every sensitive variable x occurring during the computation is randomly
split into d + 1 shares x0, . . . , xd in such a way that the following relation is satisfied for a
group operation ⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the exclusive-or (XOR) operation denoted
by ⊕. Usually, the d shares x1, . . . , xd (called the masks) are randomly picked up and the
last one x0 (called the masked variable) is processed such that it satisfies (1). When d random
masks are involved per sensitive variable the masking is said to be of order d.

Assuming that the masks are uniformly distributed, masking renders every intermediate
variable of the computation statistically independent of any sensitive variable. As a result,
classical side channel attacks exploiting the leakage related to a single intermediate variable
are not possible anymore. However, a dth-order masking is always theoretically vulnerable
to (d + 1)th-order SCA which exploits the leakages related to d + 1 intermediate variables
at the same time [24, 37, 38]. Indeed, the leakages resulting from the d + 1 shares (i.e. the
masked variable and the d masks) are jointly dependent on the sensitive variable. Neverthe-
less, such attacks become impractical as d increases, which makes higher-order masking a
sound countermeasure.

2.2 Soundness of Higher-Order Masking

The soundness of higher-order masking was formally demonstrated by Chari et al. in [6].
They assume a simplified but still realistic leakage model where a bit b is masked using d
random bits x1, . . . , xd such that the masked bit is defined as x0 = b ⊕ x1 ⊕ · · · ⊕ xd. The
adversary is assumed to be provided with observations of d + 1 leakage variables Li, each
one corresponding to a share xi. For every i, the leakage is modelled as Li = xi + Ni where
the noises Ni’s are assumed to have Gaussian distributions N (µ, σ2) and to be mutually
independent. Under this leakage model, they show that the number of samples q required
by the adversary to distinguish the distribution (L0, . . . , Ld|b = 0) from the distribution
(L0, . . . , Ld|b = 1) with a probability at least α satisfies:

q > σd+δ (2)

where δ = 4 logα/ log σ. This result encompasses all the possible side-channel distinguishers
and hence formally states the resistance against every kind of side channel attack. Although
the model is simplified, it could probably be extended to more common leakage models such
as the Hamming weight/distance model. The point is that if an attacker observes noisy side
channel information about d + 1 shares corresponding to a variable masked with d random
masks, the number of samples required to retrieve information about the unmasked variable
is lower bounded by an exponential function of the masking order whose base is related to the
noise standard deviation. This formally demonstrates that higher-order masking is a sound
countermeasure especially when combined with noise. Many works also made this observation
in practice for particular side channel distinguishers (see for instance [37,38,41]).

2.3 Higher-Order Masking Schemes

When dth-order masking is involved in protecting a block cipher implementation, a so-called
dth-order masking scheme (or simply a masking scheme if there is no ambiguity on d) must
be designed to enable computation on masked data. In order to be complete and secure, the
scheme must satisfy the two following properties:

– completeness: at the end of the computation, the sum of the d shares must yield the
expected ciphertext (and more generally each masked transformation must result in a set
of shares whose sum equal the correct intermediate result),

– dth-order SCA security: every tuple of d or less intermediate variables must be independent
of any sensitive variable.

If the dth-order security property is satisfied, then no attack of order lower than d + 1 is
possible and we benefit from the security bound (2).

Most block cipher structures (e.g. AES or DES) alternate several rounds composed of a key
addition, one or several linear transformation(s), and a non-linear transformation. The main
difficulty in designing masking schemes for such block ciphers lies in masking the nonlinear
transformations. Many solutions have been proposed to deal with this issue but the design of
a dth-order secure scheme for d > 1 has quickly been recognized as a difficult problem by the
community. As mentioned above, only three methods exist in the literature that have been
respectively proposed by Ishai, Sahai and Wagner [18], by Schramm and Paar [38] (secure
only for d 6 2) and by Rivain, Dottax and Prouff [34] (dedicated to d = 2). Among them,
only [18] can be applied to secure a non-linear transformation at any order d. This scheme is
recalled in the next section.

2.4 The Ishai-Sahai-Wagner Scheme

In [18], Ishai et al. propose a higher-order masking scheme (referred to as ISW in this paper)
enabling to secure the hardware implementation of any circuit at any chosen order d. They
describe a way to transform the circuit to protect into a new circuit (dealing with masked
values) such that no subset of d of its wires reveals information about the unmasked values3.
For such a purpose, they assume without loss of generality that the circuit to protect is exclu-
sively composed of NOT and AND gates. Securing a NOT for any order d is straightforward
since x =

⊕
i xi implies NOT(x) = NOT(x0)⊕x1 · · · ⊕xd. The main difficulty is therefore to

secure the AND gates. To answer this issue, Ishai et al. suggest the following elegant solution.

Secure logical AND. Let a an b be two bits and let c denote AND(a, b) = ab. Let us
assume that a and b have been respectively split into d+ 1 shares (ai)06i6d and (bi)06i6d such
that

⊕
i ai = a and

⊕
i bi = b. To securely compute a (d + 1)-tuple (ci)06i6d s.t.

⊕
i ci = c,

Ishai et al. perform the following steps:

1. For every 0 6 i < j 6 d, pick up a random bit ri,j.
2. For every 0 6 i < j 6 d, compute rj,i = (ri,j ⊕ aibj)⊕ ajbi.
3. For every 0 6 i 6 d, compute ci = aibi ⊕

⊕
j 6=i ri,j.

3 Considering wires as intermediate variables, this is equivalent to the security property given in Section 2.3.

Remark 1. The use of brackets indicates the order in which the operations are performed,
which is mandatory for security of the scheme.

The completeness of the solution follows from:
⊕

i

ci =
⊕

i

(
aibi ⊕

⊕

j 6=i
ri,j
)

=
⊕

i

(
aibi ⊕

⊕

j>i

ri,j ⊕
⊕

j<i

(rj,i ⊕ aibj ⊕ ajbi)
)

=
⊕

i

(
aibi ⊕

⊕

j<i

(aibj ⊕ ajbi)
)

=
(⊕

i

ai
)(⊕

i

bi
)
.

In [18] it is shown that the AND computation above is secure against any attack of order
lower than or equal to d/2. In Section 4, we give a tighter security proof: we show that the
scheme is actually dth-order secure.

Practical issues. Although the ISW scheme is an important theoretical result, its practical
application suffers few issues. Firstly, it induces an important overhead in silicon area for
the masked circuit. Indeed, every single AND gate is encoded using (d + 1)2 AND gates
plus 2d(d+ 1) XOR gates, and it requires the generation of d(d+ 1)/2 random bits at every
clock cycle. As an illustration, masking the compact circuit for the AES S-box described in [5]
would multiply its size (in terms of number of gates) by 7 for d = 2, by 14 for d = 3 and by 22
for d = 4 (without taking the random bits generation into account). Secondly, masking at the
hardware level is sensitive to glitches, which induces first-order flaws although in theory every
internal wire carries values that are independent of the sensitive variables [20,21]. Preventing
glitches in masked circuits imply the addition of synchronizing elements (e.g. registers or
latches) which still significantly increases the circuit size (see for instance [32]).

Since software implementations of masking schemes do not suffer area overhead and are
not impacted by the presence of glitches at the hardware level, a straightforward approach
to deal with the practical issues discussed above could be to implement the ISW scheme in
software. Namely, we could represent each non-linear transformation S to protect by a tuple of
Boolean functions (fi)i usually called coordinate functions of S, and evaluate the fi’s with the
ISW scheme by processing the AND and XOR operations with CPU instructions. However,
this approach is not practical since the timing overhead would clearly be prohibitive. The
present paper follows a different approach: we generalize the ISW scheme to secure any finite
field multiplication rather than a simple multiplication over F2 (i.e. a logical AND). We apply
this idea to design a secure higher-order masking scheme for the AES and we show that its
software implementation induces a reasonable overhead.

3 Higher-Order Masking of AES

The AES block cipher iterates a round transformation composed of a key addition, a linear
layer and a nonlinear layer which applies the same substitution-box (S-box) to every byte
of the internal state. As previously explained, the main difficulty while designing a masking
scheme for such a cipher is the masking of the nonlinear transformation, which in that case
lies in the masking of the S-box. Our method for masking the AES S-box is presented in the
next section, afterward the masking of the whole cipher is described.

In what follows, we shall consider that a random generator is available which on an
invocation rand(n) returns n unbiased random bits.

3.1 Higher-Order Masking of the AES S-box

The AES S-box S is defined as the right-composition of an affine transformation Af over F8
2

with the power function x 7→ x254 over the field F28 ≡ F2[x]/(x8 + x4 + x3 + x+ 1). Since the
affine transformation is straightforward to mask, our scheme mainly consists in a method for
masking the power function at any order d. Our solution consists in a secure computation of
the exponentiation to the power 254 over F28 . Such an approach has already been described
by Blömer et al. for d = 1 [3]. The core idea is to apply an exponentiation algorithm (e.g.
the square-and-multiply algorithm) on the first-order masked input while ensuring the mask
correction step by step. Compared to Blömer et al. ’s solution, our exponentiation algorithm
is able to operate on dth-order masked inputs and it achieves dth-order SCA security for any
value of d. To perform such a secure exponentiation, we define hereafter some methods to
securely compute a squaring and a multiplication over F28 at the dth order.

Masking the field squaring. Since we operate on a field of characteristic 2, the squaring
is a linear operation and we have x20⊕x21⊕ · · ·⊕x2d = x2. Securely computing a squaring can
hence be carried out by squaring every share separately. More generally, for every natural
integer j, raising x to the power 2j can be done securely by raising each xi to the 2j separately.

Masking the field multiplication. For the usual field multiplication we use the ISW
scheme recalled in Section 2.4. Even if it has been described to securely compute a logical
AND (that is a multiplication over F2), it can actually be transposed to secure a multiplication
over any field of characteristic 2: variables over F2 are replaced by variables over F2n , binary
multiplications (i.e. ANDs) are replaced by multiplications over F2n and binary additions
(i.e. XORs) are replaced by addition over F2n (that are n-bit XORs). This keep unchanged
the completeness of the scheme recalled in Section 2.4. The whole secure multiplication over
F2n is depicted in the following algorithm.

Algorithm 1 SecMult - dth-order secure multiplication over F2n

Input: shares ai satisfying
⊕

i ai = a, shares bi satisfying
⊕

i bi = b
Output: shares ci satisfying

⊕
i ci = ab

1. for i = 0 to d do

2. for j = i + 1 to d do

3. ri,j ← rand(n)

4. rj,i ← (ri,j ⊕ aibj)⊕ ajbi

5. for i = 0 to d do

6. ci ← aibi

7. for j = 0 to d, j 6= i do ci ← ci ⊕ ri,j

Masking the power function. Now we have a secure squaring and a secure multiplication
over F28 it remains to specify an exponentiation algorithm. It is clear from Algorithm 1 that
the running time of a secure multiplication is huge compared to that of a secure squaring.
A secure squaring indeed requires d + 1 squarings while a secure multiplication requires
(d+ 1)2 field multiplications, 2d(d+ 1) XORs and the generation of d(d+ 1)/2 random 8-bit
values. Our goal is therefore to design an exponentiation algorithm using the least possible
multiplications which are not squares. It can be checked that an exponentiation to the power

254 requires at least 4 such multiplications. The exponentiation algorithm presented hereafter
achieves this lower bound and requires few additional squares. It involves three intermediate
variables denoted y, z and w (note that x and y may be associated to the same memory
address).

Algorithm 2 Exponentiation to the 254
Input: x
Output: y = x254

1. z ← x2 [z = x2]

2. y ← zx [y = x2x = x3]

3. w ← y4 [w = (x3)4 = x12]

4. y ← yw [y = x3x12 = x15]

5. y ← y16 [y = (x15)16 = x240]

6. y ← yw [y = x240x12 = x252]

7. y ← yz [y = x252x2 = x254]

As we will argue in Section 4, , for the dth-order security to hold, it is important that the
masks (ai)i>1 and (bi)i>1 in input of the SecMult algorithm are mutually independent. That is
why we shall refresh the masks at some points during the secure exponentiation by calling a
procedure RefreshMasks4. The whole exponentiation to the power 254 over F28 secure against
dth-order SCA is depicted in the following algorithm.

Algorithm 3 SecExp254 - dth-order secure exponentiation to the 254 over F28

Input: shares xi satisfying
⊕

i xi = x
Output: shares yi satisfying

⊕
i yi = x254

1. for i = 0 to d do zi ← x2
i [

⊕
i zi = x2]

2. RefreshMasks(z0, z1, . . . , zd)

3. (y0, y1, . . . , yd)← SecMult
(
(z0, z1, . . . , zd), (x0, x1, . . . , xd)

)
[
⊕

i yi = x3]

4. for i = 0 to d do wi ← y4
i [

⊕
i wi = x12]

5. RefreshMasks(w0, w1, . . . , wd)

6. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
[
⊕

i yi = x15]

7. for i = 0 to d do yi ← y16
i [

⊕
i yi = x240]

8. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (w0, w1, . . . , wd)

)
[
⊕

i yi = x252]

9. (y0, y1, . . . , yd)← SecMult
(
(y0, y1, . . . , yd), (z0, z1, . . . , zd)

)
[
⊕

i yi = x254]

For completeness, we describe the RefreshMasks algorithm hereafter.

Algorithm 4 RefreshMasks
Input: shares xi satisfying

⊕
i xi = x

Output: shares xi satisfying
⊕

i xi = x

1. for i = 1 to d do

2. tmp← rand(8)

3. x0 ← x0 ⊕ tmp

4. xi ← xi ⊕ tmp

Algorithm 3 involves of 8d(d+ 1) + 4d XORs, 4(d+ 1)2 multiplications (over F28), d+ 1
squares, d+ 1 raising to the 4 and d+ 1 raising to the 16. It uses 3(d+ 1) + d(d+ 1)/2 bytes

4 Note that the masks resulting from the SecMult algorithm are independent of the input masks.

Table 1. Complexity of SecExp254.

order nb. XORs nb. mult. nb. ˆ2j nb. rand. bytes memory (bytes)

1 20 16 6 6 7
2 56 36 9 16 12
3 108 64 12 20 18
4 176 100 15 48 25
5 260 144 18 70 33
d 8d2 + 12d 4d2 + 8d + 4 3d + 3 2d2 + 4d 1

2
d2 + 7

2
d + 3

of memory5 and it requires the generation of 2d(d + 1) + 2d random bytes (see illustrative
values in Table 1). In comparison, the 2nd-order countermeasures previously published [34,38]
require at least 512 look-ups and 512 XORs and have a memory consumption of at least 256
bytes (see [33, 35] for a detailed comparison).

Masking the full S-box. The affine transformation is straightforward to mask. After re-
calling that the additive part of Af equals 0x63, it can be checked that we have:

Af(x0)⊕ Af(x1)⊕ · · · ⊕ Af(xd) =

{
Af(x) if d is even,
Af(x)⊕ 0x63 if d is odd.

Masking the affine transformation hence simply consists in applying it to every input share
separately and, in case of an even d, in adding 0x63 to one of the share afterward. The full
S-box computation secure against dth-order SCA is summarized in the following algorithm.

Algorithm 5 SecSbox
Input: shares xi satisfying

⊕
i xi = x

Output: shares yi satisfying
⊕

i yi = S(x)

1. (y0, . . . , yd)← SecExp254(x0, . . . , xd)

2. for i = 0 to d do yi ← Af(yi)

3. if (d mod 2 = 1) then y0 ← y0 ⊕ 0x63

Implementation aspects. Multiplications over F28 are typically implemented in software
using log/alog tables (see for instance [11]). Note that for security reasons, such an imple-
mentation must avoid conditional branches in order to ensure a constant operation flow. The
squaring and raisings to the 4 and 16 may be looked-up. Different time-memory tradeoffs are
possible. If not much ROM is available, the squaring can be implemented using logical shifts
and XORs (see for instance [11]), and the raising to the 2j, j ∈ {2, 4}, can then be simply
processed by j sequential squarings. Otherwise, depending on the amount of ROM avail-
able, one can either use one, two or three look-up table(s) to implement the raisings to 2j,
j ∈ {1, 2, 4}.
Remark 2. For the implementations presented in Section 5, we chose to implement the squar-
ing by a look-up table, getting the raising to the 4 (resp. 16) by accessing this table sequen-
tially 2 (resp. 4) times.

5 3(d + 1) bytes for the shares yi’s, zi’s and wi’s (Algorithm 3), and d(d + 1)/2 for the intermediate variables ri,j ’s
(Algorithm 1).

Our scheme may also be implemented in hardware. The sensitive part is the implementa-
tion of the SecMult algorithm (see Algorithm 1) which may be subject to glitches and which
should incorporate synchronizing elements. In particular, the evaluation of the ci shares
should not start before the evaluation of all the ri,j’s has been fully completed. Another ap-
proach would be to enhance the software implementation of the scheme with special purpose
hardware instructions. For instance, the multiplication, squaring and raisings to powers 4
and 16 over F28 could be added to the instructions set of the processor.

3.2 Higher-Order Masking of the Whole Cipher

In the previous section, we have shown how the AES S-box can be masked at any chosen
order d. We now detail the dth-order masking scheme for the whole AES block cipher.

The AES block cipher [11] operates on a 4× 4 array of bytes called the state and denoted
s = (sl,j)16l,j64. The state is initialized by the plaintext value and holds the ciphertext value
at the end of the encryption. Each round of AES is composed of four stages: AddRoundKey,
SubBytes, ShiftRows, and MixColumns (except the last round that omits the MixColumns).
AES is composed of either 10, 12 or 14 rounds, depending on the key length (the longer
the key, the higher the number of rounds) plus a final AddRoundKey stage. The round keys
involved in the different rounds are derived from the secret key through a key expansion
process.

In what follows, we describe how to mask an AES computation at the dth order. We will
assume that the secret key has been previously masked and that its d+ 1 shares are provided
as input to the algorithm (otherwise a straightforward first-order attack would be possible).
At the beginning of the computation, the state (holding the plaintext) is split into d + 1
states s0, s1, . . . , sd satisfying:

s = s0 ⊕ s1 ⊕ · · · ⊕ sd .

This is done by generating d random states si ← rand(16 × 8) and by computing s0 ←
s⊕⊕i>1 si. At the end of the AES computation, the state (holding the ciphertext) is recovered
by s←⊕

i si.
In the next sections, we describe how to perform the different AES transformations on

the state shares in order to guarantee the completeness as well as the dth-order security.

Masking AddRoundKey. The AddRoundKey stage at round r consists in adding (by XOR)
the rth round key kr to the state. The masked key expansion (see description hereafter)
provides d + 1 shares (kri)i for every round key kr. To securely process the addition of kr,
one simply adds each of its share to one share of the state and the completeness holds from:

s⊕ kr = (s0 ⊕ kr0)⊕ (s1 ⊕ kr1)⊕ · · · ⊕ (sd ⊕ krd) .

Masking SubBytes. The SubBytes transformation consists in applying the AES S-box S to
each byte of the state:

SubBytes(s) = (S(sl,j))16l,j64 .

In order to mask this transformation, we apply the secure S-box computation described
in Section 3.1 to the (d + 1)-tuple of byte shares ((s0)l,j, (s1)l,j, . . . , (sd)l,j) for every row-
coordinate l ∈ [1, 4] and for every column-coordinate j ∈ [1, 4].

Masking ShiftRows and MixColumns. The ShiftRows and MixColumns transformations
compose the linear layer of AES. In the ShiftRows transformation, the bytes in the last three
rows of the state are cyclically shifted over different numbers of bytes (1 for the second row, 2
for the third row and 3 for the fourth row). The MixColumns transformation operates on the
state column-by-column. Each column is treated as a four-term polynomial over F2[x]/(x8 +
x4+x3+x+1) and is multiplied modulo x4+1 with a fixed polynomial a(x) = 3x3+x2+x+2.
Since they are both linear with respect to the XOR operation, masking these transformations
is straightforward. One just apply them to every state share separately and the completeness
holds from:

ShiftRows(s) =
d⊕

i=0

ShiftRows(si) ,

and:

MixColumns(s) =
d⊕

i=0

MixColumns(si).

Masking the key expansion. The AES key expansion generates a 4 × 4(Nr + 1) ar-
ray of bytes w, called the key schedule, where Nr is the number of rounds (which de-
pends on the key-length). Let w∗,j denotes the jth column of w. Each group of 4 columns
(w∗,4r−3,w∗,4r−2,w∗,4r−1,w∗,4r) forms a round key kr that is XORed to the state during the
rth AddRoundKey stage. The first Nk columns of the key schedule are filled with the key bytes
(where the key byte-length is 4Nk) and the next ones are derived according to the process
described hereafter.

Let SubWord be the transformation that takes a four-byte input column and applies the
AES S-box to each byte. Let RotWord be the transformation that takes a 4-byte column as
input and performs a cyclic shift of one byte from bottom to top. Finally, let Rconj denotes
the constant 4-bytes column ({02}j−1, 0, 0, 0)T , where {02}j−1 is the (j − 1)th power of x in
the field F2[x]/(x8 + x4 + x3 + x+ 1). The jth column of the key schedule w∗,j is defined as:

w∗,j = w∗,j−Nk ⊕ t

with:

t =





RotWord(SubWord(w∗,j−1))⊕ Rconj/Nk if (j mod Nk = 0),
SubWord(w∗,j−1) if (Nk = 8) and (j mod Nk = 4),
w∗,j−1 otherwise.

In order to securely process the key expansion at the dth-order, the key schedule w is
split into d+ 1 schedules w0, w1, . . . , wd. The first columns of each schedule shares are filled
with the key shares at the beginning of the ciphering. Each time a new schedule column w∗,j
must be computed, its d+ 1 shares (w0)∗,j, (w1)∗,j, . . . , (wd)∗,j are computed as:

(wi)∗,j = (wi)∗,j−Nk ⊕ ti

where the ti’s denote the 4-bytes shares of t that are securely computed from the 4-bytes
shares of w∗,j−1. Such a secure computation can be easily deduced from the methods described
above. The SubWord transformation is processed by applying the secure S-box computation
described in Section 3.1 to the byte shares (w0)l,j, (w1)l,j, . . . , (wd)l,j for each row-coordinate

l ∈ [1, 4]. Since RotWord is linear with respect to the XOR, it is applied (when involved) to
every share separately. Finally, when Rconj/Nk must be added to t, it is added to one of its
share (e.g. t0).

The whole dth-order secure key expansion process is summarized in the following algo-
rithm.

Algorithm 6 dth-order secure AES key expansion
Input: key shares ki satisfying

⊕
i ki = k

Output: shares wi satisfying
⊕

i wi = w

1. for j = 1 to Nk do

2. for i = 0 to d do (wi)∗,j ← (ki)∗,j
3. for j = Nk + 1 to 4(Nr + 1) do

4. for i = 0 to d do ti ← (wi)∗,j−1

5. if
(
(j mod Nk = 0) or (Nk = 8) and (j mod Nk = 4)

)
then

6. for l = 1 to 4 do
(
(t0)l, (t1)l, . . . , (td)l

)
← SecSbox

(
(t0)l, (t1)l, . . . , (td)l

)

7. if (j mod Nk = 0) then

8. for i = 0 to d do ti ← RotWord(ti)

9. t0 ← t0 ⊕ Rconj/Nk

10. for i = 0 to d do (wi)∗,j−1 ← (wi)∗,j−Nk ⊕ ti

Remark 3. Note that the key expansion can be executed on-the-fly during the AES compu-
tation in order to avoid the storage of all the round keys.

Masking the whole AES: algorithmic description. Algorithm 7 summarizes the whole
AES computation secure against dth-order SCA.

Algorithm 7 dth-order secure AES computation
Input: plaintext p, key shares ki satisfying

⊕
i ki = k

Output: ciphertext c

1. s0 ← p

*** State masking ***

2. for i = 0 to d do

3. si ← rand(16× 8)

4. s0 ← s0 ⊕ si

*** All but last rounds ***

5. for r = 1 to Nr− 1 do

6. for i = 0 to d do si ← si ⊕ kr
i

7. for l = 1 to 4, j = 1 to 4 do

8.
(
(s0)l,j , (s1)l,j , . . . , (sd)l,j

)
← SecSbox

(
(s0)l,j , (s1)l,j , . . . , (sd)l,j

)

9. for i = 0 to d do si ← MixColumns
(
ShiftRows(si)

)

*** Last round ***

10. for i = 0 to d do si ← si ⊕ kNr
i

11. for l = 1 to 4, j = 1 to 4 do

12.
(
(s0)l,j , (s1)l,j , . . . , (sd)l,j

)
← SecSbox

(
(s0)l,j , (s1)l,j , . . . , (sd)l,j

)

13. for i = 0 to d do si ← ShiftRows(si)

14. for i = 0 to d do si ← si ⊕ kNr+1
i

*** State unmasking ***

15. c← s0

16. for i = 1 to d do c← c⊕ si

4 Security Analysis

In this section, we give a formal security proof for our scheme. After describing the security
model, we pay particular attention to the secure field multiplication algorithm SecMult (i.e.
the generalized ISW scheme) which is the sensitive part of our scheme. We improve the
security proof given in [18] for the ISW scheme and we show that it achieves dth-order
security rather than (d/2)th-order security. Afterward, we prove the security of the whole
AES computation (Algorithm 7).

4.1 Security Model

We consider a randomized encryption algorithm E taking a plaintext p and a (randomly
shared) secret key k as inputs6 and performing a deterministic encryption of p under the
secret key k while randomizing its internal computations by means of an external random
number generator (RNG). The RNG outputs are assumed to be perfectly random (uniformly
distributed, mutually independent and independent of the plaintext and of the secret key).
Any variable that can be expressed as a deterministic function of the plaintext and the
secret key, which is not constant with respect to the secret key, is called a sensitive variable
with the exception of the ciphertext Ek(p) or any deterministic function of it. Note that
every intermediate variable computed during an execution of E (except the plaintext and the
ciphertext) can be expressed as a deterministic function of a sensitive variable and of the
RNG outputs.

We shall consider the plaintext, the secret key and the intermediate variables of E as
random variables. The distributions of the intermediate variables are induced by the algo-
rithm inputs (p and k) distributions and by the uniformity of the RNG outputs. The joint
distribution of all the intermediate variables of E thus depends on (p, k). On the other hand,
some subsets of intermediate variables may be jointly independent of (p, k). This leads us to
the following formal definition of dth-order SCA security.

Definition 1. A randomized encryption algorithm is said to achieve dth-order SCA security
if every d-tuple of its intermediate variables is independent of any sensitive variable.

Equivalently, an encryption algorithm achieves dth-order SCA security if any d-tuple of
its intermediate variables, except the plaintext and the ciphertext (or any function of one of
them), is independent of the algorithm inputs (p, k).

Before proving the security of our scheme, we need to introduce a few additional notions.
A (d + 1)-family of shares is a family of d + 1 intermediate variables (xi)06i6d such that
every d-tuple of xi’s is uniformly distributed and independent of any sensitive variable and⊕

06i6d xi is a sensitive variable. Two (d+ 1)-families of shares (xi)i and (yi)i are said to be

6 The secret key k is assumed to be split into d + 1 shares k0, k1, . . . , kd such that
⊕

i ki = k and every d-tuple of
ki’s is uniformly distributed and independent of k.

d-independent one of each other if every (2d)-tuple composed of d elements from (xi)i and
of d elements from (yi)i is uniformly distributed and independent of any sensitive variable.
Two (d + 1)-families of shares are said to be d-dependent one on each other if they are
not d-independent. A randomized encryption algorithm aiming at dth-order SCA security
typically operates on (d + 1)-families of shares. Such an algorithm can hence be split into
several randomized elementary transformations defined as algorithms taking one or two d-
independent (d+ 1)-families of shares as input and returning a (d+ 1)-family of shares.

To prove the dth-order SCA security of our scheme, we will first show that it can be split
into several randomized elementary transformations each achieving dth-order SCA security.
Afterward, the security of the whole algorithm will be demonstrated.

As in [18], our proofs shall apply similar techniques as zero-knowledge proofs [16]. We
shall show that the distribution of every d-tuple of intermediate variables (v1, v2, . . . , vd) of
our randomized AES algorithm can be perfectly simulated without knowing p and k. Namely,
we show that it is possible to construct a d-tuple of random variables which is identically
distributed as (v1, v2, . . . , vd), independently of any statement about p and k. In some cases,
the simulated distribution shall involve some intermediate variables (wi)i (different from the
vi’s). We shall then say that (v1, v2, . . . , vd) can be perfectly simulated from the wi’s. It follows
that if (v1, v2, . . . , vd) can be perfectly simulated from some intermediate variables wi’s which
are jointly independent of p and k, then (v1, v2, . . . , vd) is also independent of p and k. We
are now able to introduce the first lemma of our security proof.

Lemma 1. A randomized elementary transformation T achieves dth-order SCA security if
and only if the distribution of every d-tuple of its intermediate variables can be perfectly
simulated from at most d shares of each of its input (d+ 1)-families.

Proof. Let us assume that every d-tuple v = (v1, v2, . . . , vd) of intermediate variables of T
can be perfectly simulated from at most d shares of each of its input (d + 1)-families of
shares. By definition of a (d+ 1)-family of shares, this amounts to assume that every such v
can be simulated from (at most) 2d uniform random variables that are independent of any
sensitive variable. It follows that every d-tuple of intermediate variables v is independent of
any sensitive variable, which implies that T is dth-order SCA secure. Let us now assume
that there exits a d-tuple v of intermediate variables which requires all the d + 1 shares of
one of its input (d + 1)-families – let say (xi)i – to be perfectly simulated. Then, denoting⊕

i xi = x where x is a sensitive variable, we get that v depends on x (otherwise d shares xi
would suffice to the simulation) which contradicts the dth-order SCA security of T . �

Lemma 1 shows that proving the security of a randomized elementary transformation T
can be done by exhibiting a method for perfectly simulating the distribution of any d-tuple
of intermediate variables of T from the values of at most d shares of each input (d+1)-family
of T . We follow this approach in the next section to prove the security of the secure field
multiplication algorithm SecMult (Algorithm 1).

4.2 Improved Security Proof for the ISW Scheme

The theorem hereafter states that the generalized ISW scheme (Algorithm 1) achieves dth-
order SCA security.

Theorem 1. Let (ai)06i6d and (bi)06i6d be two d-independent (d + 1)-families of shares in
input of Algorithm 1. Then, the distribution of every tuple of d or less intermediate variables
in Algorithm 1 is independent of the distribution of values taken by a =

⊕
06i6d ai and

b =
⊕

06i6d bi.

The proof given hereafter follows the outlines of that given by Ishai et al. in their paper but
it is tighter: we prove that the scheme achieves dth-order SCA security rather than (d/2)th-
order SCA security as proved in [18]. The core idea of our improvement is to simulate the
distribution of any d-tuple of intermediate variables of Algorithm 1 from d shares in (ai)i and
d shares in (bi)i instead of simulating any (d/2)-tuple of intermediate variables from d pairs
of shares in (ai, bi)i.

Proof. Our proof consists in constructing two sets I and J of indices in [0; d] with cardinalities
lower than or equal to d and such that the distribution of any d-tuple (v1, v2, . . . , vd) of
intermediate variables of Algorithm 1 can be perfectly simulated from a|I := (ai)i∈I and
b|J = (bj)j∈J . This will prove the theorem statement since, by definition, a|I and b|J are
jointly independent of (a, b) as long as the cardinalities of I and J are strictly smaller than
d. We describe the constructions of I and J hereafter.

1. Initially, I and J are empty and all the vh’s are unassigned.
2. For every intermediate variable vh of the form ai, bi, aibi, ri,j (for any i 6= j) or a sum of

values of the above form (including ci as a special case) add i to I and J . This covers all
the intermediate variables of Algorithm 1 except those appearing in the computation of
rj,i (Step 4) which are of the form aibj or ri,j ⊕ aibj. For those intermediate variables add
i to I and j to J .

3. Now that the sets I and J have been determined – and note that since there are at most
d intermediate variables vh, the cardinalities of I and J can be at most d – we show how
to complete a perfect simulation of the d-tuple (v0, v1, . . . , vd) using only the values of
a|I and b|J . First, we assign values to every ri,j entering in the computation of any vh as
follows:
– If i /∈ I (regardless of j), then ri,j does not enter into the computation for any vh.

Thus, its value can be left unassigned.
– If i ∈ I, but j /∈ I, then ri,j is assigned a random independent value. Indeed, if i < j

this is what would have happened in Algorithm 1. If i > j, however, we are making
use of the fact that rj,i will never be used in the computation of any vh (otherwise we
would have j ∈ I by construction). Hence we can treat ri,j as a uniformly random and
independent value.

– If {i, j} ⊆ I and {i, j} ⊆ J , then we have access to ai, aj, bi and bj and we thus compute
ri,j and rj,i exactly as they would have been computed in Algorithm 1; i.e., one of them
(say ri,j) is assigned a random value and the other rj,i is assigned ri,j ⊕ aibj ⊕ ajbi.

– If {i, j} ⊆ I and {i, j} * J , then at least ri,j or rj,i (or both) does not enter into
the computation for any vh (otherwise we would have {i, j} ⊆ J by construction).
Following the same reasoning as previously (case i ∈ I, j /∈ I), we can then assign a
random independent value to the one (if any) that enters in the computation of the
vh’s.

4. For every intermediate variable vh of the form ai, bi, aibi, ri,j (for any i 6= j), or a sum of
values of the above form (including ci as a special case), we know that i ∈ I and i ∈ J ,

and all the needed values of ri,j have already been assigned in a perfect simulation. Thus,
vh can be computed in a perfect simulation.

5. The only types of intermediate variables remaining are vh = aibj or vh = ri,j ⊕ aibj. By
construction, we have i ∈ I and j ∈ J which allows us to compute aibj, and since all the
ri,j (entering into the computation of the vh’s) has been assigned, the value of vh can be
simulated perfectly.

�

4.3 Security Proof of Our Scheme

The following theorem states the security of our whole randomized AES (Algorithm 7).

Theorem 2. The randomized AES computation depicted in Algorithm 7 achieves dth-order
SCA security.

In order to demonstrate the theorem statement, we will use the following lemma.

Lemma 2. Let T be a randomized elementary transformation. If T achieves dth-order SCA
security then the distribution of every intermediate variable of T can be perfectly simulated
from at most one share of every input (d+ 1)-families of T .

Proof. Suppose that the simulation of the distribution of an intermediate variable v from T
requires at least two shares xi1 and xi2 from the same family (xi)i. The d-tuple composed
of v and of the d− 2 shares (xi)i 6=i1,i2 requires the whole (d + 1)-family of shares (xi)i to be
perfectly simulated which by Lemma 1 is in contradiction with the dth-order security of T .
�

Proof (Theorem 2). An execution of our randomized AES algorithm can be expressed as a
sequence of executions of the following randomized elementary transformations7:

– the secure key addition (Steps 6, 10 and 14 of Algorithm 7),

– the secure affine transformation (Steps 1 and 2 of Algorithm 5),

– the secure square (Step 1 of Algorithm 3), the secure raising to the 4 (Step 4 of Algorithm
3) and the secure raising to the 16 (Step 7 of Algorithm 3),

– the RefreshMasks procedure (Algorithm 4),

– the SecMult algorithm (Algorithm 1),

– the secure ShiftRows and the secure MixColumns transformations (Steps 9 and 13 of Al-
gorithm 7).

7 For simplicity we omit the randomized elementary transformations used in the secure key expansion (Algorithm
6). Note that they could be listed without affecting the rest of the proof.

All these transformations take as input either a single (d + 1)-family of shares (all trans-
formations but the secure key addition and SecMult) or two d-independent (d + 1)-families
of shares (secure key addition and SecMult). Moreover they all achieve dth-order SCA secu-
rity (it has been proven for SecMult in the previous section and it is straightforward for the
remaining randomized elementary transformations since they operate on each input share
independently). Let us consider a d-tuple (v1, v2, . . . , vd) of intermediate variables each from
a randomized elementary transformation Ti. By Lemma 2, the distribution of every vi can be
perfectly simulated given the value of at most one share of every (d+ 1)-families in input of
Ti. Since by definition the (d+ 1)-families in input of the same Ti are independent, the set of
shares which are necessary to simulate (v1, v2, . . . , vd) does not contain more than d shares
from the same (d + 1)-family or from d-dependent (d + 1)-families. It follows that the dis-
tribution of (v1, v2, . . . , vd) can be perfectly simulated from uniform random values that are
jointly independent of any sensitive variable. In other words, (v1, v2, . . . , vd) is independent
of any sensitive variable. �

5 Implementation Results

To compare the efficiency of our proposal with that of other methods proposed in the litera-
ture, we applied them to protect an implementation of the AES-128 algorithm in encryption
mode. We have implemented our new countermeasure for d ∈ {1, 2, 3}, namely to coun-
teract either first-order SCA (d = 1) or second-order SCA (d = 2) or third-order SCA
(d = 3). Among the numerous methods proposed in the literature to thwart first-order SCA
we chose to implement only that having the best timing performance (the table re-computation
method [23]) and that offering the best memory performance (the tower field method [28]).
In the second-order case, we implemented the only two existing methods: the one proposed
in [38]8 and the one proposed [34]. Eventually, since no countermeasure against 3rd-order
SCA was existing before that introduced in this paper, it is the single one in its category.

We wrote the codes in assembly language for an 8051-based 8-bit architecture. The imple-
mentations only differ in their approaches to protect the S-box computations. The linear steps
of the AES have been implemented in the same way, by following the outlines of the method
presented in Sect. 3.2 (and also used in [38] and [34]). In Table 2, we list the timing/memory
performances of the different implementations.

As expected, in the first-order case the countermeasures introduced in [23] and [28,29] are
much more efficient than ours. This is a consequence of the generic character of our method
which is not optimized for one choice of d but aims to work for any d. For instance, the
representation of the AES S-box used in [28, 29] involves less field multiplications than our
representation. Moreover, those field multiplications can be defined in the subfield F16 of F256,
where the field operations can be entirely looked-up thanks to a table of 256 bytes in code
memory.

In the second-order case, our proposal becomes much more efficient than the existing
solutions. It is 2.2 times faster than the countermeasure proposed in [38] with a RAM memory
requirement divided by around 10. It is also 2.5 times faster than the countermeasure in [34]
and requires 5.3 times less RAM. Memory allocation differences are merely due to the fact

8 Initially, the method of [38] was devoted to thwart dth-order SCA for any chosen order d but it has been shown
insecure for d > 3 [8].

Table 2. Comparison of secure AES implementations

Method Reference cycles RAM (bytes) ROM (bytes)

Unprotected Implementation

No Masking Na. 3× 103 32 1150

First Order Masking

Re-computation [23] 10× 103 256 + 35 1553

Tower Field in F4 [28, 29] 77× 103 42 3195

Our scheme for d = 1 This paper 129× 103 73 3153

Second Order Masking

Double Re-computations [38] 594× 103 512 + 90 2336

Single Re-computation [34] 672× 103 256 + 86 2215

Our scheme for d = 2 This paper 271× 103 79 3845

Third Order Masking

Our scheme for d = 3 This paper 470× 103 103 4648

that the methods [38] and [34] generalize the table re-computation method and thus require
the storage of one (for [34]) or two (for [38]) randomized representation(s) of the AES S-
box. The differences in timing performances come from the fact that the methods in [38]
and [35] process one loop over all the 256 elements of the S-box look-up table (each loop
iteration processing itself a few elementary operations), which is more costly than the 36
field multiplications and 56 bitwise additions involved in our method (see Table 1).

Remark 4. In [34], an improvement of the method implemented for Table 2 is proposed that
enables to decrease the number of iterations required for the secure S-box computation when
implemented on a 16-bit or 32-bit architecture. In such a context (d = 2, 16-bit or 32-bit
architecture), the method would still requires much more RAM allocation than ours but it
could be slightly more efficient in timing.

Eventually, in the third-order case our method has acceptable timing/memory perfor-
mances. For comparison, it stays faster than the second-order countermeasures proposed
in [38] and [34] and it still requires much less RAM memory. For chips running at 5MHz and
31MHz, an AES encryption of one block requiring 470 × 103 cycles, takes 94ms and 15ms
respectively. For some use cases where the size of the message to encrypt/decrypt is not
too long such a timing performance is acceptable (e.g. challenge-response protocols, Message
Authentication Codes for one-block messages as in banking transactions).

6 Conclusion

In this paper, we have presented the first masking scheme dedicated to AES which is provably
secure at any chosen order and which can be implemented in software at the cost of a
reasonable overhead. We gave a formal security proof of our scheme including an improved
security proof for the scheme published by Ishai et al. at Crypto 2003. We also provided
implementation results showing the practical interest of our scheme as well as its efficiency
compared to the existing second-order masking schemes.

References

1. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against Some Attacks. In cC. Kocc,
D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162
of Lecture Notes in Computer Science, pages 309–318. Springer, 2001.

2. G. Blakely. Safeguarding cryptographic keys. In National Comp. Conf., volume 48, pages 313–317, New York,
June 1979. AFIPS Press.

3. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES. In M. Matsui and R. Zuccherato,
editors, Selected Areas in Cryptography – SAC 2004, volume 3357 of Lecture Notes in Computer Science, pages
69–83. Springer, 2004.

4. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM J.
Comput., 13(4):850–864, 1984.

5. D. Canright. A Very Compact S-Box for AES. In J. Rao and B. Sunar, editors, Cryptographic Hardware and
Embedded Systems – CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages 441–455. Springer,
2005.

6. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Counteract Power-Analysis Attacks. In
M. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 398–412. Springer, 1999.

7. S. Chari, J. Rao, and P. Rohatgi. Template Attacks. In B. Kaliski Jr., cC. Kocc, and C. Paar, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2002, volume 2523 of Lecture Notes in Computer Science,
pages 13–29. Springer, 2002.

8. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher Order Masking Scheme. In
P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems – CHES 2007, volume
4727 of Lecture Notes in Computer Science, pages 28–44. Springer, 2007.

9. R. Cramer, I. Damg̊ard, and Y. Ishai. Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure
Computation. In J. Kilian, editor, Theory of Cryptography Conference – TCC 2005, volume 3378 of Lecture Notes
in Computer Science, pages 342–362. Springer, 2005.

10. G. D. Crescenzo, R. J. Lipton, and S. Walfish. Perfectly Secure Password Protocols in the Bounded Retrieval
Model. In S. Halevi and T. Rabin, editors, TCC, volume 3876 of Lecture Notes in Computer Science, pages
225–244. Springer, 2006.

11. J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.
12. I. Damg̊ard and M. Keller. Secure Multiparty AES (full paper). Cryptology ePrint Archive, Report 20079/614,

2009. http://eprint.iacr.org/.
13. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302. IEEE Computer

Society, 2008.
14. FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards and Technology, Nov. 2001.
15. FIPS PUB 46-3. Data Encryption Standard (DES). National Institute of Standards and Technology, Oct. 1999.
16. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM J.

Comput., 18(1):186–208, 1989.
17. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication Method. In cC. Kocc and

C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES ’99, volume 1717 of Lecture Notes in
Computer Science, pages 158–172. Springer, 1999.

18. Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against Probing Attacks. In D. Boneh,
editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
463–481. Springer, 2003.

19. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor, Advances in Cryptology –
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

20. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS Gates. In A. Menezes,
editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 351–365.
Springer, 2005.

21. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES Hardware Implementations.
In J. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES 2005, volume 3659 of
Lecture Notes in Computer Science, pages 157–171. Springer, 2005.

22. U. Maurer. A provably-secure strongly-randomized cipher. In I. Damg̊ard, editor, Advances in Cryptology –
EUROCRYPT ’90, volume 473 of Lecture Notes in Computer Science, pages 361–388. Springer, 1990.

23. T. Messerges. Securing the AES Finalists against Power Analysis Attacks. In B. Schneier, editor, Fast Software
Encryption – FSE 2000, volume 1978 of Lecture Notes in Computer Science, pages 150–164. Springer, 2000.

24. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant Software. In cC. Kocc and C. Paar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in Computer
Science, pages 238–251. Springer, 2000.

25. S. Micali and L. Reyzin. Physically Observable Cryptography (Extended Abstract). In M. Naor, editor, Theory
of Cryptography Conference – TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 278–296.
Springer, 2004.

26. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-linear Functions in the Presence
of Glitches. In P. J. Lee and J. H. Cheon, editors, Information Security and Cryptology – ICISC 2008, volume
5461 of Lecture Notes in Computer Science, pages 218–234. Springer, 2008.

27. E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical Second-order DPA Attacks for Masked Smart Card
Implementations of Block Ciphers. In D. Pointcheval, editor, Topics in Cryptology – CT-RSA 2006, volume 3860
of Lecture Notes in Computer Science, pages 192–207. Springer, 2006.

28. E. Oswald, S. Mangard, and N. Pramstaller. Secure and Efficient Masking of AES – A Mission Impossible ?
Cryptology ePrint Archive, Report 2004/134, 2004.

29. E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel Analysis Resistant Description of the
AES S-box. In H. Handschuh and H. Gilbert, editors, Fast Software Encryption – FSE 2005, volume 3557 of
Lecture Notes in Computer Science, pages 413–423. Springer, 2005.

30. C. Petit, F.-X. Standaert, O. Pereira, T. Malkin, and M. Yung. A block cipher based pseudo random number gen-
erator secure against side-channel key recovery. In M. Abe and V. D. Gligor, editors, Symposium on Information,
Computer and Communications Security – ASIACCS 2008, pages 56–65. ACM, 2008.

31. K. Pietrzak. A Leakage-Resilient Mode of Operation. In A. Joux, editor, Advances in Cryptology – EUROCRYPT
2009, volume 5479 of Lecture Notes in Computer Science, pages 462–482. Springer, 2009.

32. T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard. Evaluation of the Masked Logic Style MDPL on a
Prototype Chip. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems –
CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 81–94. Springer, 2007.

33. M. Rivain. On the Physical Security of Cryptographic Implementations. PhD thesis, University of Luxembourg,
September 2009.

34. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably Secure Against Second Order
Side Channel Analysis. In K. Nyberg, editor, Fast Software Encryption – FSE 2008, Lecture Notes in Computer
Science, pages 127–143. Springer, 2008.

35. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably Secure Against Second Order Side
Channel Analysis. Cryptology ePrint Archive, Report 2008/021, 2008. http://eprint.iacr.org/.

36. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. Cryptology ePrint Archive, 2010.
http://eprint.iacr.org/.

37. M. Rivain, E. Prouff, and J. Doget. Higher-Order Masking and Shuffling for Software Implementations of Block
Ciphers. In C. Clavier and K. Gaj, editors, Cryptographic Hardware and Embedded Systems – CHES 2009, volume
5747 of Lecture Notes in Computer Science, pages 171–188. Springer, 2009.

38. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval, editor, Topics in Cryptology –
CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 208–225. Springer, 2006.

39. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.
40. F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and E. Oswald. Leakage resilient cryptography

in practice. Cryptology ePrint Archive, Report 2009/341, 2009. http://eprint.iacr.org/.
41. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed, M. Kasper, and S. Mangard. The

World is Not Enough: Another Look on Second-Order DPA. Cryptology ePrint Archive, Report 2010/180, 2010.
http://eprint.iacr.org/.

42. S. Tillich and C. Herbst. Attacking State-of-the-Art Software Countermeasures-A Case Study for AES. In
E. Oswald and P. Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer Science, pages 228–243.
Springer, 2008.

Appendix B
Higher-Order Masking Schemes for
S-boxes
Hereafter is appended the full version of our paper [CGP+12], joint work with Claude
Carlet, Louis Goubin, Emmanuel Prouff and Michael Quisquater, published at FSE
2012.

Higher-Order Masking Schemes for S-Boxes

Claude Carlet1, Louis Goubin2, Emmanuel Prouff3, Michael Quisquater2, and
Matthieu Rivain4

1 LAGA, Université de Paris 8
claude.carlet@univ-paris8.fr

2 Université de Versailles St-Quentin-en-Yvelines
louis.goubin@prism.uvsq.fr

michael.quisquater@prism.uvsq.fr
3 Oberthur Technologies
e.prouff@gmail.com

4 CryptoExperts
matthieu.rivain@cryptoexperts.com

Abstract. Masking is a common countermeasure against side-channel
attacks. The principle is to randomly split every sensitive intermediate
variable occurring in the computation into d+1 shares, where d is called
the masking order and plays the role of a security parameter. The main is-
sue while applying masking to protect a block cipher implementation is to
design an efficient scheme for the s-box computations. Actually, masking
schemes with arbitrary order only exist for Boolean circuits and for the
AES s-box. Although any s-box can be represented as a Boolean circuit,
applying such a strategy leads to inefficient implementation in software.
The design of an efficient and generic higher-order masking scheme was
hence until now an open problem. In this paper, we introduce the first
masking schemes which can be applied in software to efficiently protect
any s-box at any order. We first describe a general masking method and
we introduce a new criterion for an s-box that relates to the best effi-
ciency achievable with this method. Then we propose concrete schemes
that aim to approach the criterion. Specifically, we give optimal meth-
ods for the set of power functions, and we give efficient heuristics for the
general case. As an illustration we apply the new schemes to the DES
and PRESENT s-boxes and we provide implementation results.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical
environment of a cryptosystem to recover some leakage about its secrets. It
is often more efficient than a cryptanalysis mounted in the so-called black-box
model where no leakage occurs. In particular, continuous side-channel attacks in
which the adversary gets information at each invocation of the cryptosystem are
especially threatening. Common attacks as those exploiting the running-time,
the power consumption or the electromagnetic radiations of a cryptographic
computation fall into this class.

Many implementations of block ciphers have been practically broken by con-
tinuous side-channel analysis — see for instance [6, 18, 20, 22] — and securing
them has been a longstanding issue for the embedded systems industry. A sound
approach is to use secret sharing [3, 30], often called masking in the context of
side-channel attacks. This approach consists in splitting each sensitive variable of
the implementation (i.e. variables depending on the secret key) into d+1 shares,
where d is called the masking order. It has been shown that the complexity of
mounting a successful side-channel attack against a masked implementation in-
creases exponentially with the masking order [7]. Starting from this observation,
the design of efficient masking schemes for different ciphers has become a fore-
ground issue.

The DES cipher has been the focus of first designs, with the notable work of
Goubin and Patarin in [13]. Further schemes have been subsequently published,
in particular for the AES cipher, applying masking in hardware or software
with different area-time-memory trade-offs [2,4,21,23,26,29]. All these schemes
deal with first-order masking, namely the intermediate variables are split in two
shares (a mask and a masked variable). As a result, they only thwart first order
side-channel attacks in which the adversary exploits the leakage of a single inter-
mediate computation. During the last years, several works have demonstrated
that this defense strategy was not sufficient for long term security purpose and
that higher-order attacks could be successfully performed against cryptographic
implementations (see e.g. [22]). This has raised the need for secure and efficient
higher-order masking schemes.

Higher-Order Masking. The principle of higher-order masking is to split
every sensitive variable x occurring during the computation into d+1 shares x0,
. . . , xd in such a way that the following relation is satisfied for a group operation
⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the addition over some field of
characteristic 2. Usually, the d shares x1, . . . , xd (called the masks) are randomly
picked up and the last one x0 (called the masked variable) is processed such that
it satisfies (1). When d random masks are involved per sensitive variable the
masking is said to be of order d. The tuple (xi)i is further called a dth-order
encoding of x.

When higher-order masking is involved to protect a block cipher implemen-
tation, a so-called masking scheme must be designed to enable the computation
on masked data. Such a scheme must ensure that the final shares correspond
to the expected ciphertext on the one hand, and it must ensure the dth-order
security property for the chosen order d on the other hand. The latter property
states that every tuple of d or less intermediate variables is independent of any
sensitive variable. When satisfied, it guarantees that no attack of order lower
than or equal to d is possible.

Most block cipher structures (e.g. AES or DES) are iterative, meaning that
they apply several times a same transformation, called round, to an internal state

initially filled with the plaintext. The round itself is composed of a key addition,
one or several linear transformation(s) and one or several non-linear s-box(es).
Key addition and linear transformations are easily handled as linearity enables
to process each share independently. The main difficulty in designing masking
schemes for block ciphers hence lies in masking the s-box(es).

Masking and S-Boxes. Whereas many solutions have been proposed to deal
with the case of first-order masking (see e.g. [2, 4, 21, 25]), only a few solutions
exist for the higher-order case. A scheme has been proposed by Schramm and
Paar in [29] which generalizes the (first-order) table recomputation method de-
scribed in [2,21]. Although the authors apply their method in the particular case
of an AES implementation, it is generic and can be applied to protect any s-
box. Unfortunately, this scheme has been shown to be vulnerable to a 3rd-order
attack whatever the chosen masking order [8]. In other words, it only provides
2nd-order security. Further schemes were proposed by Rivain, Dottax and Prouff
in [26] with formal security proofs but still limited to 2nd-order security.

The first scheme achieving dth-order security for an arbitrary chosen d has
been designed by Ishai, Sahai and Wagner in [14]. The here-called ISW scheme
consists in masking the Boolean representation of an algorithm which is com-
posed of logical operations NOT and AND. Securing a NOT for any order d
is straightforward since x =

⊕
i xi implies NOT(x) = NOT(x0) ⊕ x1 · · · ⊕ xd.

The main contribution of [14] is a method to secure the AND operation for
any arbitrary order d (the description of this scheme is recalled in Section 2.1).
Although the ISW scheme is an important theoretical result, its practical ap-
plication faces some issues. At the hardware level, the obtained circuits may
have prohibitive area requirements, especially for being used in embedded sys-
tems (privileged targets of side-channel attacks). Moreover, Mangard et al. have
shown in [19,20] that masking at the hardware level is sensitive to glitches which
induce unpredicted flaws in masked circuits. Preventing glitches can be done
thanks to synchronization elements (e.g. registers or latches) [24] or by perform-
ing additional sharing [23] but in both cases, the circuit size is still significantly
increased. On the other hand, a direct application of the ISW scheme to secure
an s-box computation in software would consist in taking the Boolean repre-
sentation of the s-box and in processing every logical operation successively in
a masked way. Since the Boolean representation of common s-boxes involves a
huge number of logical operations, the resulting implementation would likely be
inefficient.

In the particular case of AES, a solution has been proposed by Rivain and
Prouff in [27] to efficiently mask the s-box processing at any order. Specifically,
the authors use the algebraic structure of the AES s-box, which is the composi-
tion of an affine function over F8

2 with the power function x 7→ x254 over F256,
and they show that it can be expressed as a sequence of operations involving a
few linear functions over F8

2 (easy to mask) and four multiplications over F256.
The latter are secured by applying the ISW scheme (generalized to F256). Sub-
sequently, Kim, Hong and Lim have presented in [15] an extension of Rivain and

Prouff’s scheme, which is based on the tower-field approach from [28]. On the
other hand, Genelle, Prouff and Quisquater have proposed in [12] a higher-order
scheme based on the alternate use of Boolean masking and multiplicative mask-
ing. Although schemes in [15] and [12] achieve better performances than [27],
they are still restricted to the AES s-box and their generalization to any s-box
(or subclasses) is an open issue.

Our Contribution. The present paper introduces the first higher-order mask-
ing scheme which can be applied to efficiently protect any s-box processing in
software. We first give a general method that extends the Rivain and Prouff
approach to mask any s-box and we introduce a new criterion for an s-box that
relates to the best efficiency achievable with our method. Then we give concrete
schemes that aim to approach the so-called masking complexity. Specifically, we
give optimal methods for the set of power functions, and we give efficient heuris-
tics for the general case. As an illustration we apply our scheme to the DES and
PRESENT s-boxes and we provide implementation results.

2 Higher-Order Masking of any S-Box

In this section, we describe a general method to mask any s-box and we introduce
a related masking complexity criterion.

2.1 General Method

An s-box is a function from {0, 1}n to {0, 1}m with m ≤ n and n small (typically
n ∈ {4, 6, 8}). We shall use the terminology of (n,m) s-box when the dimensions
need to be specified. To design a higher-order masking scheme for such a function,
our approach is to express it as a sequence of affine functions over Fn2 , and
multiplications over F2n . Such a strategy is always possible since any (n,m)

s-box can be represented by a polynomial function x 7→ ∑2n−1
i=0 aix

i over F2n

where the ai are constant coefficients in F2n . The ai can be obtained from the
s-box look-up table by applying Lagrange’s Interpolation Theorem. When m is
strictly lower than n, the m-bit outputs can be embedded into F2n by padding
them to n-bit outputs (e.g. by setting most significant bits to 0). The padding is
then removed after the polynomial evaluation. We recall hereafter the Lagrange
Interpolation Theorem applied to our context.

Theorem 1 (Lagrange Interpolation). Let S be a function F2n → F2n .
Then, for every x ∈ F2n , we have:

S(x) =
∑

α∈F2n

S(α)`α(x) , (2)

where, for every α ∈ F2n , `α is defined as:

`α(x) =
∏

β∈F2n
β 6=α

x− β
α− β . (3)

Remark 1. The `α are called the Lagrange basis polynomials and satisfy `α(x) =
1 if x = α and `α(x) = 0 otherwise. In particular, every `α is a monic polynomial
of degree 2n−1, and we have `α(x) = (x+α)2

n−1 +1. Moreover, the coefficients
of S(x) can be directly computed from the Mattson-Solomon polynomial by:

ai =





S(0) if i = 0∑2n−2
k=0 S(αk)α−ki if 1 ≤ i ≤ 2n − 2

S(1) +
∑2n−2
i=0 ai if i = 2n − 1

for every primitive element α of F2n .

The polynomial representation of an s-box is based on four kinds of oper-
ations over F2n : additions, scalar multiplications (i.e. multiplications by con-
stants), squares, and regular multiplications (i.e. of two different variables). Ex-
cept for the latter, all these operations are Fn2 -linear (or Fn2 -affine), that is the
corresponding function over Fn2 are linear (resp. affine). The processing of any
s-box can then be performed as a sequence of Fn2 -affine functions (themselves
composed of additions, squares and scalar multiplications over F2n) and of reg-
ular multiplications over F2n , called nonlinear multiplications in the following.
Masking an s-box processing can hence be done by masking every affine function
and every nonlinear multiplication independently. We recall hereafter how this
can be done for each category.

Masking of Fn2 -affine functions. Let x =
∑
i xi be a shared variable. Every affine

function g with additive part cg satisfies:

g(x) =

{∑d
i=0 g(xi) if d is even,

cg +
∑d
i=0 g(xi) if d is odd.

The masked processing of g then simply consists in evaluating g for every share
xi, and possibly correcting one of them by addition of cg. Such a processing
clearly achieves dth-order security as the shares are all processed independently.

Masking of nonlinear multiplications. Every nonlinear multiplication can be pro-
cessed by using the ISW scheme. Let a, b ∈ F2n and let (ai)0≤i≤d and (bi)0≤i≤d
be dth-order encoding of a and b. To securely compute a dth-order encoding
(ci)0≤i≤d of c = ab, the ISW method over F2n performs as follows:5

1. For every 0 ≤ i < j ≤ d, pick up a random value ri,j in F2n .
2. For every 0 ≤ i < j ≤ d, compute rj,i = (ri,j + aibj) + ajbi.
3. For every 0 ≤ i ≤ d, compute ci = aibi +

∑
j 6=i ri,j .

It can be checked that the obtained shares are a sound encoding of c. Namely,
we have:

d∑

i=0

ci =
(d∑

i=0

ai
)(d∑

i=0

bi
)

= ab = c.

5 The use of brackets indicates the order in which the operations are performed, which
is mandatory for the security of the scheme.

In [14] it is shown that the above computation achieves (d/2)th-order security.
A tighter security proof is given in [27] which shows that dth-order security is
actually achieved as long as the masks of the two inputs are independent.

Remark 2. Another method to process a masked multiplication at an arbitrary
order is used in [10] to achieve provable security under specific leakage assump-
tions. However this method requires more operations and more random bits than
the ISW scheme does. For this reason, the ISW scheme should be preferred in a
usual dth-order security model.

2.2 Masking Complexity

The scheme described in the previous section secures the computation of any
(n,m) s-box S by masking its polynomial representation over F2n . The evalua-
tion of such a polynomial is composed of Fn2 -affine functions g and of nonlinear
multiplications. The masked processing of each Fn2 -affine function g merely in-
volves d+ 1 evaluations of g itself, while it involves (d+ 1)2 field multiplications,
2d(d+ 1) field additions and the generation of nd(d+ 1)/2 random bits for each
nonlinear multiplication. The masked processing of Fn2 -affine functions hence
quickly becomes negligible compared to the masked processing of nonlinear mul-
tiplications as d grows. This observation motivates the following definition of the
masking complexity for an s-box.

Definition 1 (Masking Complexity). Let m and n be two integers such that
m ≤ n. The masking complexity of a (n,m) s-box is the minimal number of
nonlinear multiplications required to evaluate its polynomial representation over
F2n .

The following proposition directly results from this definition.

Proposition 1. The masking complexity of an s-box is invariant when composed
with Fn2 -affine bijections in input and/or in output.

Remark 3. Since field isomorphisms are F2-linear bijections, the choice of the
irreducible polynomial to represent field elements does not impact the masking
complexity of an s-box.

In the next sections, we address the issue of finding polynomial evaluations of
an s-box that aim at minimizing the number of nonlinear multiplications. Those
constructions will enable us to deduce upper bounds on the masking complexity
of an s-box. We first study the case of power functions whose polynomial rep-
resentation has a single monomial (e.g. the AES s-box). For these functions, we
exhibit the exact masking complexity by deriving addition chains with minimal
number of nonlinear multiplications. We then address the general case and pro-
vide efficient heuristics to evaluate any s-box with a low number of nonlinear
multiplications.

3 Optimal Masking of Power Functions

In this section, we consider s-boxes for which the polynomial representation over
F2n is a single monomial. These s-boxes are usually called power functions in the
literature. We describe a generic method to compute the masking complexity of
such s-boxes. Our method involves the notion of cyclotomic class.

Definition 2. Let α ∈ [0; 2n−2]. The cyclotomic class of α is the set Cα defined
by:

Cα = {α · 2i mod 2n − 1; i ∈ [0;n− 1]}.

We have the following proposition.

Proposition 2. Let µ(m) denote the multiplicative order of 2 modulo m and
let ϕ denote the Euler’s totient function. For every divisor δ of 2n − 1, the
number of distinct cyclotomic classes Cα ⊆ [0; 2n − 2] with gcd(α, 2n − 1) = δ is
ϕ
(
2n−1
δ

)
/µ
(
2n−1
δ

)
. It follows that the total number of distinct cyclotomic classes

of [0; 2n − 2] equals:
∑

δ|(2n−1)

ϕ(δ)

µ(δ)
.

Proof. Proposition 2 can be deduced from the following facts:

– An integer α ∈ [0; 2n − 2] satisfies gcd(α, 2n − 1) = δ if and only if α = δβ,
with gcd(β, 2

n−1
δ) = 1. There are thus ϕ

(
2n−1
δ

)
integers α ∈ [0; 2n − 2] such

that gcd(α, 2n − 1) = δ.
– For any α such that gcd(α, 2n − 1) = δ (hence of the form α = δβ with

gcd(β, 2
n−1
δ) = 1), we have α · 2i ≡ α · 2j mod 2n − 1 if and only if β · 2i ≡

β · 2j mod 2n−1
δ , that is, if and only if 2i ≡ 2j mod 2n−1

δ . Hence Cα has

cardinality #Cα = µ
(
2n−1
δ

)
.

The set of integers α ∈ [0; 2n−2] such that gcd(α, 2n−1) = δ is partitioned into
cyclotomic classes, each of them having cardinality µ

(
2n−1
δ

)
. Hence the number

of such cyclotomic classes is ϕ
(
2n−1
δ

)
/µ
(
2n−1
δ

)
. It follows that the total number

of distinct cyclotomic classes of [0; 2n−2] equals
∑
δ|(2n−1) ϕ

(
2n−1
δ

)
/µ
(
2n−1
δ

)
=∑

δ|(2n−1) ϕ(δ)/µ(δ).
�

The study of cyclotomic classes is interesting in our context since a power
xα can be computed from a power xβ without any nonlinear multiplication
if and only if α and β lie in the same cyclotomic class. Hence, all the power
functions with exponents within a given cyclotomic class have the same masking
complexity and computing the masking complexity for all the power functions
over F2n thus amounts to compute this complexity for each cyclotomic class
over F2n . In what follows, we perform such a computation for fields F2n of small
dimensions n.

To compute the masking complexity for an element in a cyclotomic class, we
use the following observation: determining the masking complexity of a power
function x 7→ xα amounts to find the addition chain for α with the least number
of additions which are not doublings (see [16] for an introduction to addition
chains). This kind of addition chain is usually called a 2-addition chain.6 Let
(αi)i denote some addition chain. At step i, it is possible to obtain any element
within the cyclotomic classes (Cαj)j≤i using doublings only. As we are interested
in finding the addition chain with the least number of additions which are not
doublings, the problem we need to solve is the following: given some α ∈ Cα, find
the shortest chain Cα0

→ Cα1
→ · · · → Cαk where Cα0

= C1, Cαk = Cα and for
every i ∈ [1; k], there exists j, ` < i such that αi = α′j + α′` where α′j ∈ Cαj and
α′` ∈ Cα` .

We shall denote by Mn
k the class of exponents α such that x 7→ xα has a

masking complexity equal to k. The family of classes (Mn
k)k is a partition of

[0; 2n − 2] and each Mn
k is the union of one or several cyclotomic classes. For

a small dimension n, we can proceed by exhaustive search to determine the
shortest 2-addition chain(s) for each cyclotomic class. We implemented such an
exhaustive search from which we obtained the masking complexity classes Mn

k

for n ≤ 11 (note that in practice most s-boxes have dimension n ≤ 8). Table
1 summarizes the obtained results for n ∈ {4, 6, 8} (usual dimensions). Results
for other dimensions are summarized in appendix. Additionally, Table 2 gives
the optimal 2-addition chains (in exponential notation) corresponding to every
cyclotomic class for n = 8.

It is interesting to note that for every n, the inverse function x 7→ x2
n−2

related to the cyclotomic class C2n−1−1 always has the highest masking com-
plexity. In particular, the inverse function x 7→ x254 (for n = 8) used in the AES
has a masking complexity of 4 as it was conjectured in [27].

4 Efficient Heuristics for General S-Boxes

We now address the general case of an s-box having a polynomial representation∑2n−1
j=0 ajx

j over F2n . A straightforward solution is to successively compute every

power xj using xj = (xj/2)2 if j is even and xj = xj−1x if j is odd, while updating
the polynomial value by adding the monomial ajx

j at every step. Such a method
requires 2n−1 − 1 nonlinear multiplications. As we show hereafter, less naive
methods exist that substantially lower the number of nonlinear multiplications.
We propose two different methods and then compare their efficiency.

6 This problem has been studied in the general setting where the multiplication by q
(and not specifically by 2) is considered free and the obtained addition chains are
called q-addition chains [31]. The purpose is to find efficient exponentiation methods
in Fq (as in such field the Frobenius map x 7→ xq is efficient). To the best of our
knowledge, apart from a specific application to the SFLASH signature algorithm
in [1], the case of 2-addition chains has not been particularly investigated.

Table 1. Cyclotomic classes for n ∈ {4, 6, 8} w.r.t. the masking complexity k.

k Cyclotomic classes inMn
k

n = 4
0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 14, 13, 11}

n = 6
0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32}
1 C3 = {3, 6, 12, 24, 48, 33}, C5 = {5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
2 C7 = {7, 14, 28, 56, 49, 35}, C11 = {11, 22, 44, 25, 50, 37},

C13 = {13, 26, 52, 41, 19, 38}, C15 = {15, 30, 29, 27, 23},
C21 = {21, 42}, C27 = {27, 54, 45}

3 C23 = {23, 46, 29, 58, 53, 43}, C31 = {31, 62, 61, 59, 55, 47}
n = 8

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 C3 = {3, 6, 12, 24, 48, 96, 192, 129}, C5 = {5, 10, 20, 40, 80, 160, 65, 130},

C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 = {17, 34, 68, 136}
2 C7 = {7, 14, 28, 56, 112, 224, 193, 131}, C11 = {11, 22, 44, 88, 176, 97, 194, 133},

C13 = {13, 26, 52, 104, 208, 161, 67, 134}, C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C19 = {19, 38, 76, 152, 49, 98, 196, 137}, C21 = {21, 42, 84, 168, 81, 162, 69, 138},

C25 = {25, 50, 100, 200, 145, 35, 70, 140}, C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}, C45 = {45, 90, 180, 105, 210, 165, 75, 150},

C51 = {51, 102, 204, 153}, C85 = {85, 170}
3 C23 = {23, 46, 92, 184, 113, 226, 197, 139}, C29 = {29, 58, 116, 232, 209, 163, 71, 142},

C31 = {31, 62, 124, 248, 241, 227, 199, 143}, C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C43 = {43, 86, 172, 89, 178, 101, 202, 149}, C47 = {47, 94, 188, 121, 242, 229, 203, 151},
C53 = {53, 106, 212, 169, 83, 166, 77, 154}, C55 = {55, 110, 220, 185, 115, 230, 205, 155},
C59 = {59, 118, 236, 217, 179, 103, 206, 157}, C61 = {61, 122, 244, 233, 211, 167, 79, 158},
C63 = {63, 126, 252, 249, 243, 231, 207, 159}, C87 = {87, 174, 93, 186, 117, 234, 213, 171},
C91 = {91, 182, 109, 218, 181, 107, 214, 173}, C95 = {95, 190, 125, 250, 245, 235, 215, 175},

C111 = {111, 222, 189, 123, 246, 237, 219, 183}, C119 = {119, 238, 221, 187}
4 C127 = {127, 254, 253, 251, 247, 239, 223, 191}

Table 2. Optimal 2-addition chains (in exponential notation) for cyclotomic classes
for n = 8.

k 2-addition chains with k nonlinear multiplications

1 x3 ← x× x2 – x5 ← x× x4

x9 ← x× x8 – x17 ← x× x16

x7 ← x× x2 × x4 – x11 ← x× x2 × x8

x13 ← x× x4 × x8 – x15 ← x3 × (x3)4

2 x19 ← x× x2 × x16 – x21 ← x× x4 × x16

x27 ← x3 × (x3)8 – x37 ← x× x4 × x32

x45 ← x5 × (x5)8 – x51 ← x3 × (x3)16

x85 ← x5 × (x5)16

x23 ← x× x2 × x4 × x16 – x29 ← x× x4 × x8 × x16

x31 ← x3 × (x3)4 × x16 – x29 ← x× x2 × x4 × x32

x43 ← x× x2 × x8 × x32 – x47 ← x3 × (x3)4 × x32

3 x53 ← x× x2 × x16 × x32 – x55 ← x3 × x4 × (x3)16

x59 ← x3 × (x3)8 × x32 – x59 ← x5 × x16 × (x5)8

x63 ← x7 × (x7)8 – x87 ← x2 × x5 × (x5)16

x91 ← x3 × (x3)8 × x64 – x95 ← x5 × (x5)2 × (x5)16

x111 ← x3 × (x3)4 × (x3)32 – x63 ← x7 × (x7)16

4 x127 ← x3 × (x3)4 × (x3)16 × x64

4.1 Cyclotomic Method

Let q denote the number of distinct cyclotomic classes of [0; 2n − 2]. The poly-
nomial representation of S can be written as:

S(x) = a0 +
(q∑

i=1

Qi(x)
)

+ a2n−1 x
2n−1 ,

where the Qi are polynomials such that every Qi has powers from a single
cyclotomic class Cαi , namely we can write Qi(x) =

∑
j ai,jx

αi2
j

for some co-
efficients ai,j in F2n . Let us then denote Li the linearized polynomial Li(x) =∑
j ai,jx

2j which is a Fn2 -linear function of x. We have Qi(x) = Li(x
αi) by

definition. The cyclotomic method simply consists in deriving the powers xαi

for each cyclotomic class Cαi as well as x2
n−1 if a2n−1 6= 0, and in evaluating

S(x) = a0 +
(∑q

i=1 Li(x
αi)
)

+a2n−1 x2
n−1. The powers xαi can each be derived

with a single nonlinear multiplication. This is obvious for the αi lying in Mn
1 .

Then it is clear that every power xαi with αi ∈ Mn
k+1 can be derived with a

single multiplication from the powers (xαi)αi∈Mn
k
. The power x2

n−1 can then

be derived with a single nonlinear multiplication from the power x2
n−2. The

cyclotomic method hence involves a number of nonlinear multiplications equal
to the number of cyclotomic classes, minus 2 (as x0 and x1 are obtained without
nonlinear multiplication), plus 1 (to derive x2

n−1). By Proposition 2, we then
have the following result.

Proposition 3 (Cyclotomic Method). Let m and n be two positive integers
such that m ≤ n. The masking complexity of every (n,m) s-box is upper-bounded
by: ∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 1 .

An (n,m) s-box S is said to be balanced if for every y ∈ {0, 1}m, the number
of preimages of y for S is constant to 2n−m. The following lemma gives a well-
known folklore result.

Lemma 1. Let m and n be two positive integers such that m ≤ n. The polyno-
mial representation of every balanced (n,m) s-box has degree strictly lower than
2n − 1.

Proof. Since Lagrange basis polynomials are all monic of degree 2n − 1, the
coefficient a of the power to the 2n − 1 in the polynomial representation of S
satisfies a =

∑
α∈F2n

S(α), which equals 0 if S is balanced. �

When the polynomial representation of the s-box has degree strictly lower
than 2n − 1, the cyclotomic method saves one nonlinear multiplication since
the power x2

n−1 is not required. Namely, we have the following corollary of
Proposition 3.

Corollary 1 (Cyclotomic Method). Let m and n be two positive integers
such that m ≤ n and let S be a (n,m) s-box. If S is balanced, then the masking
complexity of S is upper-bounded by:

∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 2 .

4.2 Parity-Split Method

The parity-split method is composed of two stages. The first stage derives a
set of powers (xj)j≤q for some q using the straightforward method described
in the introduction of this section. The second stage essentially consists in an
application of the Knuth-Eve polynomial evaluation algorithm [9, 17] which is
based on a recursive use of the following lemma.

Lemma 2. Let n and t be two positive integers and let Q be a polynomial of
degree t over F2n [x]. There exist two polynomials Q1 and Q2 of degree upper-
bounded by bt/2c over F2n [x] such that:

Q(x) = Q1(x2) +Q2(x2)x . (4)

By applying Lemma 2 to the polynomial representation of S, we get S(x) =
Q1(x2) + Q2(x2)x, where Q1 and Q2 are two polynomials of degrees upper-
bounded by 2n−1 − 1. We deduce that S can be computed based on the set of
powers (x2j)j≤2n−1−1 plus a single multiplication by x. Then, applying Lemma

2 again to the polynomials Q1 and Q2 both of degrees upper bounded by 2n−1−
1, we get two new pairs of polynomials (Q11, Q12) and (Q21, Q22) such that
Q1(x2) = Q11(x4) +Q12(x4)x2 and Q2(x2) = Q21(x4) +Q22(x4)x2. The degrees
of the new polynomials are upper bounded by 2n−2 − 1. We then deduce that S
can be computed based on the set of powers (x4j)j≤2n−2−1 plus 1 multiplication

by x and 2 multiplications by x2. Eventually, by applying Lemma 2 recursively
r times, we get an evaluation of S involving evaluations in x2

r

of polynomials of
degrees upper-bounded by 2n−r − 1, plus

∑r−1
i=0 2i = 2r − 1 multiplications by

powers of x of the form x2
i

with i ≤ r − 1. The overall evaluation of S hence
requires 2r − 1 nonlinear multiplications (the x2

i

being obtained with squares
only) plus the evaluation in x2

r

of polynomials of degrees upper-bounded by
2n−r−1. The latter evaluation can be performed by first deriving all the powers
(x2

rj)j≤2n−r−1 and then evaluating the polynomials (which only involves scalar
multiplications and additions once the powers have been derived). For every
j ≤ 2n−r − 1, the powers (x2

rj)j≤2n−r−1 can be computed successively from

y = x2
r

by yj = (yj/2)2 if j is even and yj = yj−1x if j is odd. This takes some
squares plus 2n−r−1 − 1 nonlinear multiplications (i.e. one per odd integer in
[3, 2n−r − 1]).

We then deduce the following proposition.

Proposition 4. Let m and n be two positive integers such that m ≤ n. The
masking complexity of every (n,m) s-box is upper-bounded by:

min
0≤r≤n

(2n−r−1 + 2r)− 2 =

{
3 · 2(n/2)−1 − 2 if n is even,
2(n+1)/2 − 2 if n is odd.

(5)

Note that the value of r for which the minimum is reached in (5) is r = bn2 c.

4.3 Comparison

Table 3 summarizes the number of nonlinear multiplications obtained by the
cyclotomic method (for balanced s-boxes) and by the parity-split method. We see
that the cyclotomic method works better for small dimensions (n ≤ 5) and the
parity-split method for higher dimensions (n ≥ 6). Furthermore, the superiority
of the parity-split method becomes significant as n grows.

Table 3. Number of nonlinear multiplications w.r.t. the evaluation method.

Method \ n 3 4 5 6 7 8 9 10 11

Cyclotomic 1 3 5 11 17 33 53 105 192

Parity-Split 2 4 6 10 14 22 30 46 62

We emphasize that these bounds may not be optimal, namely they may be
higher than the maximum masking complexity of (n,m) s-boxes. We let open
the issue of finding more efficient (or provably optimal) methods in the general
case for further research.

5 Application to DES and PRESENT

In this section we apply the proposed methods to the s-boxes of two different
block ciphers: the well-known and still widely used Data Encryption Standard
(DES) [11], and the lightweight block cipher PRESENT [5]. The former uses
eight different (6, 4) s-boxes and the latter uses a single (4, 4) s-box. According
to Table 3, we shall prefer the parity-split method for the DES s-boxes (10
nonlinear multiplications), and the cyclotomic method for the PRESENT s-box
(3 nonlinear multiplications).

5.1 Parity-Split Method on DES S-boxes

The parity-split method on a DES s-box uses a polynomial representation of the
s-box over F64 which satisfies:

S : x 7−→ Q0(x8) +Q1(x8) · x4 +
(
Q2(x8) +Q3(x8) · x4

)
· x2

+
(
Q4(x8) +Q5(x8) · x4 +

(
Q6(x8) +Q7(x8) · x4

)
· x2
)
· x (6)

where the Qi are degree-7 polynomials, namely, there exist coefficients ai,j for
0 ≤ i, j ≤ 7 such that:

Qi(x
8) = ai,0 + ai,1x

8 + ai,2x
16 + ai,3x

24 + ai,4x
32 + ai,5x

40 + ai,6x
48 + ai,7x

56 .

We first derive the powers x8j for j = 1, 2, . . . , 7, which is done at the cost
of 3 nonlinear multiplications by:

x8 ← ((x2)2)2; x16 ← (x8)2; x24 ← x8 · x16; x32 ← (x16)2;

x40 ← x8 · x32; x48 ← (x24)2; x56 ← x8 · x48;

Then we evaluate each polynomial Qi(x
8) as a linear combination of the above

powers. Finally, we evaluate (6) at the cost of 7 nonlinear multiplications and a
few additions. The nonlinear multiplications are computed using the ISW scheme
over F64 such as recalled in Section 2.1. A detailed implementation for the overall
masked s-box evaluation is given in the extended version of this paper.

5.2 Cyclotomic Method on PRESENT S-box

The cyclotomic method on the PRESENT s-box starts from the straightforward
polynomial representation of the s-box over F16:

S : x 7−→ a0 + a1x+ a2x
2 + · · ·+ a14x

14 ,

(where the degree is indeed strictly lower than 15 by Lemma 1). We then have:

S(x) = a0 + L1(x) + L3(x3) + L5(x5) + L7(x7) . (7)

where:

L1 : x 7→ a1x+ a2x
2 + a4x

4 + a8x
8

L3 : x 7→ a3x+ a6x
2 + a12x

4 + a9x
8

L5 : x 7→ a5x+ a10x
2

L7 : x 7→ a7x+ a14x
2 + a13x

4 + a11x
8

and the Li are F4
2-linear.

We first derive the powers x3, x5, and x7, which is done at the cost of 3
nonlinear multiplications by: x3 ← x · x2; x5 ← x3 · x2; x7 ← x5 · x2. Then we
evaluate (7) which costs a few linear transformations and additions. A detailed
implementation for the overall masked s-box evaluation is given in the extended
version of this paper.

5.3 Implementation Results

In this section, we give implementation results for our scheme applied to DES
and PRESENT s-boxes. For comparison, we also give performances of some

higher-order masking schemes for the AES s-box, as well as performances of
existing schemes for DES and PRESENT s-boxes at orders 1 and 2. For the
AES s-box processing, we implemented Rivain and Prouff’s method [27] and
its improvement by Kim et al. [15]. We did not implement Genelle et al. ’s
scheme [12] since it addresses the masking of an overall AES and is not interesting
while focusing on a single s-box processing. Regarding existing schemes for DES
and PRESENT s-boxes, we implemented the generic methods proposed in [25]
(for d = 1) and in [26] (for d = 2). We also implemented the improvement of
these schemes described in [26, §3.3] that consists in treating two 4-bit outputs
at the same time.7 Note that we did not implement the table re-computation
method (for d = 1) since it only makes sense for an overall cipher and not for a
single s-box processing.

Table 4 lists the timing/memory performances of the different implementa-
tions. We wrote the codes in assembly language for an 8051 based 8-bit archi-
tecture with bit-addressable memory. ROM consumptions (i.e. code sizes) are not
listed since they are not prohibitive.

As expected, the cyclotomic method is very efficient when applied to protect
the PRESENT s-box. The small input dimension of the s-box indeed implies a
low masking complexity (equal to 3). Moreover, it enables to tabulate the mul-
tiplication over F16. At first order, it is even slightly better than the method
in [25] (or its improvement). At second order, the cost of the secure multipli-
cations involved in the cyclotomic method is approximatively doubled, which
explains that the overall cost is multiplied by 1.8. This makes it less efficient
than [25] and [26], which are less impacted by the increase of the masking order
from 1 to 2. At third order, our method is the only one. The number of cycles
staying small (630), Table 4 shows that achieving resistance against 3rd-order
side-channel analysis is realistic for an implementation of PRESENT on a 8051
architecture. For DES s-boxes, the parity-split method is less efficient than the
state-of-the art methods for d = 1, 2. This is an expected consequence of the
high number of nonlinear multiplications (here 10) achieved with the parity-
split method in dimension 6 and of the fact that the field multiplications can no
longer be tabulated (and must therefore be computed thanks to log/alog look-up
tables). At third order, the timing efficiency of the method becomes very low.
The masked s-box processing is 5 (resp. 10) times slower than the efficiency of
the AES s-box protected thanks to [15] (resp. [27]), though its input dimension
is smaller.

The ranking of the timing efficiencies for AES, DES and PRESENT s-boxes
is correlated to the number of nonlinear multiplications in the used scheme (3,
4-5, and 10, for PRESENT, AES and DES respectively) which underline the
soundness of the masking complexity criterion. Therefore, while selecting an s-
box for a block cipher design, one should favor an s-box with small masking
complexity if side-channel attacks are taken into account.

7 This improvement is only described in [26] for d = 2 but it can be applied likewise
to the 1st-order scheme of [25].

Table 4. Comparison of secure s-box implementations

Method Reference cycles RAM (bytes)

First Order Masking

1. AES s-box [27] 533 10
2. AES s-box [15] 320 14
3. DES s-box Simple version [25] 1096 2
4. DES s-box Improved version [25] & [26] 439 14
5. DES s-box this paper 4100 50
6. PRESENT s-box Simple Version [25] 281 2
7. PRESENT s-box Improved Version [25] & [26] 231 14
4. PRESENT s-box this paper 220 18

Second Order Masking

1. AES s-box [27] 832 18
2. AES s-box [15] 594 24
3. DES s-box Simple version [26] 1045 69
4. DES s-box Improved version [26] 652 39
5. DES s-box this paper 7000 78
6. PRESENT s-box Simple Version [26] 277 21
7. PRESENT s-box Improved Version [26] 284 15
8. PRESENT s-box this paper 400 31

Third Order Masking

1. AES s-box [27] 1905 28
2. AES s-box [15] 965 38
3. DES s-box this paper 10500 108
4. PRESENT s-box this paper 630 44

6 Discussion

In previous sections we have introduced the first schemes that can be used to
mask any s-box at any order with fair performances in software. In particular,
these schemes enable to apply higher-order masking on random s-boxes (e.g. the
DES s-boxes) which have no specific mathematical structure. Prior to our work,
the only existing methods were the circuit-oriented proposals of Ishai et al. [14]
and of Faust et al. [10]. The main purpose of these works was a proof of concept
for applying higher-order masking to circuits with formal security proofs, but
they did not address efficient implementation. A direct application of [14] or [10]
to a block cipher consists in taking its Boolean representation and in replacing
every XOR and AND with O(d) and O(d2) logical operations respectively (where
d is the masking order). Applying such a strategy in software leads to inefficient
implementation as the Boolean representation of an s-box includes a huge num-
ber of nonlinear gates (with a O(d2) factor to be protected). Compared to these
techniques, our schemes achieve significant improvements. These are obtained
by starting from the field representation of the s-box and applying methods to
significantly reduce the number of nonlinear multiplications compared to the

Boolean representation of the s-box. For instance, we have shown that a DES
s-box can be computed with 10 nonlinear multiplications whereas its Boolean
representation involves several dozens of logical AND operations.

We believe that our work opens up new avenues for research in block cipher
implementations and side-channel security. In particular, the issue of designing
s-boxes with low masking complexity and good cryptographic criteria is still to
be investigated. On the other hand, our work could be extended to take into ac-
count more general definitions of the masking complexity. Indeed Definition 1 is
software oriented and hence does not encompass the hardware case. As discussed
above, the complexity of masking in hardware merely depends on the number
of nonlinear gates [10, 14], that is on the number of nonlinear multiplications
in the (n-variate) s-box representation over F2, the so-called algebraic normal
form. One may also want to minimize the number of nonlinear multiplications
in the (`-variate) s-box representation over F2k for some k (and ` = dn/ke). This
approach has actually already been followed in [15], where Kim et al. speeds up
the scheme in [27] by using the fact that the AES s-box can be processed with 5
nonlinear multiplications over F16 rather than 4 nonlinear multiplications over
F256. Although requiring an additional nonlinear multiplication, the resulting
implementation is faster since multiplications over F16 can be tabulated while
multiplications over F256 are computed based on the slower log/alog approach.
These observations motivate the following — more general — definition of the
masking complexity.

Definition 3 (Masking Complexity). Let m, n and k be three integers such
that m, k ≤ n. The masking complexity of a (n,m) s-box over F2k is the minimal
number of nonlinear multiplications required to evaluate its polynomial represen-
tation over F2k .

Here again, the masking complexity is independent of the representation of
F2k since one can go from one representation to another without any nonlinear
multiplication. The issue of finding efficient methods with respect to the masking
complexity over a smaller field F2k is left open for further researches.

7 Conclusion

In this paper we have introduced new generic higher-order masking schemes for
s-boxes with efficient software implementation. Specifically, we have extended
the Rivain and Prouff’s approach for the AES s-box to any s-box. The method
consists in masking the polynomial representation of the s-box over F2n where n
is the input dimension. As argued, the complexity of this method mainly depends
on the number of nonlinear multiplications involved in the polynomial represen-
tation (i.e. multiplications which are not squares nor scalar multiplications).
We have then introduced the masking complexity parameter for an s-box as the
minimal number of nonlinear multiplications required for its evaluation. We have
provided the exact values of this parameter for the set of power functions and
upper bounds for all s-boxes. Namely, we have presented optimal methods to

mask power functions and efficient heuristics for the general case. Eventually we
have applied our schemes to the DES s-boxes and to the PRESENT s-box and we
have provided implementation results. Our work stresses interesting open issues
for further research. Among them the design of s-boxes taking into account the
masking complexity criterion and the extension of our approach to masking over
F2k with k < n (e.g. for efficient hardware implementations) are of particular
interest.

References

1. M.-L. Akkar, N. Courtois, R. Duteuil, and L. Goubin. A Fast and Secure Imple-
mentation of Sflash. In Y. Desmedt, editor, Public Key Cryptography – PKC 2003,
volume 2567 of Lecture Notes in Computer Science, pages 267–278. Springer, 2003.

2. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against
Some Attacks. In Ç. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in Com-
puter Science, pages 309–318. Springer, 2001.

3. G. Blakley. Safeguarding cryptographic keys. In National Comp. Conf., volume 48,
pages 313–317, New York, June 1979. AFIPS Press.

4. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES.
In M. Matsui and R. Zuccherato, editors, Selected Areas in Cryptography – SAC
2004, volume 3357 of Lecture Notes in Computer Science, pages 69–83. Springer,
2004.

5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems – CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
450–466. Springer, 2007.

6. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2004.

7. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology –
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

8. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes in
Computer Science, pages 28–44. Springer, 2007.

9. J. Eve. The evaluation of polynomials. Comm. ACM, 6(1):17–21, 1964.

10. S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting Cir-
cuits from Leakage: the Computationally-Bounded and Noisy Cases. In H. Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 135–156. Springer, 2010.

11. FIPS PUB 46. The Data Encryption Standard. National Bureau of Standards,
Jan. 1977.

12. L. Genelle, E. Prouff, and M. Quisquater. Thwarting Higher-Order Side Channel
Analysis with Additive and Multiplicative Maskings. In B. Preneel and T. Tak-
agi, editors, Cryptographic Hardware and Embedded Systems, 13th International
Workshop – CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages
240–255. Springer, 2011.

13. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES ’99, volume 1717 of Lecture Notes in Computer Science, pages
158–172. Springer, 1999.

14. Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

15. H. Kim, S. Hong, and J. Lim. A Fast and Provably Secure Higher-Order Masking
of AES S-Box. In B. Preneel and T. Takagi, editors, Cryptographic Hardware and
Embedded Systems, 13th International Workshop – CHES 2011, volume 6917 of
Lecture Notes in Computer Science, pages 95–107. Springer, 2011.

16. D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, third
edition, 1988.

17. D. E. Knuth. Evaluation of polynomials by computers. Comm. ACM, 5(12):595–
599, 1962.

18. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

19. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376
of Lecture Notes in Computer Science, pages 351–365. Springer, 2005.

20. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In J. Rao and B. Sunar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2005, volume 3659 of Lecture Notes in Com-
puter Science, pages 157–171. Springer, 2005.

21. T. Messerges. Securing the AES Finalists against Power Analysis Attacks. In
B. Schneier, editor, Fast Software Encryption – FSE 2000, volume 1978 of Lecture
Notes in Computer Science, pages 150–164. Springer, 2000.

22. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
238–251. Springer, 2000.

23. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In P. J. Lee and J. H. Cheon, editors,
Information Security and Cryptology – ICISC 2008, volume 5461 of Lecture Notes
in Computer Science, pages 218–234. Springer, 2008.

24. T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard. Evaluation of the Masked
Logic Style MDPL on a Prototype Chip. In P. Paillier and I. Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems – CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 81–94. Springer, 2007.

25. E. Prouff and M. Rivain. A Generic Method for Secure SBox Implementation.
In S. Kim, M. Yung, and H.-W. Lee, editors, Information Security Applications –
WISA 2007, volume 4867 of Lecture Notes in Computer Science, pages 227–244.
Springer, 2008.

26. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably
Secure Against Second Order Side Channel Analysis. In T. Baignères and S. Vau-
denay, editors, Fast Software Encryption – FSE 2008, Lecture Notes in Computer
Science, pages 127–143. Springer, 2008.

27. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In
S. Mangard and F.-X. Standaert, editors, Cryptographic Hardware and Embedded
Systems – CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages
413–427. Springer, 2010.

28. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hardware
Architecture with S-Box Optimization. In E. Boyd, editor, Advances in Cryptology
– ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
239–254. Springer, 2001.

29. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval,
editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2006.

30. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.
31. J. von zur Gathen. Efficient and Optimal Exponentiation in Finite Fields. Com-

putational Complexity, 1:360–394, 1991.

A Masking Complexity of Power Functions

Table 5 summarizes the masking complexity classes (Mn
k)k for dimensions n in

the set {3, 5, 7, 9, 10, 11}.

Table 5. Cyclotomic classes for n ∈ {3, 5, 7, 9, 10, 11} w.r.t. the masking complexity k.

k Cyclotomic classes inMn
k

n = 3
0 C0 = {0}, C1 = {1, 2, 4}
1 C3 = {3, 6, 5}

n = 5
0 C0 = {0}, C1 = {1, 2, 4, 8, 16}
1 C3 = {3, 6, 12, 24, 17}, C5 = {5, 10, 20, 9, 18}
2 C7 = {7, 14, 28, 25, 19}, C11 = {11, 22, 13, 26, 21}, C15 = {15, 30, 29, 27, 23}

n = 7
0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64}
1 C3 = {3, 6, 12, 24, 48, 96, 65}, C5 = {5, 10, 20, 40, 80, 33, 66},

C9 = {9, 18, 36, 72, 17, 34, 68}
2 C7 = {7, 14, 28, 56, 112, 97, 67}, C11 = {11, 22, 44, 88, 49, 98, 69},

C13 = {13, 26, 52, 104, 81, 35, 70}, C15 = {15, 30, 60, 120, 113, 99, 71},
C19 = {19, 38, 76, 25, 50, 100, 73}, C21 = {21, 42, 84, 41, 82, 37, 74},
C27 = {27, 54, 108, 89, 51, 102, 77}, C43 = {43, 86, 45, 90, 53, 106, 85}

3 C23 = {23, 46, 92, 57, 114, 101, 75}, C29 = {29, 58, 116, 105, 83, 39, 78},
C31 = {31, 62, 124, 121, 115, 103, 79}, C47 = {47, 94, 61, 122, 117, 107, 87},
C55 = {55, 110, 93, 59, 118, 109, 91}, C63 = {63, 126, 125, 123, 119, 111, 95}

n = 9
0 C0, C1

1 C3, C5, C9, C17

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C51, C73, C75, C83, C85

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61,
C63, C75, C77, C79, C87, C91, C93, C95, C103, C107, C109,

C111, C117, C119, C123, C125, C127, C171, C175, C183, C187, C219

4 C191, C223, C239

n = 10
0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37,
C41, C45, C49, C51, C69, C73, C85, C99, C147, C165

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C115,

C117, C119, C121, C123, C125, C149, C151, C155, C157, C167, C171, C173, C175, C179,
C181, C183, C187, C189, C205, C207, C213, C215, C219, C221, C231, C235, C237, C245,

C255, C341, C347, C363, C447, C495

4 C127, C159, C191, C223, C239, C247, C251, C253, C343,
C351, C367, C375, C379, C383, C439, C479, C511

n = 11
0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C49, C51,
C67, C69, C73, C81, C85, C99, C137, C153, C163, C165, C293

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C113,
C115, C117, C119, C121, C123, C125, C139, C141, C143, C147, C149, C151, C155,
C157, C167, C169, C171, C173, C175, C179, C181, C185, C187, C189, C199, C201,

C203, C205, C207, C211, C213, C217, C219, C221, C229, C231, C243, C245,
C255, C295, C299, C301, C307, C309, C311,C315, C317, C331, C333, C335,
C343, C347, C359, C363, C365, C379, C411, C423, C427, C429, C339, C341,

C437, C439, C469, C495, C683, C703, C879, C887

4 C127, C159, C183, C191, C215, C223, C233, C235, C237, C239, C247, C249, C251,
C253, C303, C319, C349, C351, C367, C371, C373, C375, C381, C383,

C413, C415, C431, C443, C445, C447, C463, C471, C475, C477, C479, C491,
C493, C501, C503, C507, C509, C511, C687, C695, C699, C727, C731, C735, C751,

C759, C763, C767, C895, C959, C991, C1023

Appendix C
Masking against Side Channel
Attacks: a Formal Security Proof
Hereafter is appended the full version of our paper [PR13], joint work with Emmanuel
Prouff published at EUROCRYPT 2013.

Masking against Side-Channel Attacks: a Formal
Security Proof?

Emmanuel Prouff1 and Matthieu Rivain2

1 ANSSI
emmanuel.prouff@ssi.gouv.fr

2 CryptoExperts
matthieu.rivain@cryptoexperts.com

Abstract. Masking is a well-known countermeasure to protect block cipher implementations
against side-channel attacks. The principle is to randomly split every sensitive intermediate vari-
able occurring in the computation into d + 1 shares, where d is called the masking order and
plays the role of a security parameter. Although widely used in practice, masking is often con-
sidered as an empirical solution and its effectiveness is rarely proved. In this paper, we provide
a formal security proof for masked implementations of block ciphers. Specifically, we prove that
the information gained by observing the leakage from one execution can be made negligible (in
the masking order). To obtain this bound, we assume that every elementary calculation in the
implementation leaks a noisy function of its input, where the amount of noise can be chosen by
the designer (yet polynomially bounded). We further assume the existence of a leak-free compo-
nent that can refresh the masks of shared variables. Our work can be viewed as an extension of
the seminal work of Chari et al. published at CRYPTO in 1999 on the soundness of combining
masking with noise to thwart side-channel attacks.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical en-
vironment of a cryptosystem to recover some leakage about its secrets. It is often
more efficient than a cryptanalysis in the so-called black-box model in which no leak-
age occurs. Two attack categories are usually considered: the bounded side-channel
attacks and the continuous side-channel attacks. In a bounded side-channel attack [9],
the total amount of leakage accessible to the adversary is bounded. In a continu-
ous side-channel attack, the adversary gets some information at each invocation of
the cryptosystem, and the amount of leakage can thus be arbitrarily large. Attacks
where the adversary measures the running-time [24], the power consumption [25]
or the electromagnetic radiations [15] of a cryptographic implementation fall into
this category.

Continuous side-channel attacks have proved to be especially effective to break
unprotected cryptographic implementations. And although many ingenious coun-
termeasures have been developed during past years, very few of them gave rise to
concrete security guaranties. This has raised the need for models and methods to
formally prove the security of cryptographic implementations against continuous
side-channel attacks. A pioneering work in this direction is the physically observ-
able cryptography framework introduced by Micali and Reyzin in [29] which puts
forward a general theory of side-channel attacks. In particular, they formalize the
assumptions that a cryptographic device can at least keep some secrets and that only

? Full version of the paper published in the proceedings of EUROCRYPT 2013.

computation leaks information [29]. A few years later, Dziembowski and Pietrzak in-
troduced the leakage resilient cryptography model [12], which is a generalization of the
bounded retrieval model [9] where every step of the computation leaks information on
the processed part of the device state trough a function whose range is bounded (i.e.
taking values in {0, 1}λ for some parameter λ). Under this assumption, the authors
were able to design secure pseudo-random number generators [12,32]. Further leak-
age resilient cryptographic primitives were then constructed under the same – or
sometimes stronger – assumptions (see for instance [10, 13, 23, 42]). The issue of de-
signing generic compilers that can transform any cryptographic algorithm into a
leakage resilient implementation was also recently addressed [11, 17, 18, 22]. These
works are nice proofs of concept but the proposed constructions are not suited for
practical implementation, especially in constrained environments such as embed-
ded systems. Moreover the practical meaning of the underlying bounded range
leakage model with respect to power or electromagnetic side channels is question-
able [40].

A more practical and traditionally used approach to secure implementations
against side-channel attacks is secret sharing [1, 37] also called masking in this con-
text. The idea is to randomly split a secret into several shares such that the adver-
sary needs all of them to reconstruct the secret. Masking was soon identified as a
sound countermeasure when side-channel attacks appeared in the literature [4,19].
Since then, many works have been published to address the practical implementa-
tion and/or the security of masking for various ciphers. However a formal security
proof is still missing at this day. Our goal is to fill this gap.

1.1 Related Works

Soundness of masking. In [4], Chari et al. conduct a formal study of masking in the
presence of noisy leakage. More precisely, the authors investigate the soundness of
randomly sharing a secret bit into d shares when the adversary has only access to a
noisy version of those shares, the noise having a normal distribution with variance
σ2. They prove that the number of observations required to distinguish, with suc-
cess probability α the leakage distribution when the secret equals 0 from the leakage
distribution when the secret equals 1 is lower bounded by σd+4 logα/ log σ. This bound
is frequently recalled to argue for the soundness of masking when combined with
noise. Despite its great interest and impact, Chari et al.’s analysis has an important
limitation: no solution is provided to apply masking to the whole implementation
of a cryptographic algorithm and to analyze the global security of such an imple-
mentation.

Private circuits and extensions. In [21], Ishai et al. show that any circuit with n
logical gates can be transformed into a circuit of size O(nd2) which is secure against
probing attacks spying up to d wires. The main contribution of [21] is a method to
compute an AND gate between shared inputs while ensuring the security against
a d-probing adversary. However, a security proof against probing attacks does not
give full satisfaction since it does not encompass an adversary exploiting the entire
leakage produced during the processing.

In [14], Faust et al. propose an extension of Ishai et al.’s scheme. Their scheme
requires a leak-free hardware component but it is provably secure under two dif-
ferent and more general leakage models. In the first model, the leakage at each cycle
is any function of the circuit internal state (i.e. the logical values carried by all the
wires) which is computationally bounded: it is assumed to be in the complexity
class AC0 (i.e. it must be computable by a circuit of constant depth). In the second
model, the leakage reveals the values of each internal state bit flipped with a proba-
bility p < 1/2 (i.e. xor-ed with a p-Bernoulli noise). In a recent paper [35], Rothblum
further showed how to remove the requirement of leak-free component in the AC0

leakage model. These works achieve an important progress towards provable se-
curity against side-channel attacks since it shows that masking can bring security
even in the presence of a global leakage on the entire state. However, the practica-
bility of the considered models is questionable. In particular it is unclear whether
the AC0 leakage or the full leakage with Benouilli noise really fit the physical reality
of power and/or electromagnetic leakages.

Masking schemes. On the other hand, several works have shown how to apply
masking to various algorithms in practice. They however often omit to prove the se-
curity of the resulting implementations. The first masking scheme was proposed by
Goubin and Patarin in [19] for the DES cipher. Further schemes were subsequently
published in which masking is applied at hardware or software level at the cost of
different area-time-memory trade-offs (see for instance [2, 28, 30]). Originally, most
of these schemes deal with first-order masking which splits each sensitive variable in
two shares (a mask and a masked variable). Then higher-order masking schemes were
defined to get security against side-channel attacks exploiting the leakage of sev-
eral, say d, intermediate computations [3, 16, 33, 34]. The purpose of these schemes
is analogous to the d-probing secure circuit of Ishai et al. : the computation is per-
formed such that any d intermediate variables occurring in the algorithm reveal no
sensitive information. Most of these schemes are actually based on the method of
Ishai et al. to securely process a multiplication between two shared variables. Con-
sequently, they suffer the same limitation as Ishai et al. ’s scheme: they only thwart
a limited adversary that does not exploit the overall leakage.

1.2 Our Contribution

In this paper we formally prove the security of masked implementations of block
ciphers in the only computation leaks information model [29]. In this model, every step
of the processing reveals a leakage function of the touched part of the device state.
This function is chosen adaptively by the adversary in some pre-determined class.
For our security proof, we split the computation into several elementary calculations
(in practice, a sequence of few CPU instructions) that each accesses a subpart x of
the device state and leaks a function of x. Starting from the observation that mask-
ing is sound when combined with noise [4] and that many practical solutions exist
to amplify leakage noise (see for instance [6–8, 20, 27, 39, 41]), we assume the leak-
age functions to be noisy. The noisy feature of a leakage function f is captured by
assuming that an observation of f(x) only implies a bounded bias in the probability
distribution of x. Namely the statistical distance between the distributions P[x] and

P[x|f(x)] is bounded. We further assume that this bound depends on a noise param-
eter ω that can be chosen by the designer according to the required security level.
Our security proof has a natural limitation which is the requirement of a leak-free
component, an elementary calculation refreshing the masks of a shared variable.
Under these assumptions, we achieve an information theoretic security proof: we
show that the mutual information between the cipher input (plaintext and secret
key) and the overall leakage on the block cipher processing is upper bounded by
ω−(d+1), where d is the masking order.

This bound can be seen as an extension of the seminal work of Chari et al. [4]
as it is derived from the combination of masking with noise. We extend their anal-
ysis in two ways. First we consider a more general leakage model which no longer
requires particular assumptions (single-bit target variable, Gaussian noise). More
importantly, we provide a security bound for a full masked block cipher imple-
mentation whereas Chari et al. analysis focus on leaking shares independently of
any computation. Our work can also be viewed as an alternative to previous works
on program or circuit compilers with formal security proofs against side-channel at-
tacks [11,14,17,18,22,35]. Whereas the practical meaning of the leakage models con-
sidered in these works is questionable, our leakage model aims to be compliant with
practical investigations about side-channel leakage (see for instance [27, 31, 36, 38]).

2 Preliminaries

Calligraphic letters, like X , are used to denote finite sets. The corresponding large
letter X is used to denote a random variable over X , while the lower-case letter
x denotes a particular element from X . To every discrete random variable X , one
associates a probability mass function PX defined by PX(x) = P[X = x]. Let Y be a
random variable defined over some setY and let y ∈ Y . Then (X|Y = y) denotes the
random variable with probability mass function x 7→ P[X = x|Y = y]. The entropy
(or Shannon entropy) H[X] of a discrete random variable X is defined by H[X] =
−∑x∈X PX(x) log2(PX(x)). The mutual information between two random variables
X and Y is then defined by I(X;Y) = H[X]−H[X|Y], where H[X|Y] is called the con-
ditional entropy of X given Y and is defined by H[X|Y] =

∑
y∈Y PY (y) H[(X|Y = y)].

The statistical distance between two random variables X0 and X1 is denoted by
d(X0;X1) and is defined by d(X0;X1) = ‖PX0 − PX1‖ where ‖ · ‖ denotes the Eu-
clidean norm and PXi denotes the vector (PXi(x))x∈X . We recall that for any N -
dimensional vector y = (y1, y2, . . . , yN) we have

‖y‖ ≤ L1(y) ≤
√
N‖y‖ , (1)

where L1(y) denotes the Manhattan norm
∑

i |yi|.
We now introduce the notion of bias that is extensively used in our security

proof.

Definition 1. LetX and Y be two random variables. The bias ofX given Y = y, denoted
β(X|Y = y), is defined as

β(X|Y = y) = d
(
X; (X|Y = y)

)
.

The bias of X given Y , β(X|Y), is then defined as the expected bias of X given Y = y
over Y , that is

β(X|Y) =
∑

y∈Y
PY (y)β(X|Y = y) .

The bias of X given Y is an information metric between X and Y . If X and Y
are independent then β(X|Y) equals zero. Moreover, as shown in the next proposi-
tion, it is related to the mutual information between X and Y (the proof is given in
appendix).

Proposition 1. Let X and Y be two random variables, with X uniformly distributed over
a set X of cardinality N . The mutual information between X and Y satisfies I(X;Y) ≤
N
ln 2
β(X|Y).

3 Model of Leaking Computation

We describe hereafter our model of leaking computation.
An algorithm is modelled by a sequence of elementary calculations (Ci)i that are

Turing machines augmented with a common random access memory called the
state. Each elementary calculation reads its input and writes its output on the state.
When an elementary calculation Ci is invoked, its input is written from the state to
its input tape, then Ci is executed, afterwards its output is written back to the state.

A physical implementation of an algorithm is modelled by a sequence of physical
elementary calculations. A physical elementary calculation (Ci, fi)i is composed of an
elementary calculation Ci and a leakage function fi. A leakage function is defined as a
function that takes two parameters: the value held by the accessed part of the state
and a random string long enough to model the leakage noise. Let I = (Ci, fi)i be a
physical implementation of an algorithm A as defined above. Each execution of I
leaks the values

(
fi(xi, ri)

)
i
where xi denotes the input of Ci and ri is a fresh random

string. In particular all the ri involved in successive executions of I are uniformly
and independently drawn.

For the sake of simplicity, we shall omit the random string parameter, which
leads to the notation fi(x) where x is the accessed value. Note that fi(x) is not the
result of a function but it can be seen as the output of a probabilistic Turing machine.
In particular, fi(x) can take several values with a given probability distribution, and
is therefore considered as a random variable in the following. LetX be the definition
set of the accessed part of the state. We shall then say that fi is defined over X (or
equivalently that X is the domain of fi).

For our security proof, we will consider special classes of leakage functions that
we shall call noisy leakage functions. Let f be a leakage function defined over some
set X and let X denote a uniform random variable over X . The noisy property of
f is captured by assuming that the bias introduced in the distribution of X given
the leakage f(X) is bounded.3 For any positive real number ε, we define the class

3 For the above definition of noisy leakage functions to be sound, we need to precise the distribution of X
while bounding β(X|f(X)), and a natural choice is the uniform distribution. Of course, this does not con-
strain the leakage function to only apply on uniformly distributed inputs.

of noisy leakage functions w.r.t. bias ε, and we denote by N (ε), the set of noisy func-
tions such that β(X|f(X)) ≤ ε. In this paper, we shall assume that the designer can
constrain as willing the set of noisy leakage functions related to any elementary cal-
culation by linearly increasing the amount of noise in the leakage. More precisely,
we assume that the designer controls a noise parameter ω such that an elementary
calculation C can yield a physical elementary calculation (C, f) with f ∈ N (1/ω),
where ω is linear in the security parameter.

3.1 Discussion

Our model can be seen as a specialization of the physically observable cryptogra-
phy framework [29] with leakage functions belonging to the class of noisy functions
as defined above (the similarities between our model and this framework are dis-
cussed in Appendix). Our model is also comparable to the leakage resilient cryp-
tography model [12] with two important differences relating to the computation
granularity and the class of leakage functions.

Computation granularity. As nicely explained in [17], a computation in the only
computation leaks model is divided into several sub-computations and a leakage func-
tion applies to the input of each sub-computation. In [12, 32] the authors construct
stream ciphers that output an unbounded number of key-stream blocks from a se-
cret key block. A sub-computation is then naturally identified as the computation of
one block. In contrast, we consider a finer granularity: the computation of one block
(i.e. a single block cipher computation) is divided into several elementary calcula-
tions that each leaks a function of its input. In other words, [12,32] address the issue
of constructing secure protocols from a cryptographic primitive with limited leak-
age whereas we address the issue of constructing secure cryptographic primitives
from elementary calculations with noisy leakages.

Class of leakage functions. The most noticeable difference between our work
and the previous leakage-resilient constructions resides in the considered class of
leakage functions. Most previous works consider the class of (polynomial-time)
bounded-range functions where a function takes values in {0, 1}λ for some param-
eter λ [10–13, 17, 18, 22, 23, 32]. This hypothesis is conservative in terms of security
since it encompasses leakage functions with complex structures. However its prac-
tical meaning is unclear with regard to power and electromagnetic side channels for
which the leakage is usually substantially larger than the secret state (but hopefully
does not contain its overall entropy).

In contrast, several techniques are known to add some noise in the side-channel
leakage in practice [6–8, 20, 26, 27, 39, 41]. By noise addition we mean that the rel-
evant signal in the leakage is lowered compared to random variations, although
this may not literally result from noise addition (the terminology of hiding is some-
times used). This motivates our definition of noisy leakage functions. Note that
in practice, power and electromagnetic leakages can realistically be modeled by a
multivariate deterministic function g of the processed data with an additional mul-
tivariate Gaussian noise N [5, 27, 36, 38]. The class N (ε) corresponding to such a
leakage function can then be determined from the description of g and N .

4 Masked Implementation of Block Ciphers

Several schemes have been proposed to securely process a block cipher composed
of linear layers and non-linear s-boxes. In this paper, we prove the security of the
scheme described in [3] with a secure multiplication processing close to those of
[14, 21], and with additional mask-refreshing computations. Before presenting the
masking scheme, we start by formalizing the considered block cipher processing.

4.1 Block Cipher Processing

A block cipher is a cryptographic algorithm which, from a secret key, transforms a
plaintext block into a ciphertext block. In this paper, we focus on block ciphers de-
signed as a succession of linear functions and substitution boxes (s-boxes). S-boxes
are nonlinear functions from {0, 1}n to {0, 1}m with m ≤ n and n small (typically
n ∈ {4, 6, 8}). We assume that the addition law is the bitwise addition, denoted
⊕, and that the s-boxes are balanced; namely every y ∈ {0, 1}m has the same num-
ber of preimages in {0, 1}n under the s-box. In the computation model introduced
in Section 3, the processing of such a block cipher is represented as a sequence of
elementary calculations, each of them implementing either a linear function or an
s-box. The input of this processing is a pair composed of the plaintext and the secret
key and the output is the corresponding ciphertext.

Uniformity property. We shall assume that the block cipher satisfies the following
uniformity property: a uniform distribution of the cipher input (plaintext-key pair)
induces a uniform distribution of the input of every of its elementary calculation.
The uniformity property is satisfied by classical block cipher designs such as DES
and AES.

4.2 Securing the Block Cipher Processing

We start with the following definition that formalizes the notion of dth-order encod-
ing.

Definition 2 (dth-order encoding). Let d be a positive integer and let I denote the integer
interval {0, 1, . . . , d}. The dth-order encoding of x ∈ X is a (d+1)-tuple (xi)i∈I satisfying⊕

i xi = x and such that (xi)i∈I\{i0} is uniformly distributed over X d for every i0 ∈ I .

Masking a block cipher implementation consists in choosing a security parame-
ter d (called masking order) and in performing the computation on a dth-order encod-
ing of the state. Namely, the plaintext and the secret key are split into d + 1 shares.
Then, a scheme is defined that specifies how each elementary calculation is replaced
by a sequence of new elementary calculations operating only on the shares. At the
end, the new sequence must return an encoding of the ciphertext (from which the
actual ciphertext can be straightforwardly recovered).

According to the block cipher model of Section 4.1, we describe hereafter how to
process a linear function and an s-box computation on shared inputs as proposed
in [3]. We first introduce the mask-refreshing component used at several steps in
the masking scheme and which is assumed to be leak-free in our security proof.

Mask refreshing. Our scheme requires a special kind of elementary calculation to
refresh the masks of an encoding without leaking information. This mask-refreshing
oracle is denoted byO$. From an encoding of any value x, it computes a new encod-
ing of x with fresh random values. For the sake of simplicity, we assume that when
invoked the input and output of our leak-free component do not leak. However
this assumption could be relaxed since the input comes from a previous elementary
calculation and the output is used in the subsequent elementary calculations (oth-
erwise its masks would not need to be refreshed), therefore they both leak at some
point in the computation.

Secure linear function processing. To secure the processing of any linear function
g, the following process is applied:

1. For every i ∈ {0, 1, . . . , d}, process zi ← g(xi).
2. Output (zi)i ← O$

(
(zi)i

)
.

3. If the encoding (xi)i is used subsequently in the block cipher processing, process
(xi)i ← O$

(
(xi)i

)
.

Secure s-box processing. Let S be an s-box with input dimension n and output
dimension m ≤ n. Then S can be represented by a polynomial function x ∈ F2n 7→⊕2n−1

i=0 αix
i where the αi are constant coefficients in F2n . The αi can be computed

from the s-box look-up table by applying Lagrange’s Theorem.4 Thanks to this
representation, the s-box calculation can be done by processing four kinds of ele-
mentary calculations over F2n : addition, multiplication by a constant, square, and
regular multiplication (i.e. of two different elements). The three former kinds of cal-
culations are linear (or affine including the addition by a non-zero constant) and
their processing can hence be done exactly as for linear transformations. When the
calculation is a regular multiplication, the following scheme is applied.

Secure regular multiplication processing. To secure the processing of a regular
multiplication, we use a method similar to that of [14, 21]. The input is a pair of
encodings of the multiplication operands a and b. The definition of the sequence
of elementary calculations computing the encoding of a × b is deduced from the
following relation: a× b =

(⊕
i ai
)
×
(⊕

i bi
)
=
⊕

i,j ai× bj . It is described hereafter:

1. For every (i, j) ∈ {0, 1, . . . , d}2, process vi,j ← ai × bj .
2. For every j ∈ {0, 1, . . . , d}, process (v0j, v1j, . . . , vdj)← O$(v0j, v1j, . . . , vdj).
3. Process (v00, v01, . . . , v0d)← O$(v00, v01, . . . , v0d).
4. For every i ∈ {0, 1, . . . , d}, process zi ←

⊕d
j=0 vi,j

5. Output (zi)i ← O$
(
(zi)i

)
.

6. If one of the input encodings (a)i and (bi)i is involved in a subsequent elemen-
tary calculation, then process (ai)i ← O$

(
(ai)i

)
and/or (bi)i ← O$

(
(bi)i

)
.

4 Whenm is strictly lower than n, them-bit outputs can be embedded in F2n by padding them to n-bit outputs
(e.g. by setting most significant bits to 0). The padding is then removed after the polynomial evaluation.

Note that Steps 2 and 3 intend to refresh the masks between the subsequences
of elementary calculations in Steps 1 and 4. Namely, these steps render the proba-
bility distributions

(
(ai)i, (bj)j|(a, b)

)
(in Step 1) and

(
(vi,j)i,j|(a, b)

)
(in Step 4) mu-

tually independent. Note that Step 3 is mandatory to this aim as Step 2 only makes(
(vi,j)i|(a, b)

)
independent of

(
(ai)i, (bj)j|(a, b)

)
for every column j separately. From

this point, Step 3 ensures the global independence.
For our security proof, we shall consider each sum zi ←

⊕d
j=0 vi,j in Step 4 as d

successive elementary calculations ti,j ← ti,j−1 ⊕ vi,j for 1 ≤ j ≤ d with ti,0 = vi,0
and giving zi = ti,d.

It is clear from the above description that securing a regular multiplication is
expensive compared to securing a linear function. The complexity of a secure mul-
tiplication is quadratic in d whereas the complexity of a secure linear function is
linear in d. Moreover the secure multiplication requires several calls to the mask re-
freshing oracle. For efficiency purpose, one should hence try to minimize the num-
ber of multiplications in the polynomial representation of the s-box. We refer to [3]
where efficient heuristics of polynomial evaluation are proposed with respect to
this criterion.

5 Main Theorems

It is well-known that any subset of at most d shares Xi gives no information on a
secret X encoded at order d, while the whole d+1 shares enable to fully reconstruct
the secret. In [4], Chari et al. consider an adversary which has access to the noisy
version of all the shares, i.e. Xi + Ni where Ni is a Gaussian noise with standard
deviation σ. They restrict themselves to the case of a single secret bit and show
that distinguishing the distribution of the noisy shares associated to a secret bit at 0
and that associated to a secret bit at 1 with a probability α ∈ [0, 1) requires at least
σd+4 logα/ log σ samples. In other words, the required number of leakage observations
increases exponentially with the masking order, the underlying base being the noise
standard deviation.

Chari et al. ’s result demonstrates the soundness of using masking under a prac-
tically relevant leakage model. However, they only focus on a static leakage of the
shares and not on the leakage occurring while computing on the shares. In this pa-
per, we fill this gap by providing security bounds for masked implementations that
process shared variables. As explained in Section 4, a block cipher may be decom-
posed into linear operations and multiplications in a finite field. We derive hereafter
upper bounds on the amount of sensitive information leakage for both operations
when protected by masking. Then in Section 6, we derive an upper bound on the
information leakage for the full masked implementation of the cipher.

5.1 Sequential Processing of the Shares

Our first context deals with the case where the shares are processed sequentially e.g.
by applying the same linear function to them. For such a processing, we provide
hereafter an upper bound on the bias of the secret value distribution given noisy
leakages on its shares.

Theorem 1. Let X be a uniform random variable over some set X of cardinality N , let d
be a positive integer and let (Xi)i be a dth-order encoding of X . Let ε ∈ [0, 1) and let f0, f1,
. . . , fd be noisy functions defined over X and belonging to N (ε). We have:

β
(
X
∣∣f0(X0), f1(X1), . . . , fd(Xd)

)
≤ N

d
2 εd+1 .

Theorem 1 shows that the bias of X given the leakages on its shares decreases
exponentially with the order d, provided that the initial bias is sufficiently low,
namely lower than 1√

N
. Seeing the amount of noise as the inverse of the bias, we

hence obtained an upper-bound that decreases exponentially with the encoding or-
der, the base of the exponent being the amount of noise. This result is in accordance
with [4] while being more general since it encompasses any (univariate or multi-
variate) leakage distribution and any data dimension.

Remark 1. The tuple
(
f0(X0), f1(X1), . . . , fd(Xd)

)
can be seen as the output of a noisy

function
F : X 7→

(
f0(X ⊕X1 ⊕ · · · ⊕Xd), f1(X1), . . . , fd(Xd)

)

where X1, X2, . . . , Xd are part of the internal randomness of F . Theorem 1 is then
equivalent to the following statement: if f0, f1, . . . , fd belong to N (ε) then F belong
to N

(
N

d
2 εd+1

)
.

In some contexts, the shared variable is not uniformly distributed, but it is a
deterministic function of a uniform secret variable. This case is addressed in the
following corollary of Theorem 1.

Corollary 1. Let X be a uniform random variable over some set X of cardinality N and
let g be a deterministic function from X to X . Let d be a positive integer and let (Gi)i be a
dth-order encoding of g(X). Let ε ∈ [0, 1) and let f0, f1, . . . , fd be noisy functions defined
over X and belonging to N (ε). We have:

β
(
X
∣∣f0(G0), f1(G1), . . . , fd(Gd)

)
≤
√
2N

d+2
2 εd+1 .

Corollary 1 holds as a direct consequence of the above remark and the following
lemma.

Lemma 1. Let X and Y be two finite sets. Let f be a noisy function defined over Y and
belonging to the class N (ε) and let g be a deterministic function from X to Y . Then the
noisy function f ◦ g defined over X belongs to the class N (

√
2|Y| · ε).

5.2 Multiplication of the Shares

The previous theorem deals with a situation where all the shares leak separately
which matches the context of the secure linear functions processing. However it is
not sufficient alone to deduce an upper bound for the secure multiplication process-
ing given in Section 4. In the latter case, the secure multiplication of two variables
A and B from their respective encodings (Ai)i and (Bj)j requires to compute the
cross-terms Ai ×Bj . Hence each share Ai of A appears in d+ 1 different multiplica-
tions, one per share Bj , and vice versa. Our strategy is first to bound the bias on each

share Ai and Bj given the multiple leakages on each share. We can then bound the
bias of A and B using a similar approach as in Theorem 1, and we finally derive a
bound for the bias of the pair (A,B).

We give hereafter our result for the bias given multiple leakages, and then pro-
vide our result for the bias given the cross-term leakages.

Bias given multiple leakages. The next theorem deals with the case of repeated
leakages on a variable X . We will then apply it in the secure multiplication context.

Theorem 2. Let X be a uniform random variable defined over a finite set X of cardinality
N . Let ε ∈ [0, 1) and let f1, f2, . . . , ft be t noisy functions defined over X and belonging to
N (ε). For any real number α ∈ (0, 1], if ε ≤ α

tN
, then we have

β(X|f1(X), f2(X), . . . , ft(X)) ≤
((eα − 1

α

)
t+ eα

)
ε .

The bound in Theorem 2 shows that the bias of X given t leakages increases
linearly with t. A requirement is that the bias given a single leakage, namely ε, is
t times lower than 1

N
or less, namely ε ≤ α

tN
for some α ∈ (0, 1]. Then the bias of

X given t leakages is smaller that λ(t) ε where λ is an affine function. The value α
provides a trade-off between the constraint on ε and the coefficients of λ. If α = 1
then λ(t) = (e − 1)t + e ≈ 1.72 t + 2.72, and when α approaches 0, then λ(t) tends
towards t+ 1.

Bias given cross-term leakages. The next theorem gives an upper bound on the
bias of a uniform pair (A,B) given the leakage (fi,j(Ai, Bj))i,j .

Theorem 3. Let A and B be two random variables uniformly distributed over some finite
set X of cardinality N . Let d be a positive integer, and let (Ai)i and (Bj)j be two dth-order
encodings of A and B respectively. Let ε be a real number such that ε ≤ α

(d+1)N2 for some
α ∈ (0, 1] and let (fi,j)i,j be noisy functions defined over X × X and belonging to N (ε).
We have:

β
(
(A,B)|(fi,j(Ai, Bj))i,j

)
≤ 2N

3d+2
2

(
(λ1d+ λ0)ε

)d+1
,

where λ1 = eα−1
α

and λ0 = λ1 + eα.

In our context, the pair (A,B) is not uniformly distributed but it is of the form
(A,B) = (g1(X), g2(X)) where X is uniform, and g1 and g2 are polynomial func-
tions. We will then use the following corollary of Theorem 3.

Corollary 2. Let X be a random variable uniformly distributed over some set X and let g1
and g2 be deterministic functions from X to X . Let d be a positive integer and let (Gi)i and
(Hj)j be dth-order encodings of g1(X) and g2(X) respectively. Let ε be a real number such
that ε ≤ α

(d+1)N2 for some α ∈ (0, 1]. And let (fi,j)i,j be noisy functions defined over X ×X
and belonging to N (ε). We have:

β
(
X | (fi,j(Gi, Hj))i,j

)
≤ 2
√
2N

3d+6
2

(
(λ1d+ λ0)ε

)d+1
,

λ1 =
eα−1
α

and λ0 = λ1 + eα.

Here again, the above corollary is a direct consequence of Lemma 1 (taking g =
(g1, g2) and Y = X × X).

The bound in Corollary 2 shows that the bias of X given the leakages on all the
pairs of shares (Ai, Bj) decreases exponentially with d. A requirement is that the
bias given a single leakage, namely ε, is (d+ 1) times lower than 1

N2 or less, namely
ε ≤ α

(d+1)N2 for some α ∈ (0, 1]. Then the bias of X given the (d + 1)2 leakages
is smaller that (λ(d) ε)d+1 where λ is an affine function. Once again, the value α
provides a trade-off between the constraint on ε and the coefficients of λ.

In the next section, we will use the theorems and corollaries introduced above
to deduce a security bound for a full masked implementation of block cipher.

6 Overall Security Proof

In this section, we formally prove the security of the physical implementation I =
(Ci, fi)i of a block cipher following the scheme described in Section 4 with masking
order d. Our security proof is information theoretic: we show that the information
about the cipher input (message and secret key) provided by the overall leakage
within an execution of I is upper bounded by a negligible function of the masking
order d.

The cipher is assumed to involve tlin linear transformations, tnlm nonlinear multi-
plications and taff affine functions (in the s-boxes evaluations). The plaintext and the
secret key in input of the cipher are modeled as uniform random variables M and
K respectively. The input of every elementary calculation Ci is modeled as a ran-
dom variable Xi. Each elementary calculation leaks a noisy function fi of Xi. The
designer is allowed to choose a noise parameter ψi linear in the security parameter
d, such that the leakage function fi lies in the class of noisy functions N (1/ψi).

Theorem 4. Let d be a positive integer and let I = (Ci, fi)1≤i≤q be the physical implemen-
tation of a block cipher under the scheme described in Section 4 with masking order d. For
any positive real number ω, there exists a family of real numbers ψi = O(d)ω such that if fi
lies in N (1/ψi) for every i, then the mutual information between the cipher input (M,K)
and the overall leakage (f1(X1), f2(X2), . . . , fq(Xq)) satisfies

I
(
(M,K); (f1(X1), f2(X2), . . . , fq(Xq))

)
≤ T

ωd+1
, (2)

where T = 2tnlm + taff + tlin.

The rest of this section provides a proof of Theorem 4 and exhibits the noise pa-
rameters ψi that must be chosen for every elementary calculation Ci.

From the description of the scheme in Section 4.2, the overall sequence of ele-
mentary calculations of the protected block cipher algorithm can be split into sev-
eral subsequences separated by masks-refreshing calculations. These subsequences
are of four types:

1.
(
zi ← g(xi)

)
i

where g is a linear function of the block cipher,
2.
(
zi ← g(xi)

)
i

where g is an affine function of an s-box evaluation,

3.
(
vi,j ← ai × bj

)
i,j

(first step of a secure nonlinear multiplication),
4.
(
ti,j ← ti,j−1 ⊕ vi,j

)
i,j

(fourth step of a secure nonlinear multiplication).

All the remaining elementary calculations are masks-refreshing calculations which
are leak-free by assumption.

Let us denote by I1, I1, . . . , IT the successive subsequences of elementary cal-
culations and by L1, L2, . . . , LT their respective leakages. For every t ∈ [1;T], the
leakage Lt satisfies

Lt =





(
fi(Xi)

)
i

if It is of type 1 or 2,(
fi,j(Ai, Bj)

)
i,j

if It is of type 3,(
fi,j(Ti,j−1, Vi,j)

)
i,j

if It is of type 4.

where the fi or fi,j are the leakage functions associated to the elementary calcula-
tions in It and where the (Xi)i, (Ai)i, (Bj)j , (Vi,j)i,j , or (Ti,j)i,j are random variables
modeling the elementary calculations inputs in It (note that the indexing is intra-
subsequence and it differs from that in Theorem 4).

A crucial point of our security proof is that every subsequence operates on
shares with fresh random masks. As a result, given a cipher input (M,K) = (m, k),
the encodings processed in the different subsequences are mutually independent,
which in turn implies that the leakages of the different subsequences are mutually
independent (since by definition, the randomness introduced by a noisy function
is independent of the randomness introduced by the others). We deduce that the
entropy of the overall leakage (L1, L2, . . . , LT) knowing the cipher input (M,K)
satisfies:

H[(L1, L2, . . . , LT)|(M,K)] =
T∑

t=1

H[Lt|(M,K)] .

The mutual information between the cipher input and the overall leakage therefore
satisfies:

I
(
(M,K); (L1, L2, . . . , LT)

)
= H[(L1, L2, . . . , LT)]−

T∑

t=1

H[Lt|(M,K)]

≤
T∑

i=1

I((M,K);Lt) ,

where the inequality holds since H[(Lt)t] ≤
∑

tH[Lt].
For every subsequence It, there exists a uniform random variable5 Xt = g(M,K)

such that I((M,K);Lt) = I(Xt;Lt). To complete the proof of Theorem 4, we now
demonstrate that the mutual information I(Xt;Lt) is upper bounded by (1/ω)d+1 for
some noise parameter ψt = O(d)ω, for every t ∈ {1, 2, . . . , T}. Due to Proposition 1,
this is equivalent to prove that the bias of Xt given Lt satisfies

β(Xt|Lt) ≤
ln 2

N

(
1

ω

)d+1

, (3)

5 For a subsequence of type 1, this variable is simply the (unmasked) input of the corresponding linear trans-
formation (which is indeed uniform since the cipher input is uniform by assumption, and according to the
uniformity property stated in Section 4.1). For a subsequence of type 2, 3 or 4, this variable is the (unmasked)
input of the corresponding s-box (which is also uniformly distributed for the same reasons).

where N is the cardinal of the definition set of Xt. In the rest of the section, we
demonstrate the claim for every type of subsequence.

Security of type 1 subsequences. In a type 1 subsequence every elementary calcu-
lation processes a share of an encoding of the uniform input Xt of a linear function.
The security of such a subsequence directly holds from Theorem 1. Indeed, accord-
ing to Theorem 1 with ε = ψ−1t , choosing a noise parameter ψt = cω with a constant
c satisfying cd+1 ≥ (ln 2)−1N

d+2
2 implies bound (3). In particular c can be taken equal

to (ln 2)−
1
2N

3
4 ≈ 1.44N

3
4 for any d ≥ 1 and equal to a value close to 1.44

√
N for a

large d.

Security of type 2 subsequences. In a type 2 subsequence every elementary cal-
culation processes a share Gi of an encoding of g(Xt) where Xt is a uniform s-box
input and g is some polynomial function.

According to Corollary 1, choosing a noise parameter ψt = c ω with a constant c
satisfying cd+1 ≥ (ln 2)−1N

d+5
2 implies bound (3). In particular c can be taken equal

to (ln 2)−
1
2N

3
2 ≈ 1.44N

3
2 for any d ≥ 1 and equal to a value close to 1.44

√
N for a

large d.

Security of type 3 subsequences. In a type 3 subsequence every elementary cal-
culation processes a multiplication from a pair of shares (Ai, Bj), where (Ai)i and
(Bj)j are dth-order encodings of two variables A and B to multiply. Both A and B
rely on a uniform s-box input Xt by A = g(Xt) and B = h(Xt) for some polynomial
functions g and h.

According to Corollary 2, choosing a noise parameter ψt = λ(d) ω for a subse-
quence It of type 3 implies bound (3), as long as there exists α ∈ (0; 1] such that λ(d)
satisfies

λ(d) ≥ N2

α ω
(d+ 1) and λ(d) ≥ c(λ1,α d+ λ0,α) ,

where λ1,α = eα−1
α

, λ0,α = λ1,α+eα and c is a constant satisfying cd+1 ≥ 2(ln 2)−1N
3d+9

2 .
In particular c can be taken to (ln 2)−

1
2N3 ≈ 1.44N3 for any d ≥ 1 and equal to a

value close to 1.44N
3
2 for a large d.

The first constraint aims to meet the requirement on ε for Corollary 2 and the
second constraint implies bound (3). To summarize, the best choice is to take λ as

λ(d) = min
α∈(0;1]

max
(N2

α ω
(d+ 1) , c(λ1,α d+ λ0,α)

)
.

Security of type 4 subsequences. In a type 4 subsequence every elementary cal-
culation processes an addition Ti,j = Ti,j−1 ⊕ Vi,j for 0 ≤ i ≤ d and 1 ≤ j ≤ d,
and where Ti,0 = Vi,0. For every i, the sequence of additions results in a share
Zi = Ti,d of the underlying multiplication output. That is (Z0, Z1, . . . , Zd) is an
encoding of g(X) where X is a uniform s-box input and g is some polynomial
function over X . Each elementary calculation takes as input a pair (Ti,j−1, Vi,j) and

leaks fi,j(Ti,j−1, Vi,j) where fi,j ∈ N (1/ψt). Our goal is to set ψt such that the bias
β
(
X|(F0(Z0), F1(Z1), . . . , Fd(Zd))

)
satisfies bound (3), where

Fi(Zi) =
(
fi,1(Ti,0, Vi,1), fi,2(Ti,1, Vi,2) . . . , fi,d(Ti,d−1, Vi,d)

)
.

Note that Fi can be seen as a noisy function applied to Zi (and where Vi,1, Vi,2, . . . ,
Vi,d are seen as the internal randomness of Fi).

We first analyse the bias on each Zi given the leakages Fi(Zi). Let f ′i,j be the noisy
functions defined by f ′i,j : (X, Y) 7→ fi,j(X,X ⊕ Y). We can then rewrite Fi(Zi) as

Fi(Zi) =
(
f ′i,1(Ti,0, Ti,1), f

′
i,2(Ti,1, Ti,2) . . . , f

′
i,d(Ti,d−1, Ti,d)

)
,

and we have f ′i,j ∈ N (1/ψt) for every (i, j) by definition of the bias.6 Moreover
Ti,0, Ti,1, . . . , Ti,d are independent and uniformly distributed, and Ti,d = Zi. We then
apply the following lemma.

Lemma 2. Let T0, T1, . . . , Td be d+1 independent random variables uniformly distributed
over some set X of cardinality N . Let ε ∈ [0, 1) and let f1, f2, . . . , fd be noisy functions
defined over X × X and belonging to N (ε). We have:

β
(
Td
∣∣f1(T0, T1), f2(T1, T2), . . . , fd(Td−1, Td)

)
≤ 2Nε .

Lemma 2 implies β(Zi|Fi(Zi)) ≤ 2N/ψt for every i. Then by Corollary 1, we get

β
(
X|(F0(Z0), F1(Z1), . . . , Fd(Zd))

)
≤ N

d+3
2

(2N
ψt

)d+1

= N
3d+5

2

(2

ψt

)d+1

.

According to the above inequality, choosing a noise parameter ψt = c ω with a
constant c satisfying cd+1 ≥ 2d+1(ln 2)−1N

3d+7
2 implies bound (3). In particular c can

be taken equal to 2(ln 2)−1N
5
2 ≈ 2.89N

5
2 for any d ≤ 1 and equal to a value close to

2.89N
3
2 for a large d.

6 For every noisy function f defined over X × X , and for f ′ : (X,Y) 7→ f(X,X ⊕ Y), we have
β
(
(X,Y)

∣∣f(X,Y)
)
= β

(
(X,Y ′)

∣∣f ′(X,Y ′)
)

where Y ′ = X ⊕ Y .

References

1. G. Blakely. Safeguarding cryptographic keys. In National Comp. Conf., volume 48, pages 313–317, New
York, June 1979. AFIPS Press.

2. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES. In M. Matsui and R. Zuccher-
ato, editors, Selected Areas in Cryptography – SAC 2004, volume 3357 of Lecture Notes in Computer Science,
pages 69–83. Springer, 2004.

3. C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-order masking schemes for s-boxes.
In A. Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science, pages 366–384. Springer, 2012.

4. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Counteract Power-Analysis Attacks.
In M. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 398–412. Springer, 1999.

5. S. Chari, J. Rao, and P. Rohatgi. Template Attacks. In B. Kaliski Jr., Ç. Koç, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages 13–29.
Springer, 2002.

6. C. Clavier, J.-S. Coron, and N. Dabbous. Differential Power Analysis in the Presence of Hardware Coun-
termeasures. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2000,
volume 1965 of Lecture Notes in Computer Science, pages 252–263. Springer, 2000.

7. J.-S. Coron and I. Kizhvatov. Analysis and Improvement of the Random Delay Countermeasure of CHES
2009. In S. Mangard and F.-X. Standaert, editors, Cryptographic Hardware and Embedded Systems – CHES
2010, volume 6225 of Lecture Notes in Computer Science, pages 95–109. Springer, 2010.

8. J.-S. Coron, P. Kocher, and D. Naccache. Statistics and secret leakage. In Y. Frankel, editor, Financial Cryp-
tography – FC 2000, volume 1962 of Lecture Notes in Computer Science. Springer, 2000.

9. G. D. Crescenzo, R. J. Lipton, and S. Walfish. Perfectly Secure Password Protocols in the Bounded Retrieval
Model. In S. Halevi and T. Rabin, editors, TCC, volume 3876 of Lecture Notes in Computer Science, pages
225–244. Springer, 2006.

10. Y. Dodis and K. Pietrzak. Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel
Networks. In T. Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 21–40. Springer, 2010.

11. S. Dziembowski and S. Faust. Leakage-Resilient Circuits without Computational Assumptions. In
R. Cramer, editor, Theory of Cryptography, 9th Theory of Cryptography Conference – TCC 2012, volume 7194
of Lecture Notes in Computer Science, pages 230–247. Springer, 2012.

12. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302. IEEE Computer
Society, 2008.

13. S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-Resilient Signatures. In D. Micciancio, editor,
Theory of Cryptography Conference – TCC 2010, volume 5978 of Lecture Notes in Computer Science, pages 343–
360. Springer, 2010.

14. S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting Circuits from Leakage: the
Computationally-Bounded and Noisy Cases. In H. Gilbert, editor, Advances in Cryptology – EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 135–156. Springer, 2010.

15. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete Results. In Ç. Koç, D. Naccache,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162 of Lecture
Notes in Computer Science, pages 251–261. Springer, 2001.

16. L. Genelle, E. Prouff, and M. Quisquater. Thwarting higher-order side channel analysis with additive
and multiplicative maskings. In B. Preneel and T. Takagi, editors, CHES, volume 6917 of Lecture Notes in
Computer Science, pages 240–255. Springer, 2011.

17. S. Goldwasser and G. N. Rothblum. Securing computation against continuous leakage. In T. Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 59–79.
Springer, 2010.

18. S. Goldwasser and G. N. Rothblum. How to Compute in the Presence of Leakage. In 53rd Annual IEEE
Symposium on Foundations of Computer Science – FOCS 2012, pages 31–40. IEEE Computer Society, 2012.

19. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication Method. In Ç. Koç and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES ’99, volume 1717 of Lecture Notes in
Computer Science, pages 158–172. Springer, 1999.

20. P. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation Resistant to Power Analysis
Attacks. In J. Zhou, M. Yung, and F. Bao, editors, Applied Cryptography and Network Security – ANCS 2006,
volume 3989 of Lecture Notes in Computer Science, pages 239–252. Springer, 2006.

21. Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against Probing Attacks. In
D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 463–481. Springer, 2003.

22. A. Juma and Y. Vahlis. Protecting Cryptographic Keys against Continual Leakage. In T. Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 41–58.
Springer, 2010.

23. E. Kiltz and K. Pietrzak. Leakage Resilient ElGamal Encryption. In M. Abe, editor, Advances in Cryptology -
ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 595–612. Springer, 2010.

24. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In
N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science,
pages 104–113. Springer, 1996.

25. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor, Advances in Cryptology –
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

26. F. Macé, F.-X. Standaert, and J.-J. Quisquater. Information Theoretic Evaluation of Side-Channel Resistant
Logic Styles. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems –
CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 427–442. Springer, 2007.

27. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks – Revealing the Secrets of Smartcards. Springer,
2007.

28. T. Messerges. Securing the AES Finalists against Power Analysis Attacks. In B. Schneier, editor, Fast Software
Encryption – FSE 2000, volume 1978 of Lecture Notes in Computer Science, pages 150–164. Springer, 2000.

29. S. Micali and L. Reyzin. Physically Observable Cryptography (Extended Abstract). In M. Naor, editor,
Theory of Cryptography Conference – TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 278–
296. Springer, 2004.

30. E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel Analysis Resistant Description of
the AES S-box. In H. Handschuh and H. Gilbert, editors, Fast Software Encryption – FSE 2005, volume 3557
of Lecture Notes in Computer Science, pages 413–423. Springer, 2005.

31. E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Power and Electromagnetic Analysis: Improved Model,
Consequences and Comparisons. Integration, 40(1):52–60, 2007.

32. K. Pietrzak. A Leakage-Resilient Mode of Operation. In A. Joux, editor, Advances in Cryptology – EURO-
CRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 462–482. Springer, 2009.

33. E. Prouff and T. Roche. Higher-order glitches free implementation of the aes using secure multi-party
computation protocols. In B. Preneel and T. Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer
Science, pages 63–78. Springer, 2011.

34. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In S. Mangard and F.-X. Stan-
daert, editors, Cryptographic Hardware and Embedded Systems – CHES 2010, volume 6225 of Lecture Notes in
Computer Science, pages 413–427. Springer, 2010.

35. G. N. Rothblum. How to compute under AC0 leakage without secure hardware. In R. Safavi-Naini and
R. Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 552–569. Springer,
2012.

36. W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side Channel Cryptanalysis. In
J. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES 2005, volume 3659 of
Lecture Notes in Computer Science. Springer, 2005.

37. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.
38. F.-X. Standaert and C. Archambeau. Using Subspace-Based Template Attacks to Compare and Combine

Power and Electromagnetic Information Leakages. In E. Oswald and P. Rohatgi, editors, Cryptographic
Hardware and Embedded Systems – CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages 411–
425. Springer, 2008.

39. F.-X. Standaert, S. B. Örs, and B. Preneel. Power Analysis of an FPGA: Implementation of Rijndael: Is
Pipelining a DPA Countermeasure? In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and
Embedded Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages 30–44. Springer,
2004.

40. F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and E. Oswald. Leakage resilient cryptography
in practice. Cryptology ePrint Archive, Report 2009/341, 2009. http://eprint.iacr.org/.

41. K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA
Implementation. In Design, Automation and Test in Europe Conference and Exposition – DATE 2004, pages
246–251. IEEE Computer Society, 2004.

42. Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseudorandom generators. In
E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, ACM Conference on Computer and Communications
Security – CCS 2010, pages 141–151, 2010.

A Our Model in the Physically Observable Cryptography
Framework

We discuss hereafter the similarities between our model and the physically observ-
able cryptography framework introduced by Micalli and Reyzin [29].

An elementary calculation in our setting corresponds to the notion of abstract
virtual-memory Turing machine (VTM) in [29] and what we call the state corresponds
the physical address space in [29]. Our notion of physical elementary calculation cor-
responds to the notion of physical VTM and it is also defined as a pair composed of
an elementary calculation (or VTM) and a leakage function. The notion of leakage
function involved in this paper slightly differs from the one defined by Micalli and
Reyzin. Whereas in their formalism the leakage function is applied to the current
state of the VTM for every step in the VTM computation, the leakage function in
our model only applies to the input of the current elementary calculation. This dif-
ference does not imply any loss of generality since the elementary calculations we
consider process deterministic functions and do not involve any random number
generation (except for the leak-free component which does not leak by definition).
All the intermediate values within such an elementary calculation are therefore de-
terministic functions of the input and the overall leakage can hence be modeled as
a function of the calculation input (and an independent parameter for the leakage
randomness). Another difference with the leakage function defined in [29] is that
we omit the second parameter: a binary string encoding the measuring apparatus.
The role of this parameter is to enable the adversary to adaptively change the leak-
age function between each step of the on-going computation. Although we do not
need this parameter in our formalism, we emphasize that our security proof holds
for any choice of the leakage functions (fi)i within pre-defined classes

(
N (1/ωi)

)
i

which encompasses an adaptive choice of the leakage function in N (1/ωi) at every
step i.

B Proof of Proposition 1

Proposition 1. Let X and Y be two random variables, with X uniformly distributed over
a set X of cardinality N . The mutual information between X and Y satisfies I(X;Y) ≤
N
ln 2
β(X|Y).

Proof. Let δx,y denote the difference P[X = x|Y = y] − P[X = x]. By definition we
have:

I(X;Y) =
∑

y∈Y
P[Y = y]

∑

x∈X
(P[X = x] + δx,y) log2

(
P[X = x] + δx,y

P[X = x]

)

=
∑

y∈Y
P[Y = y]

∑

x∈X

(1

N
+ δx,y

)
log2 (1 +Nδx,y) .

By definition we have δx,y ≥ − 1
N

and the logarithm satisfies log2(1 + z) ≤ z
ln 2

for
every z > −1. We hence get

I(X;Y) ≤ 1

ln 2

∑

y∈Y
P[Y = y]

∑

x∈X

(1

N
+ δx,y

)
Nδx,y .

As for every y, we have
∑

x∈X δx,y = 0, we deduce

I(X;Y) ≤ N

ln 2

∑

y∈Y
P[Y = y]

∑

x∈X
δ2x,y =

N

ln 2

∑

y∈Y
P[Y = y] ‖δy‖2 ,

where δy denotes the vector (δx,y)x∈X . It can be checked7 that the norm of δy satisfies
‖δy‖ ≤ 1− 1

N
< 1, which finally yields

I(X;Y) <
N

ln 2

∑

y∈Y
P[Y = y] ‖δy‖ ,

and the proposition follows. �

C Proof of Theorem 1

Theorem 1. Let X be a uniform random variable over some set X of cardinality N , let d
be a positive integer and let (Xi)i be a dth-order encoding of X . Let ε ∈ [0, 1) and let f0, f1,
. . . , fd be noisy functions defined over X and belonging to N (ε). We have:

β
(
X
∣∣f0(X0), f1(X1), . . . , fd(Xd)

)
≤ N

d
2 εd+1 .

Proof. According to the properties of a dth-order encoding, the uniformity of X im-
plies the uniformity and the mutual independence of the Xi. Let (`0, `1, . . . , `d) ∈
Im(f0)× Im(f1)× · · · × Im(fd) and let define:

p(x) = P[X = x|(f0(X0), f1(X1), . . . , fd(Xd)) = (`0, `1, . . . , `d)] .

We have:

p(x) =
∑

x1

∑

x2

· · ·
∑

xd

P[(Xi)i≥0 = (xi)i≥0|(fi(Xi))i≥0 = (`i)i≥0] .

where x0 = x⊕⊕i≥1 xi. The independence of the Xi then implies

p(x) =
∑

x1

∑

x2

· · ·
∑

xd

d∏

i=0

P[Xi = xi|fi(Xi) = `i] .

After denoting P[Xi = x|fi(Xi) = `i]− 1
N

by δ(i)x , we get

p(x) =
∑

x1

∑

x2

· · ·
∑

xd

d∏

i=0

(1

N
+ δ(i)xi

)
=

1

N
+
∑

x1

∑

x2

· · ·
∑

xd

d∏

i=0

δ(i)xi .

7 By definition, we have − 1
N
≤ δx,y ≤ 1− 1

N
and

∑
x δx,y = 0. The norm of δy is then lower than or equal to

the norm of the vector
(
− 1
N
,− 1

N
, . . . ,− 1

N
, (N−1) 1

N

)
which equals (N−1)

(
− 1
N

)2
+
(
(N−1) 1

N

)2
= 1− 1

N
.

The latter holds since we have
∑

xi1

∑
xi2
· · ·∑xit

∏
j δ

(ij)
xij

=
∏

j

(∑
xij
δ
(ij)
xij

)
= 0 for

every strict subset {ij} ⊂ {0, 1, . . . , d} (which does not hold for {ij} = {0, 1, . . . , d}
as x0 = x⊕⊕i≥1 xi). By definition, we then have

β
(
X | (fi(Xi))i = (`i)i

)2
=
∑

x

(
p(x)− 1

N

)2
=
∑

x

(∑

x1

∑

x2

· · ·
∑

xd

d∏

i=0

δ(i)xi

)2

which implies

β
(
X | (fi(Xi))i = (`i)i

)2 ≤
∑

x

(∑

x1

∑

x2

· · ·
∑

xd

∣∣∣
d∏

i=0

δ(i)xi

∣∣∣
)2

.

Let δ(i) denote the vector (δ(i)x)x∈X . By Cauchy-Shwartz we have
∣∣∣
∑

xd
δ
(0)
c⊕xdδ

(d)
xd

∣∣∣ ≤
‖δ(0)‖ ‖δ(d)‖ for every c = x⊕ x1 ⊕ · · · ⊕ xd−1 (i.e. x0 = c⊕ xd), which implies

β
(
X | (fi(Xi))i = (`i)i

)2 ≤
∑

x

(∑

x1

∑

x2

· · ·
∑

xd−1

∣∣∣
d−1∏

i=1

δ(i)xi

∣∣∣ ‖δ(0)‖ ‖δ(d)‖
)2

= N ‖δ(0)‖2 ‖δ(d)‖2
(d−1∏

i=1

∑

xi

|δ(i)xi |
)2

.

Inequality (1) implies
∑

xi
|δ(i)xi | ≤

√
N‖δ(i)‖. We hence deduce

β
(
X | (fi(Xi))i = (`i)i

)2 ≤ Nd

d∏

i=0

‖δ(i)‖2 ,

and by definition

β
(
X | (fi(Xi))i

)
≤ N

d
2

∑

`0

∑

`1

· · ·
∑

`d

P[(fi(Xi))i = (`i)i]
d∏

i=0

‖δ(i)‖ .

Eventually the independence of the Xi implies the independence of the fi(Xi) from
which we get

β
(
X | (fi(Xi))i

)
≤ N

d
2

∑

`0

∑

`1

· · ·
∑

`d

d∏

i=0

P[fi(Xi) = `i] ‖δ(i)‖

= N
d
2

d∏

i=0

∑

`i

P[fi(Xi) = `i] ‖δ(i)‖ ,

that is

β
(
X | (fi(Xi))i

)
≤ N

d
2

d∏

i=0

β
(
Xi | (fi(Xi))i

)
.

The theorem statement directly follows. �

D Proof of Lemma 1

Lemma 1. Let X and Y be two finite sets. Let f be a noisy function defined over Y and
belonging to the class N (ε) and let g be a deterministic function from X to Y . Then the
noisy function f ◦ g defined over X belongs to the class N (

√
2|Y| · ε).

Proof. Let X and Y be independent random variables uniformly distributed over X
and Y respectively. Then, for every ` ∈ Im(f) and every x ∈ X , we have

P[X = x | f ◦ g(X) = `] = P[X = x | f(Y) = `, Y = g(X)] .

After denoting by p(x) the probability above, the law of total probability implies

p(x) =
P[X = x, Y = g(X) | f(Y) = `]

P[Y = g(X) | f(Y) = `]
=

P[X = x, Y = g(x) | f(Y) = `]∑
x′ P[X = x′, Y = g(x′) | f(Y) = `]

.

Then by independence between X and (Y, f(Y)), and by uniformity of X , we have

p(x) =
P[X = x] P[Y = g(x) | f(Y) = `]∑
x′ P[X = x′] P[Y = g(x′) | f(Y) = `]

=
P[Y = g(x) | f(Y) = `]∑
x′ P[Y = g(x′) | f(Y) = `]

. (4)

In the following, we shall denote the cardinalities of the setsX and Y byN = |X |
and M = |Y| respectively. We shall further denote δy = P[Y = y | f(Y) = `] − 1

M

and θ =
∑

x δg(x). Then (4) can be rewritten as

p(x) =
1
M

+ δg(x)∑
x′
(

1
M

+ δg(x′)
) =

1
M

+ δg(x)
N
M

+ θ
=

1

N
+
δg(x) − θ

N
N
M

+ θ
.

And, by definition of the bias, we get

β(X | f ◦ g(X) = `)2 =
∑

x

(
p(x)− 1

N

)2
=
∑

x

(δg(x) − θ
N

N
M

+ θ

)2

=
1

(
N
M

+ θ
)2
(∑

x

δ2g(x) −
θ2

N

)
. (5)

By definition, all the δg(x) are greater than or equal to − 1
M

. We are now going to
prove that this implies the following inequality:

β(X | f ◦ g(X) = `)2 ≤ 2M2

N

∑

x

δ2g(x) . (6)

Since we have δ2g(x) ≤
∑

y δ
2
y = β(Y | f(Y) = `)2 for every x ∈ X , (6) implies

β(X | f ◦ g(X) = `)2 ≤ 2M2β(Y | f(Y) = `)2 , (7)

from which we deduce the lemma statement.
In order to prove (6), we will consider two possible cases:

−N
M

< θ < −N
M

+

√
N/2

M
and − N

M
+

√
N/2

M
≤ θ .

Let us first consider that we have θ ≥ −N
M

+

√
N/2

M
. Then (5) directly implies

β(X | f ◦ g(X) = `)2 ≤ 1
(
N
M

+ θ
)2
∑

x

δ2g(x) ≤
1

(√N/2

M

)2
∑

x

δ2g(x) =
2M2

N

∑

x

δ2g(x) .

It now remains to prove that (6) holds when θ satisfies −N
M
< θ < −N

M
+

√
N/2

M
.

Let us denote α = θ + N
M

so that we have θ = −N
M

+ α
M

with α ∈ (0;
√
N/2). Let us

focus on the sum
∑

x δg(x)2 . It is minimal when all the δg(x) equal the mean value θ
N

.
On the other hand, since all the δg(x) are greater than or equal to − 1

M
, it is maximal

when δg(x) = − 1
M

for every x but one, say x0, and δg(x0) = − 1
M

+ α
M

. This leads to the
following bounding8 of

∑
x δ

2
g(x):

θ2

N
≤
∑

x

δ2g(x) ≤ (N − 1)
(
− 1

M

)2
+
(
− 1

M
+

α

M

)2
,

that is
1

M2

(
N − 2α +

α2

N

)
≤
∑

x

δ2g(x) ≤
1

M2
(N − 2α + α2) , (8)

From (5) and the upper bound in (8) we get

β(X | f ◦ g(X) = `)2 ≤ 1− 1

N
, (9)

and from the lower bound in (8), we get

2M2

N

∑

x

δ2g(x) ≥ 2
(
1− 2

α

N
+
α2

N2

)
= 2
(
1− α

N

)2
≥ 2
(
1− 1√

2N

)2
≥ 1− 1

N
, (10)

where the last holds from N ≥ 2. Then (9) and (10) directly implies (6). �

E Proof of Theorem 2

Theorem 2. Let X be a uniform random variable defined over a finite set X of cardinality
N . Let ε ∈ [0, 1) and let f1, f2, . . . , ft be t noisy functions defined over X and belonging to
N (ε). For any real number α ∈ (0, 1], if ε ≤ α

tN
, then we have

β(X|f1(X), f2(X), . . . , ft(X)) ≤
((eα − 1

α

)
t+ eα

)
ε .

Lemma 3. LetX be a uniform random variable defined over a finite set X and letN denote
the cardinality of X . Let ε1 and ε2 be positive real numbers. And let L1 and L2 be two
random variables such that β(X|Li) ≤ εi for i = 1, 2, and (L1|X = x) and (L2|X = x)
are mutually independent for every x ∈ X . We have:

β(X|L1, L2) ≤ ε1 + ε2 +Nε1ε2 .
8 Note that δg(x0) = − 1

M
+ α

M
might not be reachable for some values of M , N and ε. In that case the upper

bound still hold but it is just less tight.

Proof. Let (`1, `2) ∈ L1 × L2 and let p12(x) denote the probability P[X = x|L1 =
`1, L2 = `2]. By Bayes’ and total probability theorems, we have:

p12(x) =
P[L1 = `1, L2 = `2|X = x]P[X = x]

P[L1 = `1, L2 = `2]
. (11)

Then by independence of (L1|X = x) and (L2|X = x) we have

P[L1 = `1, L2 = `2|X = x] = P[L1 = `1|X = x]P[L2 = `2|X = x] ,

and Bayes’ theorem gives

P[L1 = `1, L2 = `2|X = x] =
P[X = x|L1 = `1]P[X = x|L2 = `2]P[L1 = `1]P[L2 = `2]

P[X = x]2
.

(12)
Plugging this equality into (11) yields

p12(x) =
P[X = x|L1 = `1]P[X = x|L2 = `2]P[L1 = `1]P[L2 = `2]

P[L1 = `1, L2 = `2]P[X = x]

= θ12
P[X = x|L1 = `1]P[X = x|L2 = `2]

P[X = x]

where
θ12 =

P[L1 = `1]P[L2 = `2]

P[L1 = `1, L2 = `2]
.

Let us denote the difference P[X = x|fi(X) = `i] − P[X = x] by δ(i)x for i = 1, 2. We
can then rewrite the above equality as follows:

p12(x) = θ12

(1

N
+ δ(1)x

)(1

N
+ δ(2)x

)
N =

θ12
N

(1 +Nδ(1)x)(1 +Nδ(2)x) ,

Let us now denote the difference p12(x)− P[X = x] by δ(12)x . We get:

δ(12)x =
θ12
N

(1 +Nδ(1)x)(1 +Nδ(2)x)− 1

N
=
θ12
N

(
(1 +Nδ(1)x)(1 +Nδ(2)x)− 1

θ12

)
. (13)

Now from the law of total probability we have

P[L1 = `1, L2 = `2] =
∑

x∈X
P[X = x]P[L1 = `1, L2 = `2|X = x] ,

and from (12), we can write

1

θ12
=
∑

x∈X

P[X = x|L1 = `1]P[X = x|L2 = `2]

P[X = x]
= N

∑

x∈X

(1

N
+ δ(1)x

)(1

N
+ δ(2)x

)
.

Since by definition
∑

x δ
(i)
x = 0 with i ∈ {1, 2}, we get

1

θ12
=
(
1 +N

∑

x∈X
δ(1)x δ(2)x

)
.

Equation (13) can then be rewritten as

δ(12)x = θ12

(
δ(1)x + δ(2)x +Nδ(1)x δ(2)x −

∑

x∈X
δ(1)x δ(2)x

)
.

In the rest of the proof, we will use the following notations:

e1 := ‖δ(1)‖ , e2 := ‖δ(2)‖ , e12 := ‖δ(12)‖ , and ρ12 :=
∑

x∈X
δ(1)x δ(2)x ,

where δ(i) denotes the vector (δ(i)x)x∈X . Our goal is then to upper-bound e212. By def-
inition, we have

e212 = θ212
∑

x∈X

(
δ(1)x + δ(2)x +Nδ(1)x δ(2)x − ρ12

)2
.

Then developing the
(
δ
(1)
x + δ

(2)
x +Nδ

(1)
x δ

(2)
x − ρ12

)2, one obtains the following terms:

δ
(1)
x

2
+ δ

(2)
x

2
+ N2δ

(1)
x

2
δ
(2)
x

2
+ ρ212 + 2δ

(1)
x δ

(2)
x + 2Nδ

(1)
x

2
δ
(2)
x + 2Nδ

(1)
x δ

(2)
x

2

− 2ρ12δ
(1)
x − 2ρ12δ

(2)
x − 2Nρ12δ

(1)
x δ

(2)
x ,

and summing over X one gets

e21 + e22 + N2
∑

x δ
(1)
x

2
δ
(2)
x

2
+ Nρ212 + 2ρ12 + 2N

∑
x δ

(1)
x

2
δ
(2)
x + 2N

∑
x δ

(1)
x δ

(2)
x

2

− 0 − 0 − 2Nρ212 .

Then, denoting e′1 :=
∥∥(δ(1)x

2)
x

∥∥, e′2 :=
∥∥(δ(2)x

2)
x

∥∥, and applying Causchy-Shwartz,
we get

ρ12 ≤ e1e2 ,
∑

x

δ(1)x

2
δ(2)x ≤ e′1e2 ,

∑

x

δ(1)x δ(2)x

2 ≤ e1e
′
2 , and

∑

x

δ(1)x

2
δ(2)x

2 ≤ e′1e
′
2 ,

which gives

e212 = θ212

(
e21 + e22 +N2e′1e

′
2 −Nρ212e21e22 + 2ρ12e1e2 + 2Ne′1e2 + 2Ne1e

′
2

)
.

And from e′i
2 =

∑
x δ

(i)
x

4 ≤
(∑

x δ
(i)
x

2)2
= e4i , we get

e212 ≤ θ212

(
e21 + e22 +N2e21e

2
2 + 2e1e2 + 2Ne21e2 + 2Ne1e

2
2

)
.

A simple development then shows

e212 ≤ θ212(e1 + e2 +Ne1e2)
2 ,

that is
e12 ≤ θ12(e1 + e2 +Ne1e2) ,

We eventually obtain

β(X|L1, L2) =
∑

(`1,`2)

P[L1 = `1, L2 = `2] e12 ,

and by definition of θ12, we get

β(X|L1, L2) ≤
∑

(`1,`2)

P[L1 = `1] P[L2 = `2](e1 + e2 +Ne1e2)

= β(X|L1) + β(X|L2) +Nβ(X|L1)β(X|L2) .

And Lemma 3 directly follows. �

Proof. (Theorem 2) Let εi denote the bias β(X|L1, L2, . . . , Li). From β(X|Li+1) ≤ ε
and by Lemma 3 we have:

εi+1 = β
(
X|(L1, L2, . . . , Li), Li+1

)
≤ εi + ε+Nεiε .

Then from ε ≤ α
tN

we get

εi+1 ≤
(
1 +

α

t

)
εi + ε ,

which defines a sequence with recurrence relation of the form εi+1 ≤ a εi + b. Such
a sequence satisfies εi+1 ≤ aiε1 +

(
ai−1
a−1
)
b. Here we have a = 1 + α

t
and b = ε1 = ε,

therefore we get

β(X|L1, L2, . . . , Lt) = εt ≤
((

1 +
α

t

)t−1(
1 +

t

α

)
− t

α

)
ε .

Since for every positive integer t we have
(
1 + α

t

)t−1
< eα, the above inequality

directly implies Theorem 2. �

F Proof of Theorem 3

Theorem 3. Let A and B be two random variables uniformly distributed over some finite
set X of cardinality N . Let d be a positive integer, and let (Ai)i and (Bj)j be two dth-order
encodings of A and B respectively. Let ε be a real number such that ε ≤ α

(d+1)N2 for some
α ∈ (0, 1] and let (fi,j)i,j be noisy functions defined over X × X and belonging to N (ε).
We have:

β
(
(A,B)|(fi,j(Ai, Bj))i,j

)
≤ 2N

3d+2
2

(
(λ1d+ λ0)ε

)d+1
,

where λ1 = eα−1
α

and λ0 = λ1 + eα.

Lemma 4. Let A and B be two uniform and mutually independent random variables de-
fined over a finite set X of cardinality N . Let f be a noisy function and let L = f(A,B), for
every a, b ∈ X , and for every ` ∈ Im(f), we have

β(A|f(A, b) = `) ≤ Nβ((A,B)|L = `) ,

and (by symmetry),

β(B|f(a,B) = `) ≤ Nβ((A,B)|L = `) .

Proof. We prove the bound for β(A|f(A, b)) only since the bound for β(B|f(a,B))
then directly holds by symmetry. For every a, b ∈ X and ` ∈ L, we denote:

δ(a,b),` := P[(A,B) = (a, b) | L = `]− 1

N2

and
δ′a|b,` := P[A = a | B = b, L = `]− 1

N
.

From P[A = a | B = b, L = `] = P[A = a,B = b | L = `]P[B = b]−1 we deduce
δ′a|b,` = Nδ(a,b),`. The independence of A and B implies

P[A = a | B = b, L = `] = P[A = a | B = b, f(A, b) = `] = P[A = a | f(A, b) = `] .

By definition of the bias, we deduce

β(A | f(A, b) = `)2 =
∑

a
δ′2a|b,` =

∑
a
N2δ2(a,b),` ,

which implies

β(A | f(A, b) = `)2 ≤
∑

a,b
N2δ2(a,b),` = N2β((A,B) | L = `)2 ,

and directly yields Lemma 4 . �

Proof. (Theorem 3) Let L denote the random vector (fi,j(Ai, Bj))0≤i,j≤d. For every
a, b ∈ X and ` ∈ L, we denote:

δa,` := P[A = a | L = `]− 1
N
,

δb|a,` := P[B = b | A = a,L = `]− 1
N
,

δ(a,b),` := P[(A,B) = (a, b) | L = `]− 1
N2 .

By definition of the conditional probability, we have

δ(a,b),` = P[A = a | L = `] P[B = b | A = a,L = `]− 1

N2
,

which implies

δ(a,b),` =
(1

N
+ δa,`

)(1

N
+ δb|a,`

)
− 1

N2
=

1

N
δa,` +

1

N
δb|a,` + δa,`δb|a,` ,

and thus

δ2(a,b),` =
1

N2
δ2a,` +

1

N2
δ2b|a,` + δ2a,`δ

2
b|a,` +

2

N2
δa,`δb|a,` +

2

N
δ2a,`δb|a,` +

2

N
δa,`δ

2
b|a,` . (14)

Let us now develop the sums of the different terms over (a, b) ∈ X×X . By definition
of the bias, we have ∑

a,b

δ2a,` = Nβ(A | L = `)2 , (15)

and ∑

a,b

δ2b|a,` = Nβ(B | A = a,L = `)2 . (16)

Then, since the δb|a,` sum to zero over b ∈ X , we get
∑

a,b

δa,`δb|a,` =
∑

a

δa,`
∑

b

δb|a,` = 0 , (17)

∑

a,b

δ2a,`δb|a,` =
∑

a

δ2a,`
∑

b

δb|a,` = 0 . (18)

On the other hand, we have
∑

a,b

δ2a,`δ
2
b|a,` =

∑

a

δ2a,`
∑

b

δ2b|a,` =
∑

a

δ2a,`β(B | A = a,L = `)2 ,

giving ∑

a,b

δ2a,`δ
2
b|a,` ≤ β(A | L = `)2

(
max
a
β(B | A = a,L = `)2

)
. (19)

Eventually, for the last term we obtain
∑

a,b

δa,`δ
2
b|a,` =

∑

a

δa,`
∑

b

δ2b|a,` =
∑

a

δa,`β(B | A = a,L = `)2 ,

which implies
∑

a,b

δa,`δ
2
b|a,` ≤

(
max
a
β(B | A = a,L = `)2

) ∑

a,δa,`>0

δa,` .

Since the δa,` sum to zero over a ∈ X , the sum
∑

a,δa,`>0 δa,` equals 1
2

∑
a |δa,`|. To-

gether with (1), this leads to

∑

a,b

δa,`δ
2
b|a,` ≤

√
N

2
β(A | L = `)

(
max
a
β(B | A = a,L = `)2

)
. (20)

Eventually (14) and (15)–(20) imply

β((A,B) | L = `)2 =
∑

δ2(a,b),` ≤
1

N
β1(`)

2+
1

N
β2(`)

2+β1(`)
2β2(`)

2+
1√
N
β1(`)β2(`)

2 ,

where

β1(`) = β(A | L = `) and β2(`) = max
a
β(B | A = a,L = `) .

By definition of the bias, we have β2(`) ≤ 1 − 1
N

for every `, and in particular
β1(`)

2β2(`)
2 ≤

(
1 − 1

N

)
β1(`)

2, and 1√
N
β1(`)β2(`)

2 ≤ 1√
N
β1(`)β2(`). A simple devel-

opment then shows

β((A,B) | L = `) ≤ β1(`) +
1√
N
β2(`) ≤ β1(`) + β2(`) .

We finally get

β((A,B) | L) ≤
∑

`

P[L = `]β1(`) +
∑

`

P[L = `]β2(`) . (21)

We now show how to upper-bound the expected values of β1(`) and β2(`).

By definition of the fi,j we have β(Ai | fi,j(Ai, Bj)) ≤ ε. Moreover, the uni-
formity and the independence of A and B implies the uniformity and the mutual
independence of the Ai and the Bj . For every i ∈ {0, 1, . . . , d}, Lemma 4 then yields

max
bj

β(Ai | fi,j(Ai, bj)) ≤ Nε . (22)

Let us denote by b = (b0, b1, . . . , bd) some vector over X d+1 and by B the cor-
responding random variable. We moreover denote by F b

i the noisy function F b
i :

Ai 7→ (fi,d(Ai, bj))0≤j≤d. Theorem 2 (with t = d + 1) and (22) imply for every i ∈
{0, 1, . . . , d}:

max
b
β(Ai | F b

i (Ai)) ≤ (λ1d+ λ0)Nε , (23)

where λ1 = eα−1
α

and λ0 = λ1 + eα. In other words, for every i ∈ {0, 1, . . . , d} and
every b ∈ X d+1, the noisy function F b

i belongs to N ((λ1d+ λ0)Nε).

On the other hand, the law of total probability implies

P[A = a | L = `] =
∑

b

P[A = a,B = b | L = `]

=
∑

b

P[B = b | L = `] P[A = a | B = b,L = `]

that is

P[A = a | L = `] =
∑

b

P[B = b | L = `] P[A = a | (fi,j(Ai, bj))i,j = `] . (24)

The law of total probability further implies

P[A = a | (fi,j(Ai, bj))i,j = `]

=
∑

a1

∑

a2

· · ·
∑

ad

P[A = a,A1 = a1, . . . , Ad = ad | (fi,j(Ai, bj))i,j = `]

=
∑

a1

∑

a2

· · ·
∑

ad

P[A0 = a0, A1 = a1, . . . , Ad = ad | (fi,j(Ai, bj))i,j = `] ,

where a0 = a⊕⊕d
i=1 ai. Then by mutual independence of the Ai, we get

P[A = a | (fi,j(Ai, bj))i,j = `] =
∑

a1

∑

a2

· · ·
∑

ad

d∏

i=0

P[Ai = ai | F b
i (Ai) = (`i,j)j] .

Let us now denote the difference P[Ai = ai | F b
i (Ai) = (`i,j)j] − 1

N
by9 δ

(i)
ai for every

i ∈ {0, 1, . . . , d}. We get

P[A = a | (fi,j(Ai, bj))i,j = `] =
∑

a1

∑

a2

· · ·
∑

ad

d∏

i=0

(1

N
+ δ(i)ai

)

=
∑

a1

∑

a2

· · ·
∑

ad

(1

Nd+1
+

d∏

i=0

δ(i)ai

)
,

where the second equality holds since we have

∑

ai1

∑

ai2

· · ·
∑

ait

t∏

k=1

δ(ik)aik
=

t∏

k=1

∑

aik

δ(ik)aik
= 0

for every strict subset {ik} ⊂ {0, 1, . . . , d} (which does not hold for {ik} = {0, 1, . . . , d}
as a0 = a⊕⊕i≥1 ai). Therefore (24) can be rewritten as

P[A = a | L = `] =
∑

b

P[B = b | L = `]
∑

a1

∑

a2

· · ·
∑

ad

(1

Nd+1
+

d∏

i=0

δ(i)ai

)
.

By definition of δa,` the equation above becomes

δa,` =
∑

b

P[B = b | L = `]
(∑

a1

∑

a2

· · ·
∑

ad

(1

Nd+1
+

d∏

i=0

δ(i)ai

)
− 1

N

)

=
∑

b

P[B = b | L = `]
∑

a1

∑

a2

· · ·
∑

ad

d∏

i=0

δ(i)ai .

The bias of A given L = `, denoted β1(`), hence satisfies

β1(`)
2 =

∑

a

(∑

b

P[B = b | L = `]
∑

a1

∑

a2

· · ·
∑

ad

d∏

i=0

δ(i)ai

)2

=
∑

a

(∑

b

P[B = b | L = `]
∑

a1

∑

a2

· · ·
∑

ad−1

d−1∏

i=1

δ(i)ai

∑

ad

δ(0)a0
δ(d)ad

)2
.

Let δ(i) denote the vector composed of the δ(i)ai for every i ∈ {0, 1, . . . , d}. By Cauchy-
Shwartz we have

∣∣∣
∑

ad
δ
(0)
a0 δ

(d)
ad

∣∣∣ ≤ ‖δ(0)‖ ‖δ(d)‖ (note that a0 satisfies a0 =
(
a ⊕

⊕d−1
i=1 ai

)
⊕ ad). It follows that the bias of A given L = ` satisfies

β1(`)
2 ≤

∑

a

(∑

b

P[B = b | L = `] ‖δ(0)‖ ‖δ(d)‖
∑

a1

∑

a2

· · ·
∑

ad−1

∣∣∣∣∣
d−1∏

i=1

δ(i)ai

∣∣∣∣∣
)2

≤
∑

a

(∑

b

P[B = b | L = `] ‖δ(0)‖ ‖δ(d)‖
d−1∏

i=1

∑

ai

∣∣δ(i)ai
∣∣
)2
.

9 Although δ(i)ai depends on b and (`i,j)j , we do not make them appear in the notation for the sake of clarity.

Then by (1), we have
∑

ai

∣∣∣δ(i)ai
∣∣∣ ≤
√
N‖δ(i)‖, giving

β1(`)
2 ≤

∑

a

(∑

b

P[B = b | L = `]N
d−1
2

d∏

i=0

‖δ(i)‖
)2

≤Nd
(∑

b

P[B = b | L = `]
d∏

i=0

‖δ(i)‖
)2

and we get

β1(`) ≤ N
d
2

∑

b

P[B = b | L = `]
d∏

i=0

‖δ(i)‖ .

By definition we have ‖δ(i)‖ = β(Ai | F b
i (Ai) = (`i,j)j) for every i ∈ {0, 1, . . . , d},

which gives

β1(`)≤N
d
2

∑

b

P[B = b | L = `]
d∏

i=0

β(Ai | F b
i (Ai) = (`i,j)j)

≤N d
2

d∏

i=0

(
max

b
β(Ai | F b

i (Ai) = (`i,j)j) .

Then by computing the expectation over ` ∈∏i,j Im(fi,j), and by applying (23), we
get

∑

`

P[L = `]β1(`) ≤ N
d
2

d∏

i=0

(
max

b
β(Ai | F b

i (Ai)) ≤ N
3d+2

2

(
(λ1d+ λ0)ε

)d+1
. (25)

Using exactly the same approach as above, it can be shown that the same holds
for β2(`), namely

∑

`

P[L = `]β2(`) ≤ N
3d+2

2

(
(λ1d+ λ0)ε

)d+1
. (26)

The only difference is that the probability of B is taken given A = a additionnaly to
L = `. But this difference does not impact the previous approach since we bound
the maximum bias of B given all the possible events Ai = ai. The bounds (25) and
(26) together with (21) finally proove the theorem statement. �

G Proof of Lemma 2

Lemma 2. Let T0, T1, . . . , Td be d+ 1 independent random variables uniformly distributed
over some set X of cardinality N . Let ε ∈ [0, 1) and let f1, f2, . . . , fd be noisy functions
defined over X × X and belonging to N (ε). We have:

β
(
Td
∣∣f1(T0, T1), f2(T1, T2), . . . , fd(Td−1, Td)

)
≤ Nε .

Proof. We denote by F (Td−1, Td) the d-tuple
(
f1(T0, T1), f2(T1, T2), . . . , fd(Td−1, Td)

)
.

Note that since the Ti are mutually independent, F can be viewed as a noisy func-
tion applied to (Td−1, Td) and where T0, T1, . . . , Td−2 are part of the internal ran-
domness of F (though such representation is not mandatory for the present proof).
By Lemma 4 (see Appendix F), for every t ∈ X and for every ` = (`1, `2, . . . , `d) ∈
Im(F), we have

β
(
Td | F (Td−1, Td) = `

)
≤ Nβ

(
Td | F (t, Td) = `

)
= Nβ

(
Td | fd(t, Td) = `d

)
,

where the right equality holds from the mutual independence of the Ti. Then the
proof holds from fd ∈ N (ε). �

H Proof of Lemma 2

Lemma 2. Let T0, T1, . . . , Td be d+ 1 independent random variables uniformly distributed
over some set X of cardinality N . Let ε ∈ [0, 1) and let f1, f2, . . . , fd be noisy functions
defined over X × X and belonging to N (ε). We have:

β
(
Td
∣∣f1(T0, T1), f2(T1, T2), . . . , fd(Td−1, Td)

)
≤ 2Nε .

Proof. We denote by F (Td) the d-tuple
(
f1(T0, T1), f2(T1, T2), . . . , fd(Td−1, Td)

)
. Note

that since the Ti are independent of Td, F can be viewed as a noisy function applied
to Td and where T0, T1, . . . , Td−1 are part of the internal randomness of F (though
such representation is not mandatory for the present proof). For every t ∈ X and
for every ` = (`1, `2, . . . , `d) ∈ Im(F), the total probability law implies

P[Td = t|F (Td) = `] =
∑

t′∈X
P[Td = t|Td−1 = t′, F (Td) = `]P[Td−1 = t′|F (Td) = `] .

(27)
Moreover, by mutual independence of the Ti, we have

P[Td = t|Td−1 = t′, F (Td) = `] = P[Td = t|fd(t′, Td) = `d] .

For every t ∈ X , we denote

δ−t = min
t′

P[Td = t|fd(t′, Td) = `d]−
1

N
,

and
δ+t = max

t′
P[Td = t|fd(t′, Td) = `d]−

1

N
.

For every t′, we then have

1

N
+ δ−t ≤ P[Td = t|fd(t′, Td) = `d] ≤

1

N
+ δ+t ,

and (27) implies

1

N
+ δ−t ≤ P[Td = t|F (Td) = `] ≤ 1

N
+ δ+t .

We deduce

β(Td | F (Td) = `)2 =
∑

t

(
P[Td = t|F (Td) = `]− 1

N

)2
≤
∑

t

δ−t
2
+
∑

t

δ+t
2

giving
β(Td | F (Td) = `) ≤

√
‖δ−‖2 + ‖δ+‖2 ≤ ‖δ−‖+ ‖δ+‖ (28)

where δ+ and δ− denotes the vectors (δ+t)t∈X and (δ−t)t∈X respectively. Then by
Lemma 4 (see Appendix F), for every t′ ∈ X and every `d ∈ Im(fd) we have

β
(
Td | fd(t′, Td) = `d

)
≤ Nβ

(
(Td−1, Td) | fd(Td−1, Td) = `d

)
,

from which together with (28) implies

β(Td | F (Td) = `) ≤ 2Nβ
(
(Td−1, Td) | fd(Td−1, Td) = `d

)
.

�

Appendix D
How to Securely Compute with Noisy
Leakage in Quasilinear Complexity
Hereafter is appended the full version of our paper [GJR18], joint work with Dahmun
Goudarzi and Antoine Joux, published at ASIACRYPT 2018.

How to Securely Compute with Noisy Leakage
in Quasilinear Complexity

Dahmun Goudarzi1,2, Antoine Joux3, and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 ENS, CNRS, INRIA and PSL Research University, Paris, France

3 Chaire de Cryptologie de la Fondation de l’UPMC
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris, France

{dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com
antoine.joux@m4x.org

Abstract. Since their introduction in the late 90’s, side-channel attacks have been considered as
a major threat against cryptographic implementations. This threat has raised the need for formal
leakage models in which the security of implementations can be proved. At Eurocrypt 2013, Prouff
and Rivain introduced the noisy leakage model which has been argued to soundly capture the
physical reality of power and electromagnetic leakages. In their work, they also provide the first
formal security proof for a masking scheme in the noisy leakage model. However their work has
two important limitations: (i) the security proof relies on the existence of a leak-free component,
(ii) the tolerated amount of information in the leakage (aka leakage rate) is of O(1/n) where n is
the number of shares in the underlying masking scheme. The first limitation was nicely tackled
by Duc, Dziembowski and Faust one year later (Eurocrypt 2014). Their main contribution was
to show a security reduction from the noisy leakage model to the conceptually simpler random-
probing model. They were then able to prove the security of the well-known Ishai-Sahai-Wagner
scheme (Crypto 2003) in the noisy leakage model. The second limitation was addressed last year in
a paper by Andrychowicz, Dziembowski and Faust (Eurocrypt 2016). The proposed construction
achieves security in the strong adaptive probing model with a leakage rate of O(1/ logn) at the cost
of a O(n2 logn) complexity. The authors argue that their result can be translated into the noisy
leakage model with a leakage rate of O(1) by using secret sharing based on algebraic geometric
codes. They further argue that the efficiency of their construction can be improved by a linear
factor using packed secret sharing but no details are provided.

In this paper, we show how to compute in the presence of noisy leakage with a leakage rate up to
Õ(1) in complexity Õ(n). We use a polynomial encoding allowing quasilinear multiplication based
on the fast Number Theoretic Transform (NTT). We first show that our scheme is secure in the
random-probing model with leakage rate O(1/ logn). Using the reduction by Duc et al. this result
can be translated in the noisy leakage model with a O(1/|F|2 logn) leakage rate. However, as in
the work of Andrychowicz et al. , our construction also requires |F| = O(n). In order to bypass this
issue, we refine the granularity of our computation by considering the noisy leakage model on logical
instructions that work on constant-size machine words. We provide a generic security reduction
from the noisy leakage model at the logical-instruction level to the random-probing model at the
arithmetic level. This reduction allows us to prove the security of our construction in the noisy
leakage model with leakage rate Õ(1).

1 Introduction

Side-channel attacks have been considered as a major threat against cryptographic implementations since
their apparition in the late 90’s. It was indeed shown that even a tiny dependence between the data pro-
cessed by a device and its side-channel leakage (e.g. running time, power consumption, electromagnetic
emanation) could allow devastating key-recovery attack against the implementation of any cryptosystem
secure in the standard model [Koc96,KJJ99,GMO01]. The so-called physical security of cryptographic
implementations has then become a very active research area and many efficient countermeasures have
been proposed to mitigate these attacks. However, most of these countermeasures are only empirically
validated or they are proven secure in a weak adversarial model where, for instance, an attacker only
exploits a small part of the available leakage.

An important step towards a more formal treatment of side-channel security was made by Micalli
and Reyzin in 2004 in their physically observable cryptography framework [MR04]. In particular, they
formalized the assumptions that a cryptographic device can at least keep some secrets and that only
computation leaks information. This framework was then specialized into the leakage resilient cryptog-
raphy model introduced by Dziembowski and Pietrzak in [DP08] which gave rise to a huge amount of
subsequent works. In this model, a leaking computation is divided into elementary operations that are
assumed to leak some information about their inputs through a leakage function whose range is bounded
(i.e. taking values in {0, 1}λ for some parameter λ). Many new leakage-resilient cryptographic primitives
were proposed as well as so-called compilers that can make any computation secure in this model [GR12].

While the leakage resilient literature has achieved considerable theoretical advances, the considered
model does not fully capture the physical reality of power or electromagnetic leakages (see for instance
[SPY+09]). In particular for a leakage function f : {0, 1}n → {0, 1}λ, the parameter λ must be (sig-
nificantly) smaller than n. This means, for instance, that the leakage of an AES computation should
be smaller than 128 bits, whereas in practice an AES power trace can take several kilobytes (or even
megabytes). On the other hand, it is fair to assume that the side-channel leakage is noisy in such a
way that the information f(x) leaked by an elementary operation on a variable x is not enough to fully
recover x. This intuition was formalized in the noisy leakage model introduced by Prouff and Rivain in
2013 [PR13]. In a nutshell, this model considers that an elementary operation with some input x leaks a
noisy leakage function f(x). The noisy feature is then captured by assuming that an observation of f(x)
only implies a bounded bias in the probability distribution of x. Namely the statistical distance between
the distributions Pr(x) and Pr(x|f(x)) is bounded by some parameter δ. In particular, this model does
not imply any restriction on the leakage size but only on the amount of useful information it contains.

1.1 Related Works

Probing-secure circuits. In a seminal paper of 2003, Ishai, Sahai and Wagner considered the problem
of building Boolean circuits secure against probing attacks [ISW03]. In the so-called probing model, an
adversary is allowed to adaptively probe up to t wires of the circuit. They show how to transform any
circuit C with q logic gates into a circuit C ′ with O(qt2) logic gates that is secure against a t-probing
adversary. Their scheme consists in encoding each Boolean variable x as a random sharing (x1, x2, . . . , xn)
satisfying x1 + x2 + . . .+ xn = x over F2, where n = 2t+ 1. They show how to transform each logic gate
into a gadget that work on encoded variables. Their construction is actually secure against an adversary
that can adaptively place up to t probes per such gadget. The so-called ISW construction has since
then served as a building block in many practical side-channel countermeasures known as higher-order
masking schemes (see for instance [RP10,CPRR14,CRV14]).

Towards noisy-leakage security. In [PR13], Prouff and Rivain proposed the first formal security
proof for an ISW-like masking scheme in the noisy leakage model. In particular they generalize the
previous work of Chari et al. [CJRR99] and show that in the presence of noisy leakage on the shares
x1, x2, . . . , xn the information on x becomes negligible as n grows. Specifically, they show that for any
δ-noisy leakage function f , the mutual information between x and the leakage (f(x1), f(x2), . . . , f(xn))
is of order O(δn). They also provide a security proof for full masked computation in the noisy leakage
model, however their result has two important limitations. First they assume the existence of a leak-free
component that can refresh a sharing without leaking any information. Second, their proof can only
tolerate an δ-noisy leakage with δ = O(1/n). Namely, the amount of leakage must decrease linearly with
the number of shares. Note that this second limitation is inherent to masking schemes based on the ISW
construction since it implies that each share leaks O(n) times. Some practical attacks have recently been
exhibited that exploit this issue [BCPZ16].

Avoiding leak-free components. In [DDF14], Duc, Dziembowski and Faust tackled the first of these
two limitations. Namely they show how to avoid the requirement for a leak-free component with a nice
and conceptually simpler security proof. Applying the Chernoff bound, they show that the ISW scheme is
secure in the δ-random probing model in which each operation leaks its full input with a given probability
δ = O(1/n) (and leaks nothing with probability 1− δ). Their main contribution is then to show that any
δ′-noisy leakage f(x) can be simulated from a δ-random probing leakage φ(x) with δ′ ≤ δ · |X |, where

2

X denotes the definition space of x. In other words, if the δ-random probing leakage of a computation
contains no significant information, then neither does any δ′-noisy leakage of this computation as long
as δ ≤ δ′ · |X |. The ISW scheme is therefore secure against δ′-noisy leakage for δ′ = O(1/n|X |). Note
that for an arithmetic program working over some field F, each elementary operation takes up to two
inputs on F, meaning X = F2 and δ′ = O(1/n|F|2). This way, the work of Duc et al. avoid the strong
requirement of leak-free components. However, it still requires a leakage rate of O(1/n).

Towards a constant leakage rate. This second limitation was addressed by Andrychowicz, Dziem-
bowski, and Faust [ADF16]. They describe a construction using Shamir’s secret sharing [Sha79] and a
refreshing algorithm from expander graphs with constant degree due to Ajtai [Ajt11]. The number of
instructions in the protected program is multiplied by a factor O(n3) which can be reduced to O(n2 log n)
using the FFT. They show that this construction achieves security in the strong probing model where an
adversary can adaptively place up to O(1/ log n) probes per elementary operation. In the random prob-
ing model, the result is improved to a constant ratio. Applying the reduction from [DDF14] they obtain
the security against δ-noisy leakage with a leakage rate δ = O(1/|F|2). (Note that they obtain a leakage
rate O(1/|F|) in the restrictive model where input variables leak independently. In the present paper, we
make the more realistic assumption that the leakage function applies to the full input of each elementary
operation.) For the standard version of their scheme based on Shamir’s secret sharing, the base field F
must be of size O(n) which implies a leakage rate δ = O(1/n2) in the noisy leakage model. Fortunately,
their scheme can be improved by using secret sharing based on algebraic geometric codes [CC06] (at
the cost of weaker parameters). As argued in [ADF16], these codes operate over fields of constant size
and hence there basic operations can be implemented by constant size Boolean circuits, which gives a
δ = O(1) noisy leakage rate with the DDF reduction. As explained hereafter, we propose in this paper
a generic reduction to achieve δ = Õ(1) noisy leakage rate from a random-probing secure scheme on a
field F = O(n). This reduction could also be used to get noisy-leakage security for the ADF scheme with
Shamir’s secret sharing.

Towards a quasilinear complexity. Another challenging issue is to improve the efficiency of leakage-
secure schemes, and in particular to bridge the gap between the current Õ(n2) complexity and the
theoretically achievable Õ(n) complexity. In [ADF16], the authors argue that the complexity of their
scheme can be improved by using packed secret sharing [ADD+15,DIK10]. As explained in [ADD+15],
the use of packed secret sharing allows to securely compute an addition or a multiplication on ` values
in parallel at the price of what a single operation would cost with a standard secret sharing. Using the
construction from [DIK10], one can improve the complexity of the ADF scheme on a circuit of size s and
of width ` from O(sn2 log n) to O(s log sn2 log n/`). For a circuit of width ` = Θ(n), this approach hence
yields a secure circuit with quasilinear overhead in n. For a constant-size circuit (as the AES cipher) on the
other hand, only a constant factor can be saved and the complexity remains of Õ(n2). Let us also mention
that recent works have proposed efficiency improvements of the ISW construction [BBP+16,BBP+17].
These works provide new multiplication schemes with a linear randomness consumption or a linear
number of field multiplications but the overall complexity is still quadratic.

1.2 Our Contribution

In this paper we show how to securely compute in the noisy leakage model with a leakage rate of Õ(1) and
with complexity overhead of Õ(n) (whatever the circuit size). Our scheme is conceptually very simple
and also practically efficient provided that the computation relies on a base field F with appropriate
structure.

Specifically, we consider an arithmetic program P that executes basic arithmetic instructions over
some prime field F (additions, subtractions, and multiplications) satisfying |F| = α · n+ 1 for n being a
power of 2 (in particular |F| = O(n) as in [ADF16]).4 In our scheme, each element a ∈ F is encoded into

a random tuple (a0, a1, . . . , an−1) that satisfies the relation a =
∑n−1
i=0 aiω

i for some random element
ω ∈ F. In other words, a is encoded as the coefficient of a random n-degree polynomial Q satisfying

4 We prefer the terminology of (arithmetic) program composed of instructions to the terminology of (arithmetic)
circuit composed of gates but the two notions are strictly equivalent.

3

Q(ω) = a. It is worth noting that the security of our scheme does not rely on the secrecy of ω but
on its random distribution. We then show how to transform each arithmetic instruction of P into a
corresponding secure gadget that works on encoded variables. Using a fast Number Theoretic Transform
(NTT), we then achieve a multiplication gadget with O(n log n) instructions.

In a first place, we show that our scheme is secure in the δ-random-probing model for a parameter
δ = O(1/ log n). Specifically, we show that for any program P with a constant number of instructions
|P |, the advantage of a δ-random-probing adversary can be upper bounded by negl(λ) + negl′(n) where
negl and negl′ are some negligible functions and where λ denotes some security parameter that impact
the size of F (specifically we have λ = logα where |F| = α · n+ 1). This is shown at the level of a single
NTT-based secure multiplication in a first place. Then we show how to achieve compositional security, by
interleaving each gadget by a refreshing procedure that has some input-output separability property. Using
the Chernoff bound as in [DDF14] we can then statistically bound the number of leaking intermediate
variables in each gadget. Specifically, we show that the leakage in each gadget can be expressed as linear
or quadratic combinations of the input shares that do not reveal any information with overwhelming
probability (over the randomness of ω).

From our result in the random probing model, the security reduction of Duc et al. [DDF14] directly
implies that our construction is secure in the δ′-noisy leakage model for δ′ = O(1/|F|2 log n). However,
since we require |F| = O(n) (as in the standard ADF scheme) this reduction is not satisfactory. We
then refine the granularity of our computation by considering the noisy leakage model on logical in-
structions working on constant-size machine words. In this model, we provide a generic reduction from
the random-probing model over F to the noisy leakage model on logical instructions. Namely we show
that any arithmetic program Π secure under a δ-random-probing leakage gives rise to a functionally
equivalent program Π ′ that is secure under a δ′-noisy leakage at the logical instruction level where
δ′ = δ/O(log |F| log log |F|). Applying this reduction, our construction achieves security in the δ′-noisy
leakage model with δ′ = O

(
1/((log n)2 log log n)

)
for a computational overhead of O(n log n).

The paper is organized as follows. Section 2 provides background notions on the noisy leakage model
and the considered adversary. In Section 3 we describe our secure quasilinear multiplication scheme and
we prove its security in the random probing model. Section 4 then presents the refreshing procedure used
to get compositional security and provides a security proof for a full arithmetic program. In Section 5 we
give our generic reduction from the random-probing model over F to the noisy leakage model on logical
instructions and we apply this reduction to our scheme to get our final result. We finally discuss practical
aspects of our scheme and related open problems in Section 6.

2 Leakage and Adversary

In the rest of the paper, we shall denote by x ← X the action of picking x uniformly at random over
some set X . Similarly, for a probabilistic algorithm A, we denote by y ← A(x) the action of running A
on input x with a fresh random tape and setting y to the obtained result.

2.1 Noisy Leakage Model

The noisy leakage model introduced by Prouff and Rivain in [PR13] follows the only computation leaks
paradigm [MR04]. In this paradigm, the computation is divided into subcomputations; each works on
a subpart x of the current computation state and leaks some information f(x), where f is called the
leakage function. In practice, f is a so-called randomized function that takes two arguments, the input
variable x and a random tape ρ that is large enough to model the leakage noise. A subcomputation with
input variable x hence leaks f(x, ρ) for a fresh random tape ρ. For the sake of simplicity, in the sequel
we shall omit the parameter ρ and see f(x) as a random realization of f(x, ρ). Moreover, the definition
space of the input x shall be called the domain of f , and we shall write f : X → Y for a randomized
function with domain X and image space Y.

In the noisy leakage model [PR13], a noisy leakage function f is defined as a leakage function such
that an observation f(x) only implies a bounded bias in the probability distribution of x. Namely, the
statistical distance between the distributions of x and (x | f(x)) is assumed to be bounded by some bias
ε. Let X and X ′ be two random variables defined over some set X . We recall that the statistical distance

4

between X and X ′ is defined as:

∆(X;X ′) =
1

2

∑

x∈X
|Pr(X = x)− Pr(X ′ = x)| . (1)

The notion of noisy leakage function is then formalized as follows:

Definition 1 ([PR13]). A ε-noisy leakage function is a randomized function f : X → Y satisfying

∑

y∈Y
Pr(f(X) = y) ·∆(X; (X | f(X) = y)) ≤ ε , (2)

where X is a uniform random variable over X .

In practice, the leaking input x might not be uniformly distributed but one must specify a distribution
to have a consistent definition, and as argued in [PR13], the uniform distribution is a natural choice.
Also note that in the original paper [PR13], the L2 norm was used for the definition of the statistical
distance while, as argued in [DDF14], the L1 norm is a more standard choice (that we also adopt in this
paper).

A conceptually simpler model, known as the random probing model, was first used in [ISW03] and
formalized in the work of Duc, Dziembowski, and Faust [DDF14]. Informally speaking, this model restricts
the noisy leakage model to leakage functions that leak their entire input with a given probability. These
random-probing leakage functions are formalized in the following definition.5

Definition 2. A ε-random-probing leakage function is a randomized function φ : X → X∪{⊥} satisfying

φ(x) =

{
⊥ with probability 1− ε
x with probability ε

(3)

It can be checked that such a function is a special case of ε-noisy leakage function.6 Moreover, it has been
shown by Duc, Dziembowski, and Faust [DDF14] that every noisy leakage function f can be expressed
as a composition f = f ′ ◦φ where φ is a random-probing leakage function. This important result enables
to reduce noisy-leakage security to random-probing security. It is recalled hereafter:

Lemma 1 ([DDF14]). Let f : X → Y be a ε-noisy leakage function with ε < 1
|X | . There exists a

δ-random-probing leakage function φ : X → X ∪{⊥} and a randomized function f ′ : X ∪ {⊥} → Y such
that for every x ∈ X we have

f(x) = f ′(φ(x)) and δ ≤ ε · |X | . (4)

In the random-probing model, the total number of leaking operations can be statistically bounded
using the Chernoff bound as suggested in [ISW03,DDF14]. We shall follow this approach in the present
paper by using the following corollary.

Corollary 1 (Chernoff bound [Che52]). The δ-random probing leakage of a computation composed
of N elementary operations reveals the input of ` > δN of these elementary operations with probability
lower than

ψ(`,N) = exp
(
− (`− δ N)2

`+ δ N

)
(5)

If ` ≤ αn and N = βn, for some α, β and n with α/β > δ , the above gives

ψ(αn, βn) = exp
(
− (α− δβ)2

α+ δβ
n
)

(6)

5 Note that we use a different terminology from [DDF14] where these are called ε-identity functions.
6 To be tighter: a ε-random-probing leakage function is a ε (1− 1

|X|)-noisy function. This can be simply checked

by evaluation (2).

5

2.2 Leakage Adversary

We consider secure computation schemes that encode the data of a program in order to make the leakage
on the encoded data useless. An encoding Enc is a randomized function that maps an element x ∈ F
to a n-tuple Enc(x) ∈ Fn, where n is called the encoding length, and for which a deterministic function
Dec : Fn → F exists that satisfies Pr(Dec(Enc(x)) = x) = 1 for every x ∈ F (where the latter probability
is taken over the encoding randomness).

Consider an arithmetic program P taking a string x ∈ Fs as input and executing a sequence of
instructions of the form mi ← mj ∗ mk, where ∗ denotes some operations over F (addition, subtraction, or
multiplication) and where [m0, m1, . . . , mT] denotes the memory of the program which is initialized with
x (and some constants). To achieve leakage security, the program P is transformed into a functionally
equivalent arithmetic program Π taking as input an encoded input Enc(x) (where the encoding simply
applies to each coordinate of x). According to the defined leakage model, each executed instruction of Π
is then assumed to leak some noisy function f(mj , mk) of its pair of inputs. It is further assumed that Π
includes random sampling instructions mi ← F that each leaks a noisy function of its output f(mi). We
denote the overall leakage by L(Π,x). The compiler is then said to be leakage secure if an observation
of L(Π,x) does not reveal significant information about x. More specifically, the leakage L(Π,x) must
be indistinguishable from the leakage L(Π,x′) for every x′ ∈ Fs. This security notion is formalized as
follows:

Definition 3 (Leakage Security). The program Π is ε-leakage secure if every adversary A has ad-
vantage at most ε of distinguishing L(Π,x0) from L(Π,x1) for chosen x0 and x1, i.e. we have:

AdvΠA :=
∣∣∣SuccΠA −

1

2

∣∣∣ ≤ ε (7)

where

SuccΠA = Pr




(x0,x1, µ)← A(⊥)
b← {0, 1} : A(x0,x1, µ, `) = b
`← L(Π,xb)


 . (8)

In the above definition, µ ∈ {0, 1}∗ denotes any auxiliary information computed by the adversary
during the first round when she chooses the inputs x0 and x1. Note that for the definition to be sound,
we only consider adversaries A such that A(⊥) takes values over Fs × Fs × {0, 1}∗ and A(x0,x1, µ, `)
takes values over {0, 1} for every input (x0,x1, µ, `) ∈ Fs × Fs × {0, 1}∗ × Im(L).

Lemma 1 provides a security reduction from the noisy leakage model to the random probing model.
This is formalized in the following corollary:

Corollary 2. Let Π be an arithmetic program that is ε-leakage secure wrt δ-random-probing leakage
functions. Then Π is ε-leakage secure wrt δ′-noisy leakage functions, where δ′ = δ · |F|2.

Note that in the original version of Lemma 1 (see [DDF14]), the authors need the additional require-
ment that f ′ is efficiently decidable so that f ′(φ(x)) is computable in polynomial time in |X |. We ignore
this property in the present paper since our security statements consider adversaries with unlimited
computational power.

3 Secure Multiplication in Quasilinear Complexity

In this section, we describe our encoding scheme and the associated secure multiplication. An important
requirement of our construction is that the size n of the underlying encoding must divide p−1

2 where p
is the characteristic of F, that is F must contain the 2n-th roots of unity. This implies that the size of
the elements of F is in Ω(log n). Without loss of generality, we further assume that n is a power of 2.

3.1 Our Encoding

Let ξ denote a primitive 2nth root of unity in F. Our encoding is based on a random element ω ∈ F∗
and is defined as follows:

6

Definition 4. Let ω ∈ F∗ and a ∈ F. An ω-encoding of a is a tuple (ai)
n−1
i=0 ∈ Fn satisfying

∑n−1
i=0 aiω

i =
a.

Our encoding function Enc maps an element a ∈ F to a random element ω ∈ F∗ and a random uniform
ω-encoding of a:

Enc(a) = 〈ω, (a0, a1, . . . , an−1)〉 . (9)

The corresponding decoding function Dec is defined as:

Dec
(
〈ω, (a0, a1, . . . , an−1)〉

)
:= Decω(a0, a1, . . . , an−1) :=

n−1∑

i=0

aiω
i (10)

It is easy to check that we have Pr(Dec(Enc(a)) = a) = 1 for every a ∈ F. It is worth noting that the
security of our scheme does not rely on the secrecy of ω but on its uniformity. Besides, we will consider
that ω is systematically leaked to the adversary.

3.2 Multiplication of Encoded Variables

Let (ai)
n−1
i=0 be an ω-encoding of a and (bi)

n−1
i=0 be an ω-encoding of b. To compute an ω-encoding (ci)

n−1
i=0

of c = a · b we use the NTT-based polynomial multiplication.
Specifically, we first apply the NTT on (ai)i and (bi)i to obtain the polynomial evaluations uj =∑n−1
i=0 ai(ξ

j)i and vj =
∑n−1
i=0 bi(ξ

j)i for j ∈ J0, 2n− 1K. These evaluations are then pairwisely multiplied
to get evaluations of the product sj = (2n)−1uj ·vj for j ∈ J0, 2n−1K (with a multiplicative factor (2n)−1).

Afterwards, we apply the inverse NTT to get coefficients ti that satisfy
∑2n−1
i=0 tiω

i = (
∑n−1
i=0 aiω

i) ·
(
∑n−1
i=0 (biω

i)). Eventually, we apply a compression procedure to recover an n-size ω-encoding from the
2n-size ω-encoding (ti)i. Due to the particular form of roots of unity, an NTT can be evaluated with
a divide and conquer strategy in 3 n log n arithmetic instructions (a detailed description is given in
Appendix A).

The overall process is summarized as follows:

(u0, u1, . . . , u2n−1)← NTTξ(a0, a1, . . . , an−1, 0, . . . , 0)

(r0, r1, . . . , r2n−1)← NTTξ(b0, b1, . . . , bn−1, 0, . . . , 0)

(s0, s1, . . . , s2n−1)← (2n)−1(u0 · r0, u1 · r1, . . . , u2n−1 · r2n−1)
)

(t0, t1, . . . , t2n−1)← NTTξ−1(s0, s1, . . . , s2n−1)

(c0, c1, . . . , cn−1)← compress(t0, t1, . . . , t2n−1)

Compression procedure. After computing the inverse NTT, we get a double-size encoding (ti)
2n−1
i=0 satis-

fying
∑2n−1
i=0 ti ω

i = a · b, for some ω (randomly picked by the refresh call in Step 3). In order to obtain
a standard encoding with n shares, we simply set ci = ti + tn+iω

n for i ∈ [[0, n− 1]]. It is not hard to see
that the result is consistent.

3.3 Security in the Random Probing Model

We first focus on the NTT leakage security as it is the most complex part of our scheme, and then provide
a security proof for the whole multiplication.

Security of the NTT. We have the following result:

Theorem 1. Let ω be a uniform random element of F∗, let (ai)
n−1
i=0 be a uniform ω-encoding of some

variable a and let δ < 1/(6 log n). The NTTξ procedure on input (ai)
n−1
i=0 is ε-leakage secure in the

δ-random-probing leakage model, where

ε =
n

|F| + exp
(
− (1− 6δ log n)2

4
n
)
. (11)

7

The rest of the section gives a proof of Theorem 1. During the computation of the NTT on an ω-
encoding (ai)

n−1
i=0 of a, all the leaking intermediate variables (i.e. the inputs of arithmetic instructions)

are linear combinations of the ai’s. Specifically, every intermediate variable v occurring in the NTT
computation can be expressed as v =

∑n−1
i=0 αiai where the αi’s are constant coefficients over F. In the

following, we shall use the notation [v] = (α0, α1, . . . , αn−1) for the vector of coefficients of such an

intermediate variable. Similarly, we shall denote [a] = (1, ω, ω2, . . . , ωn−1) since we have a =
∑n−1
i=0 ω

iai
by definition. Moreover, we will denote by [v0, v1, . . . , v`] the matrix with row vectors [v0], [v1], . . . , [v`].
In particular, we have [a0, a1, . . . , an−1] = In (where In stands for the identity matrix of dimension n

over F) and for ui =
∑n−1
j=0 aj(ξ

i)j (the output elements of the NTT), the matrix [u0, u1, . . . , un−1] is a
Vandermonde matrix.

First consider an adversary that recovers ` < n intermediate variables in the computation of the
NTT, denoted v1, v2, . . . , v`. Without loss of generality, we assume that these intermediate variables are
linearly independent (otherwise the adversary equivalently gets less than ` intermediate variables), which
means that the matrix [v1, v2, . . . , v`] has full rank. The following lemma gives a necessary and sufficient
condition for such a leakage to be statistically independent of a.

Lemma 2. Let v1, v2, . . . , v` be a set of ` < n intermediate variables of the NTT on input a uniform
ω-encoding of a variable a. The distribution of the tuple (v1, v2, . . . , v`) is statistically independent of a
iff

[a] /∈ Im([v1, . . . , v`]) . (12)

Proof. If [a] ∈ Im([v1, . . . , v`]) then there exists constants γ1, γ2, . . . , γ` such that [a] =
∑
i γi[vi] implying

a =
∑
i γivi, and the distribution (v1, v2, . . . , v`) is hence statistically dependent on a. On the other hand,

if [a] /∈ Im([v1, . . . , v`]), then the system





a =
∑n−1
j=0 ω

jaj = γ0

v1 =
∑n−1
j=0 α1,jaj = γ1

v2 =
∑n−1
j=0 α2,jaj = γ2

...

v` =
∑n−1
j=0 αt,jaj = γ`

has |F|n−(`+1) solutions (a0, a1, . . . , an−1) for every (γ0, γ1, . . . , γ`) ∈ F`+1. This implies the statistical
independence between a and (v1, v2, . . . , v`). �

The following lemma gives an upper bound on the probability that the above condition is not fulfilled.

Lemma 3. Let ω be a uniform random element in F∗ and let v1, v2, . . . , v` be a set of ` < n linearly
independent intermediate variables of the NTT on input an ω-encoding of a variable a. We have:

Pr
[
[a] ∈ Im([v1, . . . , v`])

]
≤ `

|F| − 1
<

n

|F| , (13)

where the above probability is taken over a uniform random choice of ω.

Proof. Let us denote A(x) =
∑n−1
i=0 aix

i so that [A(α)] = (1, α, α2, . . . , αn−1) for every α ∈ F, and in par-
ticular [a] = [A(ω)]. For any distinct `+1 elements α1, α2, · · ·α`+1 ∈ F∗, the matrix [A(α1), A(α2), . . . , A(α`+1)]
has full rank since it is a Vandermonde matrix with distinct input entries. This directly implies:

Im([A(α1), A(α2), . . . , A(α`+1)])︸ ︷︷ ︸
dim `+1

* Im([v1, . . . , v`])︸ ︷︷ ︸
dim `

, (14)

hence the set Ω = {α | [A(α)] ∈ Im([v0, v1, . . . , v`])} contains at most ` elements. By the uniform
distribution of ω, we then have a probability at most `/(|F| − 1) ≤ n/|F| to have ω ∈ Ω that is to have
[a] ∈ Im([v1, . . . , v`]). �

We now have all the ingredients to prove Theorem 1.

8

Proof. (Theorem 1) We will show that for any adversary A, the advantage AdvNTT
A in distinguish-

ing L(NTT,Enc(a(0))) from L(NTT,Enc(a(1))) for any chosen elements a(0), a(1) ∈ F is lower than ε,
where L(NTT,Enc(a)) denotes the δ-random-probing leakage of the procedure NTTξ on input Enc(a) =
〈ω, (ai)n−1i=0 〉. Note that this leakage is a tuple in which each coordinate corresponds to an arithmetic
instruction in the computation of NTTξ that either equals ⊥ (with probability 1− δ) or the input of the

instruction. We recall that the advantage is defined as AdvNTT
A =

∣∣SuccNTT
A − 1

2

∣∣ where

SuccNTTA = Pr




(a(0), a(1), µ)← A(⊥)
b← {0, 1} : A(a(0), a(1), µ, `) = b

`← L(NTT, a(b))


 (15)

Without loss of generality, we assume SuccNTTA ≥ 1
2 . Indeed, for any adversary with success probability 1

2−
AdvNTT

A , there exists an adversary A′ with success probability 1
2 + AdvNTT

A (defined as A′(a(0), a(1), `) =

1−A(a(0), a(1), µ, `)).
The procedure NTTξ is composed of N = 3n log n arithmetic instructions. In the δ-random-probing

model, each of these instructions leaks its input(s) with probability δ. The number of instructions that
leak hence follows a binomial distribution with parameters N and δ. Let us denote by max` the event that
` or less instructions leak in the random-probing leakage L(NTT,Enc(a)). Since each instruction takes
at most two inputs over F, the adversary gets the values of at most 2` intermediate variables whenever
max` occurs. By the Chernoff bound (see Corollary 1), the probability that more than ` > Nδ arithmetic
instructions leak, namely the probability that ¬max` occurs, satisfies:

Pr(¬max`) ≤ ψ(`,N) . (16)

From N = 3n log n and ` < n
2 , we get that:

Pr(¬max`) ≤ exp
(
− (1− 6δ log n)2

2 + 12δ log n
n
)
≤ exp

(
− (1− 6δ log n)2

4
n
)
. (17)

Now let assume that max` occurs for some ` < n
2 and let denote v1, v2, . . . , v2` the recovered intermediate

variables. Without loss of generality, we assume that the recovered intermediate variables are linearly
independent. Let us then denote by free the event that [a] /∈ Im([v1, . . . , v`]). By Lemma 3, we have

Pr(¬free) < n

|F| . (18)

And let finally denote by succ the event that A outputs the right bit b on input (a(0), a(1), µ, `) so that
SuccNTTA = Pr(succ). We can then write:

SuccNTTA = Pr(max`) Pr(succ | max`) + Pr(¬max`) Pr(succ | ¬max`)

≤ Pr(succ | max`) + Pr(¬max`) . (19)

In the same way, we have

Pr(succ | max`) ≤ Pr(succ | max` ∩ free) + Pr(¬free) . (20)

By Lemma 2, we have that the leakage ` is statistically independent of a(b) in (15) whenever max` ∩ free
occurs. This directly implies Pr(succ | max` ∩ free) = 1

2 , which gives

SuccNTTA <
1

2
+ Pr(¬max`) + Pr(¬free) . (21)

Hence, we finally get

AdvNTT
A < Pr(¬max`) + Pr(¬free) =

n

|F| + exp
(
− (1− 6δ log n)2

4
n
)
, (22)

which concludes the proof. �

9

Security of the Full Multiplication. We now prove the security of the full multiplication. We have
the following result:

Theorem 2. Let ω be a uniform random element of F∗, let (ai)
n−1
i=0 and (bi)

n−1
i=0 be uniform ω-encodings

of some variables a and b, and let δ < 1/(21 log n). The above NTT-based multiplication procedure on
input (ai)

n−1
i=0 and (bi)

n−1
i=0 is ε-leakage secure in the δ-random-probing leakage model, where

ε =
2n

|F| + 5 exp
(
− (1− 21δ log n)2

14
n
)
. (23)

Proof. The full multiplication is composed of five successive steps:

1. the NTT on input (ai)i,
2. the NTT on input (bi)i,
3. the pairwise multiplications (2n)−1 · ui · ri,
4. the NTT on input (si)i,
5. the final compression on input (ti)i.

Let us denote by `1, `2, . . . , `5 the number of operations that leak at each of these steps. Since each
operation takes up to 2 input variables, the adversary then gets:

– up to 2`1 variables from the first NTT, each variable providing a linear equation in the ai’s;
– up to 2`2 variables from the first NTT, each variable providing a linear equation in the bi’s;
– up to `3 pairs (ui, ri),

7 each pair providing a linear equation in the ai’s and a linear equation in the
bi’s;

– up to 2`4 variables in the third NTT (the inverse NTT), each variable providing a linear equation in
the sj ’s;

– up to `5 pairs (ti, ti+n),8 each pair providing two linear equations in the sj ’s.

To sum up, the adversary gets a system composed of

– up to `∗1 = 2`1 + `3 linear equations of the form

n∑

i=1

αk,i · ai = ηk for k = 1, . . . , `∗1 (24)

– up to `∗2 = 2`2 + `3 linear equations of the form

n∑

i=1

βk,i · bi = νk for k = 1, . . . , `∗2 (25)

– up to `∗3 = 2`4 + 2`5 linear equations of the form

2n∑

j=1

γk,j · sj = χk for k = 1, . . . , `∗3 (26)

we have sj = (2n)−1ujrj for every j, and since uj and rj can be expressed as linear combinations of
(ai)i and of (bi)i respectively, for every j, the last `∗3 equations can be rewritten as:

n∑

i=1

γ′k,i · bi = χk for k = 1, . . . , `∗3 (27)

where the γ′k,i’s are coefficients that depend on the ai’s.

From these equations, the attacker gains the knowledge that:

7 Either a multiplication of the form (2n)−1 · ui or a multiplication of the form (2n)−1ui · ri leaks. In both cases
we consider that the pair (ui, ri) is revealed to the adversary.

8 Either a multiplication ωn · ti+n or an addition ti + ωnti+n leaks. In both cases we consider that the pair
(ti, ti+n) is revealed to the adversary.

10

1. the encoding (ai)
n−1
i=0 belongs to some vectorial space

S1 = {x ∈ Fn ; M1 · x = η} (28)

of dimension n−`∗1 where M1 is the matrix with coefficients αk,i’s, and η is the vector with coordinates
ηk,

2. the encoding (bi)
n−1
i=0 then belongs to some vectorial space

S2 = {x ∈ Fn ; M2 · x = (ν,χ)} (29)

of dimension n − `∗2 − `∗3 where M2 is the matrix with coefficients βk,i’s and γ′k,i’s and (ν,χ) is the
vector with coordinates νk and χk.

Following the demonstration of Lemma 2, it can be checked that if

(1, ω, . . . , ω2n−1) /∈ Im(M1) and (1, ω, . . . , ω2n−1) /∈ Im(M2) ,

then the full leakage of the multiplication is statistically independent of a and b, namely the leakage
security holds. These two events are denoted free1 and free2 hereafter.

Then, following the demonstration of Lemma 3, free1 occurs with probability at least 1 − n
|F| over

a random choice of ω, provided that we have rank(M1) < n. Then, since the vectorial space S1 is
independent of ω, any possible choice of (ai)

n−1
i=0 ∈ S1 gives rise to some coefficients γ′k,i’s independent of

ω and we have that free2 occurs with probability at least 1− n
|F| over a random choice of ω as long as we

have rank(M2) < n. The two conditions on the ranks of M1 and M2 are then fulfilled whenever we have

`∗1 = 2`1 + `3 < n , (30)

and
`∗2 + `∗3 = 2`2 + `3 + 2`4 + 2`5 < n . (31)

Let us denote maxi the event that the number of leaking operations `i at step i is lower than n/7, for
every i. If maxi occurs for every i ∈ {1, 2, 3, 4, 5}, then two above inequalities are well satisfied.

By applying the Chernoff bound, we hence get:

Pr(¬maxi) ≤ ψ
(n

7
, Ni
)
, (32)

where Ni is the number of operations at step i, which satisfies Ni ≤ 3n log n, which gives

Pr(¬maxi) ≤ ψ
(n

7
, 3n log n

)
≤ exp

(
− (1− 21δ log n)2

14
n
)
. (33)

We finally get that the multiplication is ε-leakage secure with

ε < Pr(¬max1) + Pr(¬max2) + · · ·+ Pr(¬max5)

+ Pr(¬free1 | max1 ∧ . . . ∧max5)︸ ︷︷ ︸
<n/|F|

+ Pr(¬free2 | max1 ∧ . . . ∧max5)︸ ︷︷ ︸
<n/|F|

. (34)

�

4 Compositional Security for Arithmetic Programs

In this section we show how to obtain leakage security for a full arithmetic program, composed of
several multiplications, additions and subtractions. Since computing addition and subtraction on encoded
variables is quite simple, our main contribution is to describe a refreshing procedure which allows us to
achieve compositional security.

We first describe our refreshing procedure before explaining how to transform an arithmetic program
into a leakage-secure equivalent arithmetic program. Then we provide our compositional security proof.

11

4.1 Refreshing Procedure

Our refreshing procedure is based on the common approach of adding an encoding of 0. Let (ai)
n−1
i=0 be

an ω-encoding of a variable a. We refresh it into an ω-encoding (a′i)
n−1
i=0 of a as follows:

1. sample a random ω-encoding (r0, r1, . . . , rn−1)← Encω(0)
2. set a′i = ai + ri for i = 0 to n− 1

The main issue with such an approach is the design of a scheme to sample an encoding of 0 which
has the right features for the compositional security. As detailed later, we can prove the compositional
security as long as our construction satisfies the two following properties:

– Uniformity: it outputs a uniform ω-encoding of 0;
– Output linearity: its intermediate variables (i.e. the input of elementary operations in the sampler)

can each be expressed as a linear combination of the output shares (ri)i.

We now describe an Encω(0) sampler which satisfies these two properties.

Sampling Encodings of 0. At the beginning of the computation of Π, a random ω-encoding of 0 is
generated. This is simply done by randomly picking n − 1 of the n shares and computing the last one
accordingly. We will denote by (ei)

n−1
i=0 this encoding. Note that just as for ω, this encoding can be fully

leaked to the adversary. Our sampler then works as follows:

1. pick n− 1 random values u0, u1, . . . , un−2 over F,
2. output (ri)

n−1
i=0 = NTTMult((u0, u1, . . . , un−2, 0), (e0, e1, . . . , en−1))

where NTTMult is the NTT-based multiplication described in Section 3.
It is not hard to see that the result is indeed an encoding of 0: since the (ei)i encode a 0, then

the encoded product is also a 0. The uniformity is slightly more tricky to see. We claim that with
overwhelming probability (over the random choice of (ei)i), the function:

(u0, u1, . . . , un−2) 7→ NTTMult((u0, u1, . . . , un−2, 0), (e0, e1, . . . , en−1)) , (35)

is invertible. This function is indeed linear and it can be seen as a multiplication by an (n − 1) × n
matrix. We empirically validated that this matrix is of rank n − 1 with overwhelming probability.9 By
discarding one column we can get a full-rank square matrix of dimension n − 1, allowing the recovery
of the (u0, u1, . . . , un−2) from output encoding. Therefore, we have a one-to-one mapping between the
vectors (u0, u1, . . . , un−2) ∈ Fn−1 and the ω-encodings of 0, (ri)

n−1
i=0 ∈ Fn with Decω((ri)

n−1
i=0) = 0.

The output linearity is a direct consequence of the above. Since the ui’s can be expressed as linear
combinations of the ri’s, then all the intermediate variables of the sampling procedure can be expressed
as such linear combinations as well.

4.2 Arithmetic Program Compiler

We consider an arithmetic program P processing variables defined over a prime field F. We show how to
transform such a program into a leakage-secure arithmetic program Π. Each arithmetic instruction of P
gives rise to a corresponding gadget in Π that works on encodings. We describe these different gadgets
hereafter.

Copy gadget. The copy gadget simply consists in applying a refreshing procedure to copy an encoded
variable into the same freshly encoded variable. Let (ai)

n−1
i=0 be an ω-encoding of a. The copy gadget

compute an ω-encoding (a′i)
n−1
i=0 of a as:

(a′0, a
′
1, . . . , a

′
n−1)← refresh(a0, a1, . . . , an−1)

9 To avoid to rely on an empirical assumption, one could easily check whether the generated encoding (ei)i gives
rise to a full-rank linear transformation.

12

The copy gadget is used whenever an output ω-encoding (ai)
n−1
i=0 from some previous gadget is used

as an input of several following gadgets. If (ai)
n−1
i=0 is to be used in input of N following gadgets, one

makes N − 1 extra copies (in such a way that each new copy enters the next copy gadget):

(ai)
n−1
i=0 → (a

(2)
i)n−1i=0 → · · · → (a

(N)
i)n−1i=0

This way, each fresh encoding (a
(j)
i)n−1i=0 enters at most two different gadgets: the copy gadget and one

of the N computation gadgets.

Addition gadget. Let (ai)
n−1
i=0 be an ω-encoding of a and (bi)

n−1
i=0 be an ω-encoding of b. To compute

an ω-encoding (ci)
n−1
i=0 of c = a+ b, we simply compute:

(c0, c1, . . . , cn−1)← refresh(a0 + b0, a1 + b1, . . . , an−1 + bn−1)

Subtraction gadget. Let (ai)
n−1
i=0 be an ω-encoding of a and (bi)

n−1
i=0 be an ω-encoding of b. To compute

an ω-encoding (ci)
n−1
i=0 of c = a+ b, we simply compute:

(c0, c1, . . . , cn−1)← refresh(a0 − b0, a1 − b1, . . . , an−1 − bn−1)

Multiplication gadget. Let (ai)
n−1
i=0 be an ω-encoding of a and (bi)

n−1
i=0 be an ω-encoding of b. To

compute an ω-encoding (ci)
n−1
i=0 of c = a · b, we simply compute:

(c0, c1, . . . , cn−1)← refresh
(
NTTMult((a0, a1, . . . , an−1), (b0, b1, . . . , bn−1))

)

where NTTMult denotes the NTT-based multiplication described in Section 3.

4.3 Compositional Security

The compositional security of our construction is based on the two following properties of the refreshing
procedure:

– Uniformity: for a given ω ∈ F∗ and a given value a ∈ F, the ω-encoding (a′i)
n−1
i=0 in output of the

refreshing procedure is uniformly distributed and independent of the input ω-encoding (ai)
n−1
i=0 ;

– I/O linear separability: the intermediate variables of the refreshing procedure can each be ex-
pressed as a deterministic function of a linear combination of the (ai)i and a linear combination of
the (a′i)i.

The uniformity property is a direct consequence of the uniformity of the Encω(0) sampler. The I/O
linear separability holds from the output linearity of the Encω(0) sampler since the shares (ri)i output
by the sampler satisfy ri = a′i − ai for every i, implying that any linear combination

∑
iγiri equals∑

iγia
′
i −

∑
iγiai and is hence a deterministic function of a linear combination

∑
iγia

′
i and a linear

combination
∑
iγiai.

The I/O linear separability of the refreshing procedure implies that its leakage can be split into some
leakage depending only on its input encoding, which is the output (before refreshing) from a previous
gadget, and some leakage depending only on its output encoding, which is the input of a next gadget.
This way, the full leakage can be split into subleakages each depending on the input/output of one
gadget. Moreover, the uniformity property implies that all these subleakages are mutually independent.
They can hence be analyzed separately: if none of them reveal information, then the full leakage does
not reveal information either. This is illustrated on Figure 1, where the input/output encodings of each
gadget (and the corresponding separated leakage) is represented by a different color.

The compositional security of our construction is formalized in the following theorem.

Theorem 3. Let P be an arithmetic program taking some input x ∈ Fs and let Π denotes the corre-
sponding program protected with n-size encodings as described above. For every δ < 1/(33 log n), Π is
ε-leakage secure in the δ-random-probing model where

ε = 3|P | ·
(

2 exp
(
− (1− 33δ log n)2

22
n
)

+
2n

|F|

)
, (36)

where |P | denotes the size of P i.e. its number of arithmetic instructions.

13

encoding encoding

Gadget

encoding

encoding encoding

Gadget

encoding

encoding

encoding

Refresh

Refresh

Refresh

leakage

leakage

leakage

leakage

leakage

leakage

leakage

leakage

Fig. 1. Illustration of our compositional security.

14

Proof. Let |Π| denotes the number of gadgets in Π. Since the output of each gadget is refreshed (and
nothing more), the number of call to the refreshing procedure is also |Π|. Each arithmetic instruction in
P gives rise to one associated gadget, plus up to 2 copy gadgets if necessary. We hence deduce |Π| ≤ 3|P |.

Let us denote by rmax the event that at most n
11 operations leak in each refreshing. By applying the

Chernoff bound (see Corollary 1), we have

Pr(¬rmax) ≤ |Π| · ψ
(n

11
, Nref

)
, (37)

where Nref denotes the number of elementary operations in the refreshing procedure. Let us further
denote by gmax the event that at most n

11 operations leak in each gadget (without refreshing). In the
same way as above, we have

Pr(¬gmax) ≤
|Π|∑

i=1

ψ
(n

11
, N (i)

)
≤ |Π| · ψ

(n
11
, Ngad

)
, (38)

where N (i) denotes the number of elementary operations in the ith gadget and where Ngad denotes the
max (which is reached by the multiplication gadget).

In the following, we shall denote by (a
(i)
j)j and (b

(i)
j)j the input encodings of the ith gadget of Π and

by (c
(i)
j)j the output encoding (before refreshing) of the ith gadget of Π. Let us further denote by L the

full δ-random-probing leakage of Π, so that we have:

L =

|Π|⋃

i=1

G(i) ∪
|Π|⋃

i=1

R(i) (39)

where G(i) denotes the leakage from the ith gadget (without refreshing) and where R(i) denotes the
leakage of the ith refresh. Specifically, G(i) and R(i) are families of intermediate variables (inputs of
elementary operations) that are revealed by the δ-random-probing leakage. If rmax and gmax occurs, we
have |G(i)| ≤ 2n

11 and |R(i)| ≤ 2n
11 .

According the the I/O linear separability property of the refreshing procedure, we can define a
separated leakage L′ as

L′ =

|Π|⋃

i=1

(
G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
(40)

where A(i) is a set of linear combinations of (a
(i)
j)j , B(i) is a set of linear combinations of (b

(i)
j)j , C(i) is a

set of linear combinations of (c
(i)
j)j , such that L is a deterministic function of L′. This implies that if L′

is statistically independent of the program input x, then so is L. The remaining of the proof consists in
showing that the former occurs with overwhelming probability (for a sound choice of the parameters).

We shall bound the probability (over the distribution of ω) that the family L′ is statistically dependent
on x, hereafter denoted x O L′. We have

x O L′ =

|Π|∨

i=1

(
x O G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
. (41)

By the uniformity property of the refreshing, we have that, given the program input x, the different

families of input/output shares
{

(a
(i)
j)n−1j=0 , (b

(i)
j)n−1j=0 , (c

(i)
j)n−1j=0

}
are mutually independent. We hence get

Pr(x O L′) ≤
|Π|∑

i=1

Pr
(
x O G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
. (42)

We can then upper bound the probability Pr
(
x O G(i) ∪ A(i) ∪ B(i) ∪ C(i)

)
when the ith gadget is a

secure multiplication by following the proof of Theorem 2. The only difference is that the attacker gets
additional linear combinations of the input/output shares from the refreshing procedures. Specifically,
we would have

15

– up to `∗1 = 2`1 + `3 + 2`′1 linear combinations of the form
∑
i αk,iai, for 1 ≤ k ≤ `∗1;

– up to `∗2 = 2`2 + `3 + 2`′2 linear combinations of the form
∑
i βk,ibi, for 1 ≤ k ≤ `∗2;

– up to `∗3 = 2`4 + 2`5 + 2`′3 linear combinations of the form
∑
i,j γk,jsj , for 1 ≤ k ≤ `∗3;

where `′1, `′2 and `′3, are the number of leaking operations in the input/output refreshing procedures.
Taking the constraint `i <

n
11 and `′i <

n
11 for every i, we still get `∗1 + `∗3 < n and `∗2 + `∗3 < n. That is,

if rmax and gmax occurs, we get

Pr
(
x O G(i) ∪ A(i) ∪ B(i) ∪ C(i) | rmax ∧ gmax

)
≤ 2n

|F| . (43)

For copy, addition and subtraction gadgets, the proof is quite simple. When an operation leaks in such
a gadget, it reveals one shares from each input encoding. We hence get less that n

11 linear combinations
on each input encoding (from the gadget leakage), plus 2n

11 linear combinations on each input encoding
(from their respective refreshing), plus 2n

11 linear combinations on the output encoding, which can be
split into independent linear combinations on the two input encodings. We clearly get less than n linear
combinations on each encoding, which allows us to apply Lemma 3 and to obtain (43) for every kind of
gadget.

We finally get

Pr(x O L′) ≤ Pr(¬rmax) + Pr(¬gmax) +

|Π|∑

i=1

Pr
(
x O G(i) ∪ A(i) ∪ B(i) ∪ C(i) | rmax ∧ gmax

)

≤ |Π| ·
(
ψ
(n

11
, Nref

)
+ ψ

(n
11
, Ngad

)
+

2n

|F|
)
,

which together with Nref , Ngad < 3n log n concludes the proof. �

5 From Arithmetic Random Probing to Noisy Leakage

5.1 Logical Programs

The definition of a logical program is analogous to the definition of an arithmetic program but it is
composed of logical instructions over {0, 1}w such as the bitwise AND, OR, XOR, logical shifts and
rotations, as well as the addition, subtraction, and multiplication modulo 2w (namely typical instructions
of a w-bit processor). In the ε-noisy leakage model, a logical program leaks an ε-noisy leakage function
f(mj , mk) of the pair of inputs of each logical instruction mi ← mj ∗ mk.

The security reduction of Duc et al. (Lemma 1) then implies that a logical program Π that is secure
against δ-random-probing leakage is also secure against δ′-noisy leakage with δ′ = δ/22w.

5.2 A Generic Reduction

We then have the following reduction of random-probing model for a logical programs, to the random-
probing model for an arithmetic programs:

Lemma 4. Let Π be a ε-leakage secure arithmetic program in the δ-random-probing model, then there
exists a functionally equivalent logical program Π ′ that is ε-leakage secure in the δ′-random-probing model
for some δ′ satisfying

δ′ = 1− (1− δ)1/N ≥ δ

N
with N = O

(1

w
log |F| log

(1

w
log |F|

))
. (44)

Proof. The logical program Π ′ is simply the program Π where arithmetic instructions are built from
several w-bit logical instructions. It is well known that the addition and subtraction on F can be computed
in N = O

(
1
w log |F|

)
elementary (w-bit) operations, and that the multiplication on F can be computed

from N = O
(
1
w log |F| log

(
1
w log |F|

))
elementary (w-bit) operations.

16

Assume that there exists an adversary A′ with advantage ε that makes use of a δ′-random-probing
leakage on Π ′, then we show that there exists an adversary A with advantage ε that makes use of a
δ-random-probing leakage on Π. Since by assumption no such adversary A exists, then by contraposition
neither does such adversary A′, meaning that Π ′ is indeed ε-leakage secure in the δ′-random-probing
model.

We construct an adversary A that is given the full input to an arithmetic instruction of Π whenever
at least one of the corresponding logical instruction leaks in Π ′. Informally, it is clear that this can
only increase the success probability. To make this reasoning formal, we need to construct an adversary
A that receives the strengthened leakage, resamples it to make its distribution identical to that of the
δ′-random-probing leakage on Π ′ and then call A′. When A receives ⊥ as leakage for an arithmetic
instruction, it simply sends ⊥ to A′ for all the corresponding logical instructions. When it receives the
full input of the arithmetic instruction (meaning that at least one corresponding logical instruction of
Π ′ must leak), it can compute all the inputs of the corresponding logical instructions in Π ′, and reveal
each of them to A′ with some (biased) given probability. Since we do not consider the computational
complexity of the adversaries, the easiest way to achieve a perfect simulation is to use rejection sampling.
Namely, for every logical instruction in the group, the input is revealed with probability δ′. If at the end
of the group, no input was revealed, simply restart the revealing process for the same group. This way,
we have constructed an adversary A using a δ-random-probing leakage on Π where

δ = 1− (1− δ′)N ,

for N = O
(

log |F| log log |F|
)
. Since by assumption no such adversary exists, this means that no adversary

A′ exists with advantage ε that makes use of a δ′-random-probing leakage on Π ′. �

Combining the above lemma with Lemma 1, and considering a constant word-size w, we get a tight
reduction of the security in the noisy leakage model for logical program to the security in the random-
probing model for arithmetic program:

Lemma 5. Let Π be a ε-leakage secure arithmetic program in the δ-random-probing model, then there
exists a functionally equivalent logical program Π ′ that is ε-leakage secure in the δ′-noisy leakage model
for some δ′ satisfying

δ′ =
δ

O(log |F| log log |F|) . (45)

5.3 Application to Our Scheme

In the previous section we have shown that for δ = O(1/ log n) our construction is ε-leakage secure in
the δ-random-probing model with

ε = negl(λ) + negl′(n) (46)

where negl and negl′ are some negligible functions and where λ is some security parameter such that
log |F| = λ+ log n.

By applying the above reduction to our construction (and recalling that we have |F| = O(n)), we
obtain the following corollary of Theorem 3:

Corollary 3. Let Π ′ denotes the secure logical program corresponding to our construction (see Sec-
tion 4). Π ′ is ε-leakage secure in the δ-noisy leakage model where ε = negl(λ) + negl′(n) and δ′ =
O
(
1/((log n)2 log log n)

)
.

6 Practical Aspects and Open Problems

Securing arbitrary computation. Although our scheme is described to work on a finite field F
with specific structure, it can be used to secure any arbitrary computation represented as a Boolean
circuit. Indeed, it is possible to embed a Boolean circuit into an arithmetic program over F. Each bit is
simply represented by an element a ∈ {0, 1} ⊆ F. The binary multiplication then matches with the F-
multiplication over this subset. Regarding the binary addition ⊕, it can be implemented with operations
over F as:

a⊕ b = a+ b− 2ab , (47)

17

for every a, b ∈ {0, 1} ⊆ F. Of course such an embedding comes at a high cost in practice and our scheme
would not be efficient to protect e.g. an AES computation. However, our scheme is asymptotically more
efficient than previous ISW-based schemes meaning that there exists some masking order n for which
an implementation of our scheme would be more efficient than an implementation of a previous scheme.
Moreover and as discussed hereafter, we think that our scheme could be practically improved in many
ways.

Practical efficiency. For any cryptographic computation on a base field F with appropriate structure,
our scheme should be very efficient in practice. We recall that the field should be such that |F| = α ·n+1,
for n being a power of 2 and α being large enough so that n/α is negligible. A 256-bit prime field such as
those used in Elliptic Curve Cryptography could for instance satisfy these criteria. An interesting open
issue would be to extend our scheme to work on other algebraic structures and in particular on binary
fields (e.g. to efficiently secure the AES) or on rings used in lattice-based cryptography.

On the size of the field. We note that we need a ‘big’ field (typically of size 128 + 2 log n) in order to
have enough randomness when picking ω. However this might be a proof artefact and the scheme could
be secure for some constant ω and/or using smaller fields. Another direction of improvement would be
to mitigate or remove this constraint with an improved construction and/or proof technique.

Packing encodings. Finally our scheme could also probably be improved by using the principle of
packed secret sharing as suggested in [ADF16,ADD+15] since our encoding is a kind of randomized
Shamir’s secret sharing.

References

[ADD+15] Marcin Andrychowicz, Ivan Damg̊ard, Stefan Dziembowski, Sebastian Faust, and Antigoni Polychro-
niadou. Efficient leakage resilient circuit compilers. pages 311–329, 2015.

[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit Compilers with O(1/log(n))
Leakage Rate, pages 586–615. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[Ajt11] Miklós Ajtai. Secure computation with information leaking to an adversary. pages 715–724, 2011.
[BBP+16] Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien

Vergnaud. Randomness complexity of private circuits for multiplication. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-
12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 616–648.
Springer, 2016.

[BBP+17] Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien
Vergnaud. Private Multiplication over Finite Fields, pages 397–426. Springer International Publishing,
Cham, 2017.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizontal side-
channel attacks and countermeasures on the ISW masking scheme. In Benedikt Gierlichs and Axel Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th International
Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes
in Computer Science, pages 23–39. Springer, 2016.

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-party
computations over small fields. pages 521–536, 2006.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann. Math. Statist., 23(4):493–507, 12 1952.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to
counteract power-analysis attacks. pages 398–412, 1999.

[CPRR14] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-order side
channel security and mask refreshing. pages 410–424, 2014.

[CRV14] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast evaluation of polynomials over binary
finite fields and application to side-channel countermeasures. pages 170–187, 2014.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing
attacks to noisy leakage. pages 423–440, 2014.

18

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. pages 445–465, 2010.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. pages 293–302, 2008.
[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: Concrete results.

pages 251–261, 2001.
[GR12] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. pages 31–40,

2012.
[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing

attacks. pages 463–481, 2003.
[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. pages 388–397, 1999.
[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.

pages 104–113, 1996.
[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). pages

278–296, 2004.
[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security proof.

pages 142–159, 2013.
[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. pages 413–427,

2010.
[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November 1979.
[SPY+09] Francois-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti Yung, and Elisabeth

Oswald. Leakage resilient cryptography in practice. Cryptology ePrint Archive, Report 2009/341, 2009.
http://eprint.iacr.org/2009/341.

A Number Theoretic Transform

The Number Theoretic Transform (NTT) is essentially a (Fast) Fourier Transform defined in a finite
field (or ring) where inaccurate floating point or complex arithmetic can be avoided. The NTT can be
used to multiply two polynomials over a finite field in quasilinear complexity. Let Fp be a prime finite
field such that d | p− 1 for some integer d (Fp contains d-th roots of unity) and let A be a (d− 1)-degree
polynomial over Fp[x] such that A(x) = a0 + a1x + a2x

2 + · · · + ad−1xd−1. For a given primitive d-th
root of unity ξ, the NTT maps the coefficients of A to the evaluations A(ξi) with 1 ≤ i ≤ d:

NTTξ : (a0, a1, . . . , ad−1) 7→ (A(ξ1), A(ξ2), . . . , A(ξd)) . (48)

For d being a power of two, the NTT can be computed in time complexity O(d log d). To show this, let
us define A0 and A1, the two (d2 − 1)-degree polynomials

A0(x) = a0 + a2x+ a4x
2 + · · ·+ ad−2x

d
2−1

A1(x) = a1 + a3x+ a5x
2 + · · ·+ ad−1x

d
2−1

which satisfy
A(x) = A0(x2) + xA1(x2).

The problem of evaluating A(x) at each d-th root of unity ξi, for 1 ≤ i ≤ d, is reduced to the problem
of evaluating A0(x) and A1(x) at the points ξ2i, for 1 ≤ i ≤ d

2 , and we can combine the results with
A(ξ) = A0(ξ2) + ξA1(ξ2). The polynomials A0(x) and A1(x) can also be evaluated at the points ξ2i with
the same divide and conquer strategy, using the polynomials A00, A01, A10, A11 satisfying

A0(x) = A00(x2) + xA01(x2) and A1(x) = A01(x2) + xA11(x2) .

This divide and conquer strategy can be iterated log2(d) times. At the t-th step we have 2t polynomials
Au of degree d

2t for u ∈ {0, 1}t that must be evaluated in ξj for j = 2t, 2 · 2t, . . . , d
2t · 2t, which makes a

total of 2t · d2t = d evaluations. Moreover, from ξj+
d
2 = −ξj we have

Au(ξj) = Au|0(ξ2j) + ξjAu|1(ξ2j) and Au(ξj+
d
2) = Au|0(ξ2j)− ξjAu|1(ξ2j) (49)

implying that the number of evaluations can be merely divided by two.
In practice, we start with t = log2(d), where we have 2t = d constant polynomials Au = aϕ(u) with

ϕ(u) denoting the integer corresponding to the binary expansion u ∈ {0, 1}log2(d). Then we iterate (49)
for t from log2(d) down to 1 where we have our d evaluations of A. The overall process is summarized
hereafter:

19

1. (c0, c1, . . . , cd−1)← (a0, a1, . . . , ad−1)
2. for t = log2(d)− 1 down to 1:
3. j = 2t; k = 2d−t−1

4. for i ∈ ⋃k−1`=0 Uj,`
5. (ci, ci+j)← (ci + ξjci+j , ci − ξjci+j)

where Uj,` = {(2`j, . . . , (2`+ 1)j − 1)} and where the index shiftings of c are done modulo d, i.e. ci+j =

ci+j mod d. It can be checked that the above evaluation of NTTξ takes a total of d log d
2 multiplications,

d log d
2 additions and d log d

2 subtractions.

Using the NTT with a dth root of unity, we can efficiently compute the product C(x) = A(x) ·B(x)
for any two polynomials A,B ∈ Fp[x] of degree up to n− 1 with d = 2n. We first apply the NTT to get
d evaluations of both polynomials:

(A(ξ1), A(ξ2), . . . , A(ξd)) = NTTξ(a0, a1, . . . , an−1, 0, . . . , 0)

(B(ξ1), B(ξ2), . . . , B(ξd)) = NTTξ(b0, b1, . . . , bn−1, 0, . . . , 0)

from which we get d evaluations of C by C(ξi) = A(ξi) · B(ξi) for 1 ≤ i ≤ d. Finally, we can recover
the coefficients of the output polynomial C by computing the inverse NTT on (C(ξ), C(ξ1), . . . , C(ξd)),
which satisfies

(c0, c1, . . . , cd) = NTT−1ξ (C(ξ1), C(ξ2), . . . , C(ξd)) = NTTξ−1

(1

d
C(ξ1),

1

d
C(ξ2), . . . ,

1

d
C(ξd)

)
.

20

Appendix E
Probing Security through
Input-OutputSeparation & Revisited
Quasilinear Masking
Hereafter is appended a revised version of our paper [GPRV21], joint work with Dahmun
Goudarzi, Thomas Prest and Damien Vergnaud, published at TCHES 2021.

Probing Security through Input-Output
Separation and Revisited Quasilinear Masking∗

Dahmun Goudarzi1, Thomas Prest2, Matthieu Rivain3 and Damien
Vergnaud4,5

1 Independent researcher
dahmun.goudarzi@gmail.com

2 PQShield, Oxford, United Kingdom
thomas.prest@pqshield.com

3 CryptoExperts, Paris, France
matthieu.rivain@cryptoexperts.com

4 Sorbonne Université, CNRS, LIP6, Paris, France
5 Institut Universitaire de France, Paris, France

Abstract. The probing security model is widely used to formally prove the security
of masking schemes. Whenever a masked implementation can be proven secure in
this model with a reasonable leakage rate, it is also provably secure in a realistic
leakage model known as the noisy leakage model. This paper introduces a new
framework for the composition of probing-secure circuits. We introduce the security
notion of input-output separation (IOS) for a refresh gadget. From this notion, one
can easily compose gadgets satisfying the classical probing security notion –which
does not ensure composability on its own– to obtain a region probing secure circuit.
Such a circuit is secure against an adversary placing up to t probes in each gadget
composing the circuit, which ensures a tight reduction to the more realistic noisy
leakage model. After introducing the notion and proving our composition theorem,
we compare our approach to the composition approaches obtained with the (Strong)
Non-Interference (S/NI) notions as well as the Probe-Isolating Non-Interference (PINI)
notion. We further show that any uniform SNI gadget achieves the IOS security
notion, while the converse is not true. We further describe a refresh gadget achieving
the IOS property for any linear sharing with a quasilinear complexity Θ(n log n) and
a O(1/ log n) leakage rate (for an n-size sharing). This refresh gadget is a simplified
version of the quasilinear SNI refresh gadget proposed by Battistello, Coron, Prouff,
and Zeitoun (ePrint 2016). As an application of our composition framework, we
revisit the quasilinear-complexity masking scheme of Goudarzi, Joux and Rivain
(Asiacrypt 2018). We improve this scheme by generalizing it to any base field (whereas
the original proposal only applies to field with nth powers of unity) and by taking
advantage of our composition approach. We further patch a flaw in the original
security proof and extend it from the random probing model to the stronger region
probing model. Finally, we present some application of this extended quasilinear
masking scheme to AES and MiMC and compare the obtained performances.

Keywords: Probing Security · Composition · Quasilinear Masking · IOS Notion

∗Revised version of a paper published in IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(3). The current version is dated from June 2022.

1 Introduction
In cryptography, side-channel attacks are all attacks based on extracting information from
a physical implementation of a cryptosystem. Rather than exploiting some weakness in
the underlying cryptographic algorithm, the leakage information is exploited by attackers
to extract the secret key from a specific implementation.

Probing security is a notion put forward by Ishai, Sahai and Wagner in [31] to evaluate
the security of a circuit against a class of physical attacks. Specifically, they consider
t-probing attacks in which the adversary has the ability to place some probes on t wires of a
circuit processing some secrets. The circuit is said to be t-probing secure if no information
leaks from the values of the t probed wires. More formally, one should be able to perfectly
simulate the distribution of the probed wires without any knowledge on the secrets. In
their paper, Ishai et al. propose a scheme, the so-called ISW scheme, to compile a circuit
into a new randomized circuit (i.e. a circuit featuring random generation gates) which
is resistant to t-probing attacks. Their scheme used some additive secret sharing (a.k.a.
Boolean masking) of the processed variables. Specifically, each variable x is split into
n ≥ 2 variables x1, x2, . . . , xn, called the shares, which are uniformly distributed among
n-tuples satisfying x = x1 + x2 + · · ·+ xn (where + is the addition on F2 in the original
scheme).

Using such an additive sharing to protect a cryptographic computation was already
proposed in 1999 as a protection against side-channel attacks [20, 28]. Many masking
schemes describing efficient implementations of ciphers protected at some given (low)
orders were published in the early 2000’s, see e.g. [35, 3, 36]. In this context, the
probing security notion is analogous to the security against so-called higher-order side-
channel attacks. In such an attack, an adversary uses t leakage points from a power
consumption trace (or electromagnetic trace) to extract information on the secret. If
properly implemented, a t-probing secure scheme achieves provable security against this
kind of attacks. The ISW scheme had hence a strong impact on the side-channel research
community and it was used as a building block in many popular masking schemes, see e.g.
[41, 33, 18, 24, 22, 40, 44, 30, 11, 12, 32].

Although an ISW-based masking scheme can achieve some level of resistance against
side-channel attacks, the probing security notion is not fully satisfactory in this context.
In practice a side-channel adversary gets some leakage on the full computation and has no
reason to limit herself to t leakage points. Nevertheless, the side-channel leakage is often
(or can be made) noisy and the noise is known to be amplified by the masking order [20].
This was the motivation behind the formal noisy leakage model introduced by Prouff and
Rivain in [39]. In this model, every variable (or wire) x in the computation leaks a noisy
function f(x). The noisy property is captured by assuming that the bias introduced in the
distribution of x by an observation of f(x) is smaller than some bound δ.

Subsequently, Duc, Dziembowski and Faust showed that the security in the noisy leakage
model could be obtained for a probing-secure scheme through a security reduction [25]. In
a nutshell, the so-called DDF reduction considers an intermediate leakage model called the
random-probing model, which was already considered by Ishai et al. in [31] and formalized
by Ajtai in [2], in which each variable (or wire) is leaked to the adversary with a given
probability p. By applying the Chernoff bound, one gets that a t-probing secure circuit Ĉ
is also p-random probing secure with p = O(t/|Ĉ|) (where |Ĉ| denotes the number of wires
of Ĉ). Duc et al. could then show a transition from the p-random probing security to the
δ-noisy leakage security with δ = O(p/|K|) where |K| is the base field of the computation.
It was recently shown that the impact of the field size can be relaxed by refining the
granularity of the computation [29] or considering alternative definitions of the noisy
leakage model [38].

The DFF reduction and the obtained security in the noisy leakage model is thus mainly

2

impacted by the leakage rate (or probing rate) which is the ratio between the number of
tolerated probes and the size of the circuit [6]. In order to tolerate a significant leakage
parameter δ = O(t/|Ĉ|), the leakage rate should be as close as possible to 1. In particular,
one should be able to tolerate a number of probes that grows linearly with the circuit.
To this aim, the circuit should achieve the stronger notion of region probing security
formalized by Andrychowicz, Dziembowski, and Faust in [6], namely it should be separable
into regions that each tolerate some amount of probes independently of the total size
of the circuit. This notion was already considered in the work of Ishai et al. and their
scheme was shown to be region probing secure. Specifically, it can tolerate up to t < n/2
probes per protected gate, or gadget, for a masking order n. Since the ISW gadgets require
O(n2) operations, the obtained leakage rate is of O(1/n). Such a leakage rate is not fully
satisfactory since it implies that the leakage noise should decrease linearly with the number
of shares. In particular, no security can be obtained for the ISW gadgets in the context of
a constant leakage rate (i.e. on a given target device) and some practical attacks were
exhibited to underline this issue [9].

Fortunately, some schemes are known that achieve constant (or quasi-constant) leakage
rates. Such a scheme was first proposed by Ajtai in [2] which achieves random probing
security with leakage rate O(1). Another scheme, partly based on Ajtai’s work, was
proposed by Andrychowicz, Dziembowski, and Faust in [6] which achieves probing security
with leakage rate O(1/ logn), and random-probing security with leakage rate O(1). More
recently, Ananth, Ishai and Sahai [5] have proposed a conceptually simpler approach to
achieve random-probing security with leakage rate O(1). This approach has been further
improved by Belaïd, Coron, Prouff, Rivain and Taleb in [13]. In terms of complexity, all
these proposals imply a size of the protected circuit of O(|C|n2) or larger, where |C| is
the size of the original circuit. This was recently improved by Goudarzi, Joux and Rivain
who proposed a scheme making use of a Fast Fourier Transform-based (FFT) polynomial
multiplication to obtain the first construction achieving a O(|C|n logn) complexity with a
O(1/ logn) leakage rate. Unfortunately, their security proof has a flaw that we exhibit in
this paper. Moreover, their scheme is restricted to working on base fields including the
nth powers of unity, which notably excludes fields of characteristic 2 that are yet essential
in some cryptographic primitives (such as the AES block cipher).

In [8], Barthe, Belaïd, Dupressoir, Fouque, Grégoire, Strub and Zucchini formalized
the notion of composable gadgets which notably allows to prove region probing security.
More precisely, they introduced the notion of Strong Non-Interference (SNI) which refines
the notion of probing security, by separating between external and internal probes in
the circuits. SNI security allows composing masked gadgets since the notion implies
that gadgets stop the propagation of dependencies. However, compared to classical
probing-secure gadgets, SNI gadgets are usually less efficient than probing-secure ones and
require more randomness. Another approach consists in composing SNI gadgets and NI
gadgets (a relaxation of the SNI notion) in a careful way to achieve security with better
performances (see [14] and references therein). In [19], Cassiers and Standaert introduced
the notion of Probe Isolating Non-Interference (PINI) that allows secure composition and
efficient implementations. It relies on the position of probes in a target implementation.
Thanks to this notion, linear functions are directly composable and do not require to be
refreshed and non-linear operations remain efficient. A circuit achieves PINI-security (and
is consequently probing secure) if all its gadgets are PINI but the notion is not sufficient
to achieve region-probing security.

In this paper, we introduce a new composition framework to construct circuits (or
masked implementations) satisfying the region probing security notion. For this purpose,
we formalize the property of input-output separation (IOS) for a refresh gadget and we show
that it allows to simply construct region probing circuits from (weaker) probing secure
gadgets and in particular more efficient gadgets which are only proven probing-secure but

3

not SNI, e.g. [29, 11]. We show that this notion can be obtained from uniform SNI or
PINI refresh gadgets but also with a simpler design, namely a variant of the refreshing
algorithm due to Battistello, Coron, Prouff and Zeitoun [10]. It is worth mentioning that
the original refreshing gadget from [10] was proven SNI but for our purposes, we simplify
and extend it and show that it achieves our new IOS security notion. The proposed variant
can be used to refresh any kind of linear sharing with a quasilinear complexity Θ(n logn)
and a O(1/ logn) leakage rate (for an n-size sharing).

We then revisit the quasilinear masking scheme of Goudarzi, Joux and Rivain [29]
(which we shall call the GJR scheme hereafter). This scheme is based on a polynomial
sharing of the form a =

∑
i aiω

i, where a is the plain variable and the ai’s are the
corresponding shares, and it uses an FFT-based polynomial multiplication to achieve a
quasilinear complexity. We describe an improved version of the GJR scheme which works
on any base field, including binary fields, and which relies on our composition framework.
We further patch a flaw in the original security proof and extend it from the random
probing model to the stronger region probing model. Specifically, our improved GJR
scheme is secure in the region probing model provided that the underlying FFT algorithm
is probing secure. From this ground, we obtain a probing-secure FFT using the approach
of [29], that is by relying on a large field |K| = Θ(2λ) and taking ω at random. We
hence get a region-probing-secure scheme for large fields. For smaller fields, our result
is essentially a security reduction from the region probing security of the full scheme
to the probing security of the FFT. Finally, we present an application of our extended
GJR scheme and compare it with a more standard scheme based on SNI gadgets for two
different ciphers: the Advanced Encryption Standard (AES) [1] and MiMC [4]: a cipher
with efficient arithmetic representation on a large field. We show that this masking scheme
significantly improves the efficiency of the masked cipher for a masking order n ≥ 64
for MiMC and n ≥ 512 for the AES. For the AES instantiation, we present a variant of
Gao-Mateer additive FFT [27] with improved efficiency and which may be of independent
interest.

2 Background on Probing Secure Circuits

2.1 Notations
In this paper, K shall denote a finite field. Vectors shall be denoted with bold letters, e.g.
x. For any two random variables (or random vectors) X and Y , we shall write X id= Y
whenever X and Y are identically distributed. For some positive integer n ∈ N, we denote
by [n] the set {1, 2, . . . , n}. For any two vectors u,v ∈ Kn, 〈u,v〉 denotes their inner
product. For any finite set I, we denote by |I| the cardinality of I. Let I ⊆ [n] and
v = (v1, . . . , vn) ∈ Kn, we denote by v|I the |I|-tuple (vi)i∈I . We shall denote x ← X
the action of picking x uniformly at random in some set X , and y ← A(x) the action of
defining y as the output of an algorithm A on input x. If A is a probabilistic algorithm,
then y ← A(x) is a random assignment of y on input x and for a uniform random tape.

2.2 Basic Definitions
Arithmetic circuits. Given a finite field K, an arithmetic circuit is a circuit processing
elements of K through simple arithmetic operations. Formally, it is modeled as a directed
acyclic graph whose vertices are gates that belong to the following types:

– input gate (fan-in 0, fan-out 1) which holds an input value of the circuit,
– output gate (fan-in 1, fan-out 0) which receives an output value of the circuit,
– constant gate (fan-in 0, fan-out 1) which outputs a constant value of K,

4

– addition gate (fan-in 2, fan-out 1) which outputs the sum (on K) of the two input
values,

– subtraction gate (fan-in 2, fan-out 1) which outputs the difference (on K) of the two
input values,

– multiplication gate (fan-in 2, fan-out 1) which outputs the product (on K) of the
two input values,

– copy gate (fan-in 1, fan-out 2) which outputs two copies of the input.
The addition, subtraction and multiplication gates are further called operation gates. The
edges of an arithmetic circuit are called the wires. A randomized arithmetic circuit is a
arithmetic circuit augmented with a

– random gate (fan-in 0, fan-out 1) which outputs a fresh uniform random value of K.
Given some assignment of the input gates, all the wires of a circuit can be assigned

subsequently following the input-output behavior of the gates, which finally leads to an
assignment of the output gates. For an arithmetic circuit C with n input gates and m
output gates, we denote y = C(x) ∈ Km the output of C (i.e. the assignment of the
output gates of C) on input x ∈ Kn (i.e. when the input gates are assigned to x). For a
randomized arithmetic circuit C with q random gates, we denote y = Cρ(x) the output
of C on input x and such that each random gate outputs a coordinate of ρ ∈ Kq. The
parameter ρ is then called the random tape of C. Whenever ρ is omitted, y = C(x)
denotes the random vector obtained for a uniform distribution of ρ.

Let C be a randomized arithmetic circuit with n input gates, m output gates, q random
gates, and let consider that the wires of C are labeled from 1 to s (where s is the total
number of wires in C). Then for any set W ⊆ [s] with |W| = t, we shall denote by
CρW(x) ∈ Kt the tuple composed of the assignments of the wires with labels in W on
input x ∈ Kn and random tape ρ ∈ Kq. In particular, each coordinate of CρW(x) is a
deterministic function of x and ρ. Here again, whenever ρ is omitted, CW(x) denotes the
random vector obtained for a uniform distribution of ρ on Kq.

Circuit compilers. We now recall the definition of circuit compilers as formalized in [5]
(but adapted to arithmetic circuits). We shall call a K-string any tuple of elements from
the base field K.

Definition 1 (Circuit Compiler). A circuit compiler is a triplet of algorithms
(Compile,Encode,Decode) defined as follows:

• Compile (circuit compilation) is a deterministic algorithm that takes as input an
arithmetic circuit C and outputs a randomized arithmetic circuit Ĉ.

• Encode (input encoding) is a probabilistic algorithm that takes as input a K-string
x and outputs a K-string x̂.

• Decode (output decoding) is a deterministic algorithm that takes as input a K-string
ŷ and outputs a K-string y.

These three algorithms satisfy the following properties:
• Correctness: For every arithmetic circuit C of input length `, and for every x ∈ K`,

we have
Pr
(
Decode

(
Ĉ(x̂)

)
= C(x)

∣∣ x̂← Encode(x)
)

= 1 ,

where Ĉ = Compile(C).
• Efficiency: For some parameter called the encoding order n ∈ N, the running time

of Compile(C) is poly(n, |C|), the running time of Encode(x) is poly(n, |x|) and the
running time of Decode

(
ŷ
)
is poly(n, |ŷ|), where poly(n, q) = O(nk1qk2) for some

constants k1, k2.

Sharings and gadgets. Let n ∈ N and let v ∈ (K∗)n. A v-linear sharing of x ∈ K is a
vector x ∈ Kn such that 〈v,x〉 = x. The coordinates of a linear sharing x ∈ Kn are called

5

the shares of x. A random vector x is a uniform v-linear sharing of x if 〈v,x〉 = x and
x|I is uniformly distributed over Kt for any I ⊂ [n] with |I| < n.

Let v-Enc denote a probabilistic algorithm that on input x outputs a uniform v-linear
sharing of x. For instance v-Enc(x) performs the following:

x1 ← K; x2 ← K; · · · xn−1 ← K;
xn ← v−1

n

(
x− 〈v, (x1, . . . , xn−1, 0)〉

)

and returns the vector x = (x1, x2, . . . , xn). We further denote v-Dec the deterministic
algorithm that on input of a v-linear sharing of x outputs x. This algorithm simply
computes the inner product v-Dec(x) = 〈v,x〉.

For any operation g : (x, y) ∈ K2 7→ z ∈ K and for any vector v ∈ Kn, a v-gadget of
g is a randomized arithmetic circuit with 2n input gates and n output gates, which, on
input of a v-linear sharing of x and a v-linear sharing of y, outputs a v-linear sharing of
z = g(x, y), for any x, y ∈ K. In particular, G is a v-gadget of g if and only if for every
random tape ρ, v-Dec(Gρ(x,y)) = g(x, y). A v-refresh gadget is a randomized arithmetic
circuit with n input gates and n output gates, which, on input of a v-linear sharing of x
outputs a v-linear sharing of x, for any x ∈ K.

Standard circuit compilers. Consider a family of vectors V = {vn ∈ Kn}n∈N and three
families of gadgets G⊕ = {G⊕n }n∈N, G⊗ = {G⊗n }n∈N and GR = {GR

n}n∈N such that for every
n ∈ N, G⊕n is a vn-gadget for the addition on K, G⊗n is a vn-gadget for the multiplication
on K, and GR

n is a vn-refresh gadget.
The standard circuit compiler for (V,G⊕,G⊗,GR) with encoding order n is the circuit

compiler for which
• Encode applies vn-Enc to each coordinate of the input K-string;
• Decode applies vn-Dec to each coordinate of the input K-string;
• Compile takes an arithmetic circuit C and outputs the randomized arithmetic circuit
Ĉ such that each addition gate is replaced by an addition gadget G⊕n followed by a
refresh gadget GR

n, each multiplication gate is replaced by a multiplication gadget
G⊗n followed by a refresh gadget GR

n, each constant gate outputting α is replaced by
n constant gates with constants (α · v−1

1 , 0, . . . , 0) followed by a refresh gadget GR
n

and each copy gate is replaced by a copy of the input sharing (through n copy gates)
followed by a refresh gadget GR

n per output sharing.
It is not hard to see that such a circuit compiler achieves correctness and efficiency,

provided, for the latter, that the sizes of the gadgets G⊕n , G⊗n and GR
n are polynomial in n.

To ease the presentation, we restrict the notion of standard circuit compiler to three
types of gadgets (addition, multiplication and refresh) but in practice we consider compilers
for which the addition gadget is replaced by a broader class of sharewise gadgets. These
gadgets apply a linear operation (addition, subtraction, multiplication by a constant, or
any K0-linear operation if K is an K0-module) sharewisely to the input linear sharing(s).

2.3 Probing Security
Throughout the paper, the notion of simulator will refer to a polynomial-time probabilistic
algorithm. We will say that a random vector w can be perfectly simulated (possibly given
some input in) if there exists a simulator S that (given in) outputs a vector which is
identically distributed as w (over the internal randomness of the simulator), which shall
be denoted S(in) id= w.

Informally speaking, a randomized arithmetic circuit achieves t-probing security, if
leaking the value of t arbitrary wires (i.e. allowing t probes on the circuit) does not reveal
any information about the input (provided that the latter has been properly encoded).
This is formally define hereafter.

6

Definition 2 (Probing Security). A randomized arithmetic circuit Ĉ is t-probing secure
w.r.t. an encoding algorithm Encode if for every plain input x and for every setW ⊆

[
|Ĉ|
]
,

with |W| ≤ t, there exists a simulator S
Ĉ,W such that

S
Ĉ,W(⊥) id= ĈW(Encode(x)) .

A circuit compiler (Compile,Encode,Decode) is said to achieve t-probing security if for
every arithmetic circuit C, the randomized arithmetic circuit Ĉ = Compile(C) is t-probing
secure w.r.t. Encode. Note that factually, the parameter t is a function of the encoding
order n. For instance, the first probing-secure scheme due to Ishai, Sahai and Wagner
achieves t-probing security with t ≤ (n− 1)/2 and an efficiency |Ĉ| = Θ(n2|C|).

Most probing-secure circuit compilers are based on the composition of gadgets. These
gadgets are themselves probing-secure w.r.t. the underlying encoding scheme but they
must also satisfy composition properties so that the overall compiled circuit is probing
secure. In particular, the notions of (strong) non-interference, or (S)NI and probe isolating
non-interference, or PINI have been proposed and studied in [8, 14, 7, 19]. In this paper,
we introduce another notion called input-output separation (see Section 3) which is aimed
to enable the composition for a stronger notion of probing security, namely the region
probing security. In a nutshell, a circuit is region probing secure if it is composed of several
sub-circuits (e.g. several gadgets) that can each tolerate some constant amount of probes
(irrespective of the total number of sub-circuits). We shall then consider the probing rate
(or leakage rate) of such a circuit as the maximum ratio between the number of tolerable
probes over the size of a sub-circuit. Region probing security is formalized hereafter.

Let us first introduce the notion of circuit partition. For any (randomized) arithmetic
circuit C, we call C ≡ (C1, C2, . . . , Cm) a circuit partition where each Ci is a sub-circuit of
C such that the gates of the Ci’s form a partition of the gates of C. We further denote by
WCi the set of wires with source gate in Ci, so that WC1 , . . . , WCm is a partition of [|C|].

Definition 3 (Region Probing Security). A randomized circuit Ĉ is r-region probing
secure (i.e. with probing rate r) w.r.t. an encoding algorithm Encode if there exists a
circuit partition Ĉ ≡ (C1, C2, . . . , Cm) such that for every plain input x and for every set
W1 ⊆ WC1 , W2 ⊆ WC2 , . . . , Wm ⊆ WCm , with |Wi| ≤ dr|Ci|e, there exists a simulator
S
Ĉ,W such that

S
Ĉ,W(⊥) id= ĈW(Encode(x)) ,

where W =W1 ∪W2 ∪ . . . ∪Wm. A circuit compiler (Compile,Encode,Decode) is r-region
probing secure if for every circuit C the compiled circuit Ĉ = Compile(C) is r-region
probing secure w.r.t. Encode (where r might be a function of the encoding order and the
circuit size).

We shall further say that a circuit Ĉ is (r, ε)-region probing secure (i.e. with probing
rate r and simulation failure ε), if the simulator fails (i.e. returns ⊥) with probability

Pr
(
S
Ĉ,W(⊥) = ⊥

)
≤ m · ε ,

(m being the number of regions) and returns a perfect simulation otherwise:
(
S
Ĉ,W(⊥) | S

Ĉ,W(⊥) 6= ⊥
) id= ĈW(Encode(x)) .

The region probing security is a relevant security property for a cryptographic imple-
mentation while considering side-channel attacks. Indeed, security in the so-called noisy
leakage model which captures the physical reality of power and electromagnetic side-channel
leakages can be reduced to region probing security. These notions and reductions are
recalled in Appendix B.

7

3 Composability from Input-Output Separation
3.1 Input-Output Separation
We introduce hereafter the input-output separation security notion for a refresh gadget.
Such a property has originally been used in the GJR scheme to achieve composition in the
random probing model [29]. We formalize this notion hereafter as general composition
property to achieve region probing security. For the sake of simplicity, the definition given
in this section only considers refresh gadgets but it can be generalized to any kind of
gadgets (see Appendix A for a general definition).

We first introduce the notion of uniformity for a gadget which will be a requirement
for our new security notion.

Definition 4 (Uniformity). Let v ∈ (K∗)n. A v-refresh gadget G is uniform, if for every
x ∈ Kn, the output G(x) is a uniform v-linear sharing of 〈v,x〉.

In the following, we shall say that a pair of vector (x,y) ∈ (Kn)2 is admissible for a
gadget G if there exists a random tape ρ such that y = Gρ(x). For an admissible pair
(x,y) and a set W ⊆ [|G|], the wire distribution of G in W induced by (x,y), denoted
GW(x,y), is the random vector GρW(x), i.e. the tuple of wire values for the wire indexes
in W, obtained for a uniform drawing of ρ among the set {ρ ∈ Kq ; GρW(x) = y}.
Definition 5 (IOS). Let v ∈ (K∗)n and let G be a v-refresh gadget with s wires. G
is said t-input-output separative (t-IOS), if it is uniform and if for every admissible pair
(x,y) and every set of wires W ⊆ [s] with |W| ≤ t, there exists a (two-stage) simulator
SG,W =

(
S(1)
G,W ,S

(2)
G,W

)
such that

1. S(1)
G,W(⊥) = (I, J) where I, J ⊆ [n], with |I| ≤ |W| and |J | ≤ |W|;

2. S(2)
G,W(x|I ,y|J) id= GW(x,y).

A v-refresh gadget is simply said to be IOS if it is n-IOS.

The above definition generalizes the notion of input-output linear separability used in
the GJR scheme [29]. Our definition has two differences with the GJR notion:

• the GJR notion requires a deterministic (functional) relation between the probed
wires and the input/output shares whereas we only require the ability of simulating
the probed wires from some input/output shares;

• the GJR notion requires the knowledge of arbitrary linear combinations of the
input/output shares whereas we require the knowledge of some input/output shares.

The first difference makes our definition easier to achieve without impacting the compos-
ability. Indeed, in any probing security context, the ability of achieving a perfect simulation
is sufficient to prove the security. The second difference makes our definition harder to
achieve1 but more useful to different composition contexts (where the probing security
might not rely on linear algebra). Moreover, we describe in Section 4 a refresh gadget
achieving our version of input-output separation.

The intuition behind the IOS notion can be understood as follows. Any probing leakage
from an IOS refresh gadget can be simulated given a subset of its input shares and output
shares. We can therefore reduce the standard region probing security game to a game in
which the refresh gadget does not leak anything but its surrounding gadgets leak more.
The uniformity property then implies that the leakages from two gadgets separated by a
refresh gadget are mutually independent. One can then achieve a perfect simulation of
the full leakage through independent simulations of the separated leakages from the two
gadgets.

1A set of shares being a particular case of a set of linear combinations of shares.

8

Plain world Encoded world

x

g1

y

y

g2

z

⇒

x

G1

y

Refresh

y′

G2

z

w1

wR

w2

x

G1

y

y′

G2

z

(w1,y|I)

(w2,y
′
|J)

Figure 1: Illustration of the IOS property.

This is illustrated on Figure 1. The full probing leakage (w1,wR,w2) can be simulated
from (w1,y|I ,y′|J ,w2). Moreover, the refresh uniformity implies that, given x, the sep-
arated leakages (w1,y|I) and (w2,y

′
|J) are mutually independent. Therefore, if one can

simulate (w1,y|I) on the one hand and (w2,y
′
|J) on the other hand, then one can simulate

the full leakage.

3.2 Composition Theorem
We now provide a formal proof of composition based on the IOS property defined above.
Specifically, we show that a standard circuit compiler interleaving operation gadgets and
refresh gadgets is region probing secure provided that its operation gadgets are probing
secure, and its refresh gadgets are IOS.

As introduced in Section 2, we consider hereafter a family of vectors V = {vn ∈ Kn}n∈N
and three families of gadgets G⊕ = {G⊕n }n∈N, G⊗ = {G⊗n }n∈N and GR = {GR

n}n∈N such
that for every n ∈ N, G⊕n is a vn-gadget for the addition on K, G⊗n is a vn-gadget for
the multiplication on K, and GR

n is a vn-refresh gadget. The following theorem gives our
composition result for the standard circuit compiler for (V,G⊕,G⊗,GR).

Theorem 1. If for every n ∈ N,

• G⊕n is t⊕n -probing secure (w.r.t. vn-Enc),

• G⊗n is t⊗n -probing secure (w.r.t. vn-Enc),

• GRn is tRn-IOS,

then the standard circuit compiler for (V,G⊕,G⊗,GR) is rn-region probing secure with

rn = max
t≤tRn

min
(t⊕n − 3t
|G⊕n |

,
t⊗n − 3t
|G⊗n |

,
t

|GR
n|
)
. (1)

Proof. Let n ∈ N and let t ≤ tRn. Let C be an arithmetic circuit composed of m operation
gates, and let Ĉ be the randomized arithmetic circuit obtained by calling the standard

9

circuit compiler for (V,G⊕,G⊗,GR) on C. We shall denote by G1, G2, . . . , Gm the
operation gadgets of Ĉ and by GR

1 , GR
2 , . . . , GR

m the refresh gadgets of Ĉ where GR
i is

placed in output of Gi for every i. We further denote by WGi and WGR
i
the set of wires

with source gate in Gi and GR
i respectively. Finally, we denote ti the integer such that

ti = t⊕n − 3t if Gi = G⊕n and ti = t⊗n − 3t otherwise (i.e. if Gi = G⊗n) for i ∈ {1, . . . ,m}.
Let

W =
m⋃

i=1
Wi ∪

m⋃

i=1
WR
i ⊆ [|Ĉ|]

where Wi ⊆ WGi
, with Wi ≤ ti, and WR

i ⊆ WGR
i
, with WR

i ≤ t for every i ∈ [m]. We will
show that for any input in of C, there exists a simulator S

Ĉ,W such that

S
Ĉ,W(⊥) id= ĈW(Encode(in)) ,

which directly implies the rn-region probing security of the standard circuit compiler with

rn = min
(t⊕n − 3t
|G⊕n |

,
t⊗n − 3t
|G⊗n |

,
t

|GR
n|
)
.

The above shall hold for every t ≤ tRn which yields the maximum in (1).

The simulator S
Ĉ,W is simply obtained by running the simulators inherited from the

probing security of the Gi’s and the IOS property of the GR
i ’s. Specifically:

• The IOS property of the GR
i ’s implies that, for every i ∈ [m], there exists a (two-

stage) simulator SGR
i
,WR

i
=
(
S(1)
GR

i
,WR

i

,S(2)
GR

i
,WR

i

)
such that for every (x,y) ∈ Kn ×Kn

admissible for GR
i :

1. S(1)
GR

i
,WR

i

(⊥) = (I, J) where I, J ⊆ [n], with |I| ≤ |W| and |J | ≤ |W|;

2. S(2)
GR

i
,WR

i

(x|I ,y|J) outputs a perfect simulation of ĈWR
i
(Encode(in)) given that

the pair of input/output sharings of GR
i equals (x,y).

Here x|I corresponds to |I| ≤ t (output) wires of the gadget Gi and y|J corresponds
to |J | ≤ t (input) wires of the gadget Gj subsequent to the refresh GR

i . In particular,
there exist two sets Ii ⊆ WGi

and Ji ⊆ WGj
such that

x|I = ĈIi
(Encode(in)) and y|J = ĈJi

(Encode(in)) .

• Let φ and ψ be the index-mapping functions such that the two input sharings
of gadget Gi are output sharings of refresh gadgets GR

φ(i) and GR
ψ(i). By defining

Wi :=Wi ∪ Ii ∪ Iφ(i) ∪ Iψ(i), we get

m⋃

i=1
Wi =

m⋃

i=1
Wi ∪

m⋃

i=1
Ii ∪

m⋃

i=1
Ji with Wi ⊆ WGi and |Wi| ≤ ti + 3t .

• The probing security of the Gi’s implies that, for every i ∈ [m], there exists a
simulator SGi,Wi

such that

SGi,Wi
(⊥) id= ĈWi

(Encode(in)) .

We now have all the ingredients to describe the simulator S
Ĉ,W . It proceeds as follows:

10

1. S
Ĉ,W first call the simulators S(1)

GR
i
,WR

i

(⊥) to get the sets Ii’s and Ji’s.
2. S

Ĉ,W then calls the simulators SGi,Wi
(⊥) to get tuples

zi = (wi,xi,yφ(i),yψ(i))
id= ĈWi

(Encode(in)) ,

wherewi, xi, yφ(i), yψ(i) corresponds to the indexesWi, Ii, Iφ(i) and Iψ(i) respectively.
By the uniformity property of the refresh the distributions ĈWGi

(Encode(in)), given
in, are mutually independent which implies

(z1, z2, . . . ,zm) id= Ĉ⋃
i
Wi

(Encode(in)) .

3. S
Ĉ,W finally calls the simulators S(2)

GR
i
,WR

i

on inputs (xi,yi) to get tuples wR
i such

that
wR
i

id= ĈWR
i
(Encode(in)) ,

and outputs (w1,w
R
1 , . . . ,wm,w

R
m) as simulation.

The IOS property finally implies

S
Ĉ,W(⊥) = (w1,w

R
1 , . . . ,wm,w

R
m) id= ĈW(Encode(in)) ,

which concludes the proof.

3.3 Comparison with Non-Interference Security Notions
It is well-known that composition of probing secure gadgets is not always probing secure [23].
Stronger security definitions were previously proposed to analyse the security of large
circuits viewed as the composition of simple gadgets. The first such notion, (strong) non-
interference, or (S)NI, was proposed in [8]. The notion of Probe Isolating Non-Interference
(PINI) was also recently introduced in [19]. In this section, we compare our composition
approach with the ones underlying the (S)NI and PINI notions and then show some
implications between these notions and our IOS notion.

We first recall the (S)NI and PINI definitions while extending them from standard
Boolean sharing to the general case of v-sharings. For a v-refresh gadget, the (S)NI notion
is defined as follows:

Definition 6 (NI and SNI). Let v ∈ (K∗)n and let G be a v-refresh gadget with s wires. G
is said t-Non-Interferent (t-NI) (resp. t- Strong Non-Interferent (t-SNI)), if for every x and
every set of internal wiresW ⊆ [s] with |W| ≤ t1 and every set of output wires O ⊆ [s] with
|O| ≤ t2 and t1 + t2 ≤ t , there exists a (two-stage) simulator SG,W,O =

(
S(1)
G,W,O,S

(2)
G,W,O

)

such that

1. S(1)
G,W,O(⊥) = I where I ⊆ [n], with |I| ≤ t1 + t2 (resp. with |I| ≤ t1);

2. S(2)
G,W,O(x|I)

id= GW∪O(x).

A v-refresh gadget is simply said to be NI (resp. SNI) if it is (n−1)-NI (resp. (n−1)-SNI).

If a gadget achieves NI-security, then a probe of an internal wire or an output wire can
be simulated using one probe on each of the input sharings of the gadget. If it achieves the
stronger SNI-security notion then only probes of internal wires are propagated to inputs
(and it thus guarantees independence between the inputs and outputs even with access to
the internal wires).

For a v-refresh gadget, the PINI notion is defined as follows:

11

Definition 7 (PINI). Let v ∈ (K∗)n and let G be a v-refresh gadget with s wires. G is
said t-Probe Isolating Non-Interferent (t-PINI), if for every x and every set of internal
wires W ⊆ [s] with |W| ≤ t1 and every set of output wires O ⊆ [s] with |O| ≤ t2 and
t1 + t2 ≤ t , there exists a (two-stage) simulator SG,W,O =

(
S(1)
G,W,O,S

(2)
G,W,O

)
such that

1. S(1)
G,W,O(⊥) = I where I ⊆ [n], with |I| ≤ t1;

2. S(2)
G,W,O(x|I∪J) id= GW∪O(x);

where J ⊆ [n] is the set of indices of output shares in O. A v-refresh gadget is simply said
to be PINI if it is (n− 1)-PINI.

Comparison of the composition approaches. We discuss hereafter the composition
approaches related to the (S)NI notion, the PINI notion and our new IOS notion.
(S)NI composition approach. The NI and SNI notions were proposed in [8] as composition
notions for probing-secure gadgets. The authors show how to compose t-NI and t-SNI
gadgets to achieve t-probing security, which was further generalized in [14]. Theses results
can actually be extended to region probing security. Let us consider the standard circuit
compiler as defined in Section 2. If the underlying refresh gadget is SNI and the underlying
addition and multiplication gadgets are NI, then it can be checked that the compiled circuit
can tolerate up to t/2 probes per gadget. In other words, from an SNI refresh gadget, one
simply needs NI operation gadgets to obtain a region probing-secure composition.
PINI composition approach. The PINI notion was introduced to allow trivial composition
of probing-secure gadgets [19]. Specifically composing any number of PINI gadgets in any
way results in a circuit achieving PINI security which further implies probing security.
Another advantage of the PINI notion is that it is satisfied by any sharewise gadget (i.e. a
gadget which simply applies an operation sharewisely) without requiring any refreshing
or randomness. Although the PINI notion enables simpler composition, it is limited to
probing security (or PINI security) and cannot be extended to region probing security. To
illustrate this impossibility, let us consider the following simple example. Suppose that
some circuit compiler applies a single-input sharewise gadget G (for instance squaring on
F256) successively many times to an input n-sharing x. After N gadgets each leaking t
probes, all the shares can be recovered whenever N > n/t.
IOS composition approach. Our composition approach consists in interleaving an IOS
refresh gadget between any pair of successive operation gadgets of the compiled circuit (as
in the definition of the standard circuit compiler). Doing so, we can lower the requirement
on the operation gadgets: they simply needs to achieve the weaker notion of probing
security (see Theorem 1 above).
Comparison. We compare the three composition approaches for the standard circuit
compiler as introduced in Section 2. This compiler basically replaces each gate by the
corresponding operation gadget and it interleaves a refresh gadget in each connection
between two operation gadgets. Assuming that the refresh gadget satisfies a given notion
in {SNI,PINI, IOS}, we look at (i) what is the security notion required for the operation
gadgets? (ii) what is the obtained security notion for the composed circuit?

• SNI:

(i) The NI notion is sufficient for the operation gadgets.
(ii) The composition of NI operation gadgets and SNI refresh gadgets implies the

region probing security of the composed circuit.

• PINI:

12

(i) The PINI notion is sufficient for the operation gadgets.
(ii) The composition of PINI gadgets implies the probing security of the composed

circuit. Let us stress that with PINI operation gadgets, PINI refresh gadgets
are actually useless.

• IOS:

(i) The probing security is sufficient for the operation gadgets.
(ii) The composition of probing-secure operation gadgets and IOS refresh gadgets

implies the region probing security of the composed circuit.

Our composition approach, hence achieves the stronger notion of region probing security
from the weaker notion of probing security for operation gadgets based on the IOS security
of the refresh gadget.

Relations between (S)NI, PINI and IOS. Besides their differences in terms of compo-
sition approach, one might question the relation between usual non-interference notions
and IOS. Can we show some form of equivalence, one-way implication, or separation? We
leave this issue open for further research.

4 An Input-Output Separative Refresh Gadget
Battistello, Coron, Prouff and Zeitoun describe in [9] so-called (template) horizontal
side-channel attacks against the ISW [31] and the Rivain-Prouff [41] secure multiplication
schemes. These attacks exploit the fact that, for those schemes, the leaking information on
each share increases with the number of shares in the presence of a constant leakage rate.
Battistello et al. describe a variant of the ISW multiplication with probing-security that
is heuristically secure against this kind of attacks. In the full version of their paper [10],
they further propose a new refreshing gadget with complexity O(n logn), which we shall
refer to as the BPCZ gadget hereafter. In this section, we simplify and extend this gadget
for any v-linear sharing and we prove that the obtained variant achieves the IOS security
notion.

4.1 Refresh Gadget Description
Starting from the BPCZ gadget, our approach consists in

• using a single (post-processing) randomization layer instead of two (pre-processing
and post-processing) in the algorithm recursion,

• introducing necessary multiplication by constants to support v-linear sharings,

• calling the obtained variant of the BPCZ gadget to generate a fresh sharing of 0
which is then used to refresh the input sharing by addition.

The procedure ZeroEncoding which generates a fresh v-linear sharing of 0 is described in
Algorithm 1. It is defined recursively: for n = 2, it outputs y = (z1, z2) = (r,−(v1v

−1
2) · r)

such that 〈z,v〉 = 0. For n ≥ 4 a power of 2, ZeroEncoding is called recursively to produce
two halves of the sharing (Steps 4-5) and a post-processing layer is applied to the whole
sharing (Steps 6-9). Note that the original refresh gadget proposed in [9] makes use of an
additional and similar pre-processing layer before the two recursive calls. It results that
our variant is twice more efficient in terms of computation and randomness generation.

13

Algorithm 1 ZeroEncoding
Require: v = (v1, . . . , vn)
Ensure: z = (z1, . . . , zn) such that 〈z,v〉 = 0
1: if n = 2 then
2: r ← K
3: return (r,−(v1v

−1
2) · r)

4: (s1, . . . , sn
2

)← ZeroEncoding(v1, . . . , vn
2

) . Recursive call
5: (sn

2 +1, . . . , sn)← ZeroEncoding(vn
2 +1, . . . , vn) . Recursive call

6: for i = 1, . . . , n2 do
7: ri ← K
8: zi ← si + ri
9: zi+ n

2
← si+ n

2
− (viv−1

i+ n
2

) · ri

Algorithm 2 RefreshGadget
Require: x = (x1, . . . , xn), v = (v1, . . . , vn),
Ensure: y = (y1, . . . , yn) such that 〈y,v〉 = 〈x,v〉
1: z ← ZeroEncoding(v)
2: y ← x+ z

Let us denote R(n), A(n) and M(n) the randomness complexity, the number of
additions and the number of scalar multiplications of the ZeroEncoding algorithm for
length-n linear sharing. We have R(2) = 1, A(2) = 0 andM(2) = 1 and R(n) = 2R(n2)+ n

2 ,
A(n) = 2A(n2) + n and M(n) = 2M(n2) + n

2 for all n ≥ 2. By induction, we thus have for
any n ≥ 2, a power of 2,

R(n) = M(n) = n

2 log(n) and A(n) = n log n2 . (2)

We have n further additions in RefreshGadget.
Remark 1. In the original version of this paper, we suggest to directly apply the BPCZ
variant (without pre-processing layer) to the input sharing x and provide a proof of IOS for
this refresh gadget. However, a flaw in this proof was reported to us by Gaëtan Cassiers.
This flaw is solved while using the BPCZ variant to generate a sharing of 0 which is then
added to the input sharing x. We note that the obtained refresh gadget (BPCZ without
pre-processing layer, generating a sharing of 0) was also considered by Mathieu-Mahias
in [34]. The author shows that this gadget achieves the SNI property.

4.2 Proof of Input-Output Separation
Theorem 2. The refresh gadget from Algorithm 2 is input-output separative.

Proof. Throughout the proof, we denote by L =
[
n
2
]
and H = [n] \ L.

Uniformity. Let v ∈ (K∗)n. We show that RefreshGadget is uniform, namely that if for
every x ∈ Kn, the output of RefreshGadget(x,v) is a uniform v-linear sharing of 〈v,x〉.
For this purpose, we simply need to show that ZeroEncoding(v) outputs a uniform v-linear
sharing of 0. The proof is by induction on n.

For n = 2, given v = (v1, v2), ZeroEncoding outputs z = (r,−(v1v
−1
2) · r) where r

is picked uniformly at random in K. This is clearly a uniform sharing satisfying 〈v, z〉.
For n ≥ 4, ZeroEncoding first computes (s1, . . . , sn/2) and (sn/2+1, . . . , sn) as outputs of
ZeroEncoding(v1, . . . , vn/2) and ZeroEncoding(vn/2+1, . . . , vn). By the induction hypothesis,
s|L = (s1, . . . , sn/2) and s|H = (sn/2+1, . . . , sn) are uniform and independent v|L =

14

(v1, . . . , vn/2)-linear sharing and v|H = (vn/2+1, . . . , vn)-linear sharing of 0. ZeroEncoding
then picks uniformly at random ri in K for i ∈ L and sets zi = si+ri and zi+n/2 = si+n/2−
(viv−1

i+n/2) · ri for i ∈ L. Denoting r′i = si + ri(= zi) for i ∈ L, the vector (r′1, . . . , r′n/2)
is uniformly distributed in Kn/2 and we have zi+n/2 = si+n/2 − (r′i − si) · vi · v−1

i+n/2 for
i ∈ L where s|L and s|H are uniform and independent v|L-linear sharing and v|H -linear
sharing of 0. We obtain that z is uniformly distributed among the vectors of Kn satisfying
〈v, z〉 = 0, namely z is a uniform v-linear sharing of 0.

IOS. For the sake of simplicity, we show the IOS property for the particular case of
v = (1, 1, . . . , 1). This way we can ignore the multiplications by constant factors from
the vector coefficients. The argument applies in the exact same way (but with heavier
notations) for the general case.

Let w1, . . . , wm denote some random vectors. In the scope of this proof, we shall say
that a random vector x ∈ K` is `-free with respect to w1, . . . , wm, if any (`− 1)-subtuple
of x is uniformly distributed on K`−1 and mutually independent of the joint distribution
of (w1, . . . ,wm). The core of the proof consists in showing the following property of the
ZeroEncoding gadget:

For every set W of probed wires in ZeroEncoding, with |W| = t, and
denoting w the corresponding wire distribution, there exists a set K, with
` := |K| = max(n− t, 0), such that z|K is `-free w.r.t. z|[n]/∈K and w.

(3)

Property (3) is direct for n = 2. If t = 0, it holds from the uniformity of the sharing
produced by ZeroEncoding, while for t ≥ 1, the property always holds for the case n = 2.
Let us now show this property by induction: we assume that it holds for n/2 and show
that it then holds for n.

We denote ZE1 the gadget corresponding to the first recursive call to ZeroEncoding
(Step 4), ZE2 the gadget corresponding to the second recursive call to ZeroEncoding (Step
5) and M the gadget corresponding to the post-processing layer (Steps 6-9). We denote by
W1, W2, and W3, the subset of W corresponding to wire indexes from ZE1, ZE2, and M
respectively, so that W =W1 ∪W2 ∪W3. Without loss of generality, all the outputs of
ZE1 and ZE2, which are also inputs of M, are included to W1 and W2, but not to W3. We
denote t1 = |W1|, t2 = |W2|, and t3 = |W3|, and consider the case

t1 + t2 + t3 = |W| < n

(since for |W| ≥ n the property is trivial). We denotew1, w2, andw3, the wire distributions
corresponding to W1, W2, and W3 so that

(w1,w2,w3) = w .

As in Algorithm 1, s = (s1, . . . , sn) denotes the linear sharing in output of the block
(ZE1 ‖ ZE2), and s|L = (s1, . . . , sn

2
) and s|H = (sn

2 +1, . . . , sn) are the respective output of
ZE1 and ZE2. These notations are illustrated on Figure 2.

Without loss of generality, we assume t1 ≤ t2. Applying Property (3) to ZE1 (which
holds for n/2 by assumption), we obtain that there exists a set K ⊆ L, with ` := |K| =
n
2 − t1, such that s|K is `-free w.r.t. s|L\K and w1. Without loss of generality, we further
assume that K = [`] (this does not change the argument but eases the notations).

Let us define K ′ as the sumset

K ′ = K +
{

0, n2
}

=
{

1, . . . , `, n2 + 1, . . . , n2 + `
}
.

We show hereafter that z|K′ is (2`)-free w.r.t. w1, w2, s|[n]\K and z|[n]\K′ . We denote
by c0, c1, . . . , c` some coefficients solely depending on s|[n]\K (those can be thought of

15

ZE1

ZE2

s zM

w1

w2 w3

Figure 2: IOS refresh gadget with probes (w1,w2,w3).

as constants for a given assignment of s|[n]\K). Since the randomness of ZE1 and the
randomness of ZE2 are mutually independent, s|K can be seen as a random vector

s|K = (s1, . . . , s`−1, s`)

with (s1, . . . , s`−1) uniformly distributed on K`−1 and mutually independent of w1, w2
and s|[n]\K , and

s` = c0 −
`−1∑

i=1
si .

Then, z|K′ can be expressed as

z|K′ =
(
s1 + r1, . . . , s`−1 + r`−1, c0 + r` −

`−1∑

i=1
si, c1 − r1, . . . , c` − r`

)
(4)

where r1, . . . , r`, s1, . . . , s`−1 are fresh uniform random variables, mutually independent
of w1, w2, s|[n]\K and z|[n]\K′ (where we recall that the ci’s are coefficients which solely
depend on s|[n]\K and where we ignore the constant factors from v for the sake of simplicity).
By defining u1 := s1 + r1, . . . , u`−1 := s`−1 + r`−1, u` := c1 − r1, . . . , u2`−1 := c` − r`,
Equation 4 rewrites as

z|K′ =
(
u1, . . . , u`−1,

∑̀

i=0
ci −

2`−1∑

i=1
ui, u`, . . . , u2`−1

)
(5)

with u1, . . . , u2`−1, fresh uniform random variables, mutually independent of w1, w2,
s|[n]\K and z|[n]\K′ . We thus get that z|K′ is (2`)-free w.r.t. w1, w2, s|[n]\K and z|[n]\K′ .

We shall now explain how to update the set K ′ to take into account the probes from
W3, i.e. while ensuring that z|K′ is further free w.r.t. w3. Each variable in w3 is either a
random ri or an output share zi. For each ri in w3, with i ∈ K, we remove n

2 + 1 from K ′.
This amounts to removing the coordinates ci − ri from z|K′ (see Equation 4). One can
check that doing so, and treating ri as a “constant” c′i, a change of variables still yields
an expression like Equation 5, where the random ui’s are independent of w1, w2, s|[n]\K ,
z|[n]\K′ and the probed ri’s from w3. For each zi in w3, with i ∈ K ′, we further remove
i from K ′. This amounts to removing zi from z|K′ . From Equation 5, it is clear that
removing one of the coordinates does not change the form of the distribution. Moreover
the subtuples of z|K′′ , where K ′′ denotes the updated set, are mutually independent of

16

the removed coordinates zi. We hence get that the updated tuple z|K′′ is |K ′′|-free w.r.t.
w1, w2, z|[n]\K′′ and w3. Moreover, the update process removes at most t3 elements from
K ′, which implies

|K ′′| ≥ |K ′| − t3 = 2|K| − t3 = n− 2t1 − t3 ≥ n− (t1 + t2 + t3) . (6)

In case the last inequality is strict, one can remove additional coordinates from K ′′ to get
|K ′′| = n− (t1 + t2 + t3). We conclude that Property (3) is satisfied for n.

It remains to show that Property (3) for ZeroEncoding implies IOS for RefreshGadget.
We consider a set of probed wires W =W1 ∪W2 ∪W3 ∪W4, where W1, W2, and W3 are
the three sets of wires from ZeroEncoding as considered above, and W4 are wires from
RefreshGadget (excluding ZeroEncoding). The corresponding wire distribution w4 only
contains input shares xi or output shares yi (since the zi coordinates are included to w3
w.l.o.g.). Let us denote W ′3 the wires corresponding to the zi’s for indexes i such that xi
or yi is in w4. The IOS sets (I, J) = S(1)

G,W(⊥) are defined as I = J = [n] \K where K is
the set obtained from Property (3) with probing set W1 ∪W2 ∪W3 ∪W ′3.

We now explain how to perform a perfect simulation S(2)
G,W(x|I ,y|J) id= GW(x,y), i.e.

how to perfectly simulate

w = (w1,w2,w3,w4) ∼ GW(x,y)

for any admissible pair of sharings (x,y). We first note that for any xi or yi in w4, the
corresponding zi is included to w′3 (from set W ′3), hence by construction the index i is
excluded from the set K and is thus included in the sets I and J . We can then trivially
simulate all the probed input / output shares, i.e. the coordinates of w4. We can further
perfectly simulate

z|[n]\K = z|I = y|I − x|I (7)

from the input shares x|I and the output shares y|J .
Now by definition of ZeroEncoding all the wire values are defined as linear combinations

of random elements sampled from K (Steps 2 and 7 of Algorithm 1). We can then write

(z|[n]\K |w1 |w2 |w3) = r ·M , (8)

where r denotes the vector of randomly sampled elements from K and M is a matrix
with coefficients in K. We can perfectly simulate w1, w2 and w3 by picking a random r
for which Equation 8 matches the simulated z|[n]\K from Equation 7. Now according to
Property (3), any subtuple of zK is mutually independent of the above simulation, while
the last degree of freedom is defined such that z is a sharing of 0. This ensures that the
above simulation is consistent with any value of z|K := y|K − x|K for an admissible pair
of sharings (x,y).

5 Revisiting the GJR Masking Scheme
In this section, we revisit the quasilinear-complexity Goudarzi-Joux-Rivain (GJR) masking
scheme [29]. We first describe a variant of this scheme making use of the IOS refresh
gadget described above and which is more general than the original scheme in the sense
that it works on any base field K equipped with an Fast Fourier Transform (FFT) for
multiple-point polynomial evaluation. We then show that the use of our refresh allows to
patch a flaw in the security proof of the original scheme. We shall refer to the improved
GJR scheme as the GJR+ scheme hereafter.

17

5.1 The GJR+ Scheme
As in the original scheme, the GJR+ scheme is based on so called ω-encodings which are
vω-linear sharings with

vω = (1, ω, . . . , ωn−1) . (9)

For such a vector, a sharing x = (x1, x2, . . . , xn) of a plain value x ∈ K can be seen as
the coefficients of a polynomials Px =

∑n
i=1 xi · αi−1 ∈ K[α] such that Px(ω) = x. The

quasilinear complexity can then be achieved by using efficient FFT-based multiplication for
the multiplication gadget. Note that such encoding is close to but different from Shamir’s
secret sharing [42]. In the latter the shares are defined as evaluations of a polynomial in
fixed points and for which the plain value is the degree-0 coefficient.

We assume the existence of a Fast Fourier Transform (FFT) algorithm that, given any
polynomial P ∈ K[α] of degree < 2n, maps the coefficients of P to the evaluations of P
over 2n points of K, with a complexity of Õ(n) operations. That is:

FFTα : (x1, x2, . . . , x2n) 7→ (u1, u2, . . . , u2n) with uj =
2n∑

i=1
xi · αi−1

j

for every j ∈ [2n], for some α = (α1, α2, . . . , α2n) ∈ K2n. We further assume that this
FFT algorithm can be written as an arithmetic circuit on K solely composed of additions,
subtractions and multiplication by constants in K, and that it features an inverse FFT
algorithm with the same properties (in terms of type and number of operations).

The GJR+ scheme is a standard circuit compiler for (V,G⊕,G⊗,GR) (see definition in
Section 2), with V =

{
v

(n)
ω

}
n∈N where v(n)

ω ∈ Kn is the vector defined in (9). As in the
original scheme, we assume in the following that the order n is a power of two. The scheme
could be easily extended to deal with non-power of two at the cost of a small constant
efficiency factor.

We now give the description of the associated v(n)
ω -gadgets. For the sake of clarity we

shall omit the superscript and simply note vω in what follows.

Refresh Gadget. We use the refresh gadget of Section 4 (see Algorithm 2) for vω-sharings
i.e. with encoding vector v assigned to vω. This refresh gadget is applied in output of each
operation gadget (in accordance to the definition of the standard circuit compiler). We
recall that this gadget achieves the uniformity and IOS properties defined in Subsection 3.1.

Addition Gadget. Given two vω-sharings x = (x1, . . . , xn) and y = (y1, . . . , yn), the
addition gadget outputs

x+ y = (x1 + y1, . . . , xn + yn) .

This is done via n addition gates processing each share separately. Hence this addition
gadget achieves (n− 1)-probing security.

Subtraction Gadget. Given two vω-sharings x = (x1, . . . , xn) and y = (y1, . . . , yn), the
subtraction gadget outputs

x− y = (x1 − y1, . . . , xn − yn) .

This is done via n subtraction gates processing each share separately. Hence this subtraction
gadget achieves (n− 1)-probing security.

18

FFT FFT

⊗

Refresh

FFT−1

Compress

x y

r s

u

u′

t

z

Figure 3: Multiplication gadget.

Multiplication Gadget. Let v′ω ∈ K2n be the vector defined as

v′ω = FFT−1
α (1, ω, ω2, . . . , ω2n−1) .

Let Compress be the K×K2n → Kn mapping defined as

Compress(ω; t1, t2, . . . , t2n) = (t1 + ωn · tn+1, t2 + ωn · tn+2, . . . , tn + ωn · t2n)

Let 0 denotes the n-dimensional all-0 vector and ‖ denote the concatenation operator.
Given two vω-sharings x and y, the multiplication gadget proceeds as

1. r ← FFTα(x ‖ 0)
2. s← FFTα(y ‖ 0)
3. u← r · s
4. u′ ← Refresh(v′ω;u)
5. t← FFT−1

α (u′)
6. z ← Compress(ω; t)

and outputs z. Note that r, s, u, u′, t are (2n)-dimensional vectors. Only the input/output
sharings x, y and z are n-dimensional vectors. The procedure is depicted on Figure 3 for
illustration.

Remark. This multiplication gadget is similar to the GJR multiplication gadget but we
introduce a refreshing in Step 4. This refreshing is done using Algorithm 2 (see Section 4)
where the encoding vector v′ω and the input sharing are of size 2n.

Correctness. Let x and y be the values encoded by x and y respectively and let Px ∈ K[α]
and Py ∈ K[α] be the degree-(n− 1) polynomials whose coefficients are the coordinates of
x and y, so that we have Px(ω) = x and Py(ω) = y.

Let us first assume that Step 4 applies an identity mapping, i.e. u′ = u. Then Steps 1–5
perform a classical FFT-based polynomial multiplication. Namely, the coordinates of t
are the coefficients of the polynomial Pt ∈ K[α] such that Pt(α) = Px(α) · Py(α), and in

19

particular Pt(ω) = x · y. Then Step 6 outputs a vector z such that 〈vω, z〉 = Pt(ω) = x · y,
i.e. a vω-sharing of x · y.

Let v′′ω = (1, ω, ω2, . . . , ω2n−1), then we have

Pt(ω) = 〈v′′ω, t〉 = x · y ⇔ 〈v′ω,FFTα(t)〉 = x · y .

By correctness of the FFT-based polynomial multiplication, we hence have that u =
FFTα(t) is a v′ω-sharing of x · y. Let us now consider the actual multiplication gadget with
refreshing at Step 4. By correctness of the refresh algorithm, u′ is also a v′ω-sharing of x ·y,
and by the above relation we have that 〈v′ω,u′〉 = x · y implies 〈v′′ω,FFT−1

α (u′)〉 = x · y,
which is 〈v′′ω, t〉 = x · y. We hence get the correctness of the multiplication gadget.

Scalar Multiplication Gadget. For the particular case of a multiplication by a constant,
a dedicated scalar multiplication gadget can be used which is much more efficient than a
regular multiplication gadget. Given a vω-sharing x = (x1, . . . , xn) and a constant α ∈ K,
the scalar multiplication gadget outputs

α · x = (α · x1, . . . , α · xn) .

This is done via n multiplication gates processing each share separately. Hence this scalar
multiplication gadget achieves (n− 1)-probing security.

Square Gadget. For the particular case of a field K of characteristic 2, a square can
be computed through a dedicated gadget much more efficiently than with a regular
multiplication gadget. Given a vω-sharing x = (x1, . . . , xn) of x, the square gadget outputs

y = (y1, y2, . . . , yn) with yi = x2
i · ωi−1

for every i ∈ [n]. We then have 〈vω,y〉 = 〈vω,y〉2 by linearity of the squaring on a field
of characteristic 2, which implies that y is indeed a vω-sharing of x2. The square gadget
involves 2n multiplication gates processing each share separately. Hence this square gadget
achieves (n− 1)-probing security. More generally, a sharewise gadget can compute any
qk-th power on a field of characteristic q (i.e. compute the k-th Frobenius map).

Note that, extending the standard circuit compiler to include such gadget is straight-
forward but it would make the formalism heavier so we skip this extension from our
presentation.

5.2 Field Extension and FFT Algorithm
In order to instantiate the GJR+ scheme, it is necessary to consider an implementation
of secure multiplication at order n over a finite field K and an element ω such that there
exists an FFT algorithm which allows quasilinear multiplication of polynomials of degree
at most n and coefficients in K and which can be written as an arithmetic circuit on K
solely composed of additions, subtractions and multiplication by constants.

A possible approach (which was used in [29]), is to consider finite fields K = Fq that
contain a (2n)-th root of unity ω (i.e. such that 2n | q − 1). However, most of the time,
we cannot choose the underlying algebraic structure and we have to consider a specific
cryptographic primitive with a given structure and to implement it securely. In order to
extend the original scheme to any finite field Fmp for some prime number p (with m ≥ 1),
we can use the general additive FFT proposed by Cantor in [45, 17]. In this case we can
instantiate it at order n over F`p where ` is the minimum even value greater than m such
that p` ≥ 2n.

In particular, for most symmetric cryptographic schemes, the underlying structure is a
finite field of characteristic 2 and over such a binary field, the approach from [29] does not

20

apply at all. For this case of utmost practical importance, we can use the Gao-Mateer
additive FFT [27] for secure implementation of multiplications at order n over binary
fields F2m for m ≥ 2. The Gao-Mateer additive FFT is a variant of Cantor additive FFT
that works over finite fields of characteristic 2. Using this transform, if m is even with
2m ≥ 2n, then we can use directly our technique over K = F2m and otherwise we can
simply instantiate it over K = F2` where ` is the smallest even integer for which 2` ≥ 2n
and m | `.

5.3 Security Reduction
This section provides a security reduction for the GJR+ scheme. We show that under the
probing security of the FFT, the scheme achieves region probing security. More formally,
the reduction is based on the following hypothesis on the FFT algorithm.

Hypothesis 1 (FFT Probing Security). The circuits processing

FFTα : (x ‖ 0) 7→ r and FFT−1
α : u′ 7→ t

are tFFT
n -probing secure w.r.t. the vω-encoding and the v′ω-encoding respectively.

We can then state our reduction theorem. A discussion of the practical meaning of
Hypothesis 1 is given after the theorem proof.

Theorem 3. Under the FFT Probing Security hypothesis and the tRn-IOS property of the
refresh gadget, the GJR+ compiler is rn-region probing secure with

rn = max
t≤tRn

min
(tFFT

n − 6t
2 · |FFTn|

,
t

|GR
n|
)

(10)

where |FFTn| denotes the (maximum) number of wires in the FFT circuits for 2n input
sharings.

Note that the refresh gadget described in Section 4 satisfies tRn = n − 1 and |GR
n| =

3n logn. Assuming the FFT algorithm is quasilinear and that it can tolerate a linear
number of probes (in the encoding order n) and denoting

|FFTn| = α · n logn
|GR

n| = β · n logn
tFFT
n = γ · n

for some constants α, β and γ (with γ < 1), one can check that the minimum in Equation 19
is reached for

t =
(βγ

2(α+ 3β)

)
· n =⇒ rn =

(γ

2(α+ 3β)

)
· 1

logn . (11)

In particular, we obtain a probing rate rn = Θ(1/ logn).

The proof of Theorem 3 is based on the two following lemmas.

Lemma 1. Under the FFT Probing Security hypothesis the circuit processing

(x,y) 7→ u = FFTα(x ‖ 0)⊗ FFTα(y ‖ 0)

is tFFT
n -probing secure w.r.t. the vω-encoding.

21

Proof. Let us denote by Ĉ the considered circuit and W the set of probed wires from Ĉ
such that |W| ≤ tFFT

n . We show how to construct the simulator S
Ĉ,W that outputs a perfect

distribution of ĈW(x,y) where x and y are uniform vω-linear sharings. The simulator
S
Ĉ,W first call the simulators SFFT,W1 and SFFT,W2 by constructingW as follows: for every
w ∈ W, w is added to W1 if it corresponds to a wire in the first FFT (i.e. applying to
x) and w is added to W1 if it corresponds to a wire in the second FFT (i.e. applying
to y). Whenever w corresponds to a product ui = ri · si, then the wire corresponding
to ri is added to W1 and the wire corresponding to si is added to W2. By construction,
we have |W1|, |W2| ≤ |W| ≤ tFFT

n which ensures that SFFT,W1 and SFFT,W2 output perfect
simulations of all the wires in W pertaining to the two FFT circuits (by FFT Probing
Security hypothesis). Moreover, by construction, they also output the pairs (ri, si) for
all the wires in W corresponding to a product ui = ri · si which can then be perfectly
simulated as well.

Lemma 2. Under the FFT Probing Security hypothesis the circuit processing

u′ 7→ z = Compress(ω; FFT−1
α (u′))

is (tFFT
n /2)-probing secure w.r.t. the v′ω-encoding.

Proof. The proof follows the same lines as the proof of Lemma 1. Let Ĉ denote the
considered circuit and W the set of probed wires from Ĉ such that |W| ≤ tFFT

n /2. The
simulator S

Ĉ,W essentially relies on the simulator SFFT,W′ where W ′ is constructed as
follows: for every w ∈ W, w is added to W ′ if it corresponds to a wire in the FFT.
Otherwise, w correspond to a wire in the computation zi = ti + ωn · tn+i for some i, in
which case we add the wires corresponding to ti and tn+i to W ′. By construction, we have
|W ′| ≤ 2 · |W| ≤ tFFT

n which ensures that SFFT,W′ outputs a perfect simulation of all the
wires in W ′, i.e. of all the wires in W pertaining to the FFT plus the pairs (ti, tni

) for
every i such that a wire in the computation zi = ti + ωn · tn+i appears in W. The latter
wires can then also be perfectly simulated from the pairs (ti, tni), which concludes the
proof.

Proof. (Theorem 3) The proof simply holds from Lemma 1 and Lemma 2 by applying
the composition theorem (Theorem 1). We further note that the term depending on the
addition gadget can be removed from the expression of the probing rate since the latter
satisfies t⊕n = n− 1 and |G⊕n | = 2n which clearly makes it greater than the term depending
on the FFT.

Theorem 3 formally shows that if probing security can be demonstrated for the FFT
algorithm, then we obtain region probing security for the GJR+ scheme. Unfortunately,
it is not clear whether the classical FFT algorithms are probing secure or not. To some
extent, this open issue is related to the choice of ω: some choices lead to probing insecurity2

while it is not clear whether some choices can provide probing security. Nevertheless,
following the approach of [29] it is possible to obtain random probing security by picking
ω randomly on a large enough field K. This is formally stated in Subsection 5.4.

Discussion on Hypothesis 1. We now provide some insights about whether Hypothesis 1
is verified in practice. Given input values K, α and ω, there exists an effectively computable
function that checks whether Hypothesis 1 is verified. Indeed, given a vω-encoding x of
the value x, there exists a circuit C of size Θ(n logn) that takes x as input and computes
FFTα(x‖0). Probing a node i of the circuit reveals 〈ui,x〉, where the value of the vector

2For instance, taking ω to 0 or to some nth power of unity when the FFT algorithm is the NTT (as
considered in [29]) can be shown to lead to some obvious probing security flaw.

22

ui ∈ Kn depends only of α and i. The adversary can recover x = 〈vω,x〉 if and only if he
can probe a subset S such that vω is in the span of (ui)i∈S . Indeed, according to Lemma
1 of [29] (see Appendix C):

(
∃(ai)i∈S ∈ K|S| s.t. vω =

∑

i

aiui

)
⇔
(
x =

∑

i

ai · 〈ui,x〉
)
. (12)

Therefore Hypothesis 1 can be verified by checking, for all
(Θ(n logn)

|S|
)
choices of |S| probes

in the NTT circuit, whether the left part of Equation 12 holds, a subtask that can be
done via Gaussian elimination. When |S| = Θ(n), the number of subsets to check is
superexponential in n but is still tractable via exhaustive search for small values of n.

As an illustration, the circuit C in Figure 4 computes the degree-8 NTT over F257 for
input (x0, x1, x2, x3, 0, 0, 0, 0). Each node i is labelled by a vector ui such that probing i
reveals 〈ui,x〉, with x = (x0, x1, x2, x3). Note that since half the input coefficients are 0,
the circuit description is somewhat simpler than a full NTT. By exhaustive search, we can
see that C is 3-probing secure for ω = 138, whereas it is only 2-probing secure for ω = 209.
Indeed, in the latter case vω = (1, 209, 248, 175), and one can check that:

vω = 51 · (1, 64, 241, 4) + 243 · (0, 0, 1, 0) + 207 · (1, 241, 256, 16). (13)

This illustrates the importance of the choice of ω in Hypothesis 1.
Distinct finite fields may yield distinct values for tNTT

n . Indeed, applying the same
methodology to F97, we found values of ω for which tNTT

4 = 2 and tNTT
8 = 5, where each

time the NTT has degree 2n.

(1,0,0,0) (1,0,1,0) (1,1,1,1)

(1,0,0,0) (1,0,-16,0) (1,-64,-16,-4)

(0,0,1,0) (1,0,-1,0) (1,-16,-1,16)

(0,0,1,0) (1,0,16,0) (1,-4,16,-64)

(0,1,0,0) (0,1,0,1) (1,-1,1,-1)

(0,1,0,0) (0,1,0,-16) (1,64,-16,4)

(0,0,0,1) (0,1,0,-1) (1,16,-1,-16)

(0,0,0,1) (0,1,0,16) (1,4,16,64)

Figure 4: Circuit of the degree-8 NTT applied on an order-4 encoding x = (x0, x1, x2, x3)
for the prime field F257. Probing a node i reveals 〈ui,x〉 to an attacker for a given ui.
Each butterfly (a subcircuit of the form ./) computes (c,d)← (a+ λb,a− λb) given an
input (a, b) and a fixed λ.

For prime fields and a power-of-two NTT, we were able in practice to determine tFFT
n

only for n ≤ 8, due to combinatorial explosion. This raises the question of proposing
algorithms more efficient than exhaustive search for compute tFFT

n . Note that tFFT
n + 1

is the minimum weight w for which we can find a vector a with at most w non-zero
coefficients such that a · U = vω, where U = (ui)i ∈ KΘ(n logn)×n. This can be cast
as a specific instance of the information-set decoding (ISD) problem, which is common
in code-based cryptography. However, unlike ISD instances that are usually studied in

23

code-based cryptanalysis, the matrix U we consider has more lines than columns, is not
random but fixed, and the underlying field may be non-binary. We see the question of
computing tFFT

n more efficiently as an interesting open problem.

5.4 Security Proof for Large Fields
The security proof given hereafter follows the same lines as the original proof from [29]
but it is more general as it applies to any instance of the GJR+ scheme (with any field
and FFT algorithm) and it holds in the stronger region probing model. Moreover, our
security proof corrects a flaw in the original proof which we exhibit hereafter.

Flaw in the original proof. The original GJR scheme is based on a different refresh
gadget for the composition. In a nutshell, their gadget follows the classical approach of
adding a random ω-encoding of 0. The latter is generated based on a fixed ω-encoding
of 0 denoted e in [29], which is randomly generated at the beginning of the computation
and which is considered to be fully leaked to the adversary. When a fresh ω-encoding
of 0 must be generated, one draws a random vector u and multiplies it with e through
the multiplication gadget, which gives a fresh and uniform ω-encoding of 0. Such a
refresh procedure satisfies a slightly weaker version of the IOS property (see Subsection 3.1
for comparison). Specifically, when a sharing x is refreshed into a new sharing x′, the
leakage from the refresh procedure can be simulated by linear combinations of x and
linear combinations of x′. These leaking linear combinations can in turn be perfectly
simulated with overwhelming probability over the random distribution of ω, provided
that ω is defined on a large enough field K (see Lemmas 1 & 2 of [29] which we recall in
Appendix C). The flaw in the proof is that it implicitly assumes that the aforementioned
leaking linear combinations have constant coefficients with respect to ω. However, by
definition of the refresh procedure, these coefficients depend on e, the initial ω-encoding of
0, which cannot be considered as constant with respect to ω. This prevents the application
of Lemmas 1 & 2 of [29]. This bug invalidates the composition security proof of the original
GJR scheme although it does not lead to an obvious security flaw: it is not clear whether
the linear combinations coming from the refresh imply an exploitable information leakage
(or equivalently a simulation failure).

New proof. The region-probing security of the GJR+ scheme simply holds from the
IOS property of the refresh gadget and assuming that the underlying FFT algorithm is
somehow linear. This is captured by the following definition.

Definition 8 (Linear FFT Circuit). An FFT circuit is said linear if the circuits processing

FFTα : (x ‖ 0) 7→ r and FFT−1
α : u′ 7→ t

are composed of additions and multiplications by constants (on K).

The above definition implies that the value carried by each wire in the FFT circuit
can be expressed as a linear combination of the coordinates of the input sharing. This
property is necessary to apply the security argument of the original GJR scheme. Note
that this requirement is relatively weak since it is satisfied by classical FFT algorithms
such as the NTT (used in [29]) and the Gao-Mateer additive FFT [27].

Corollary 1. If the FFT circuit is linear and made of |FFTn| = αn logn wires, the GJR+

compiler is (rn, εn)-region probing secure with

rn =
(

1
2α+ 18

)
1

logn , (14)

24

and
εn = n

|K| . (15)

Proof. Using Lemmas 1 & 2 of [29] (which are recalled in Appendix C for the sake of
completeness) and thanks to the linearity of the FFT circuit, we have that for any choice
of n− 1 leaking wires from the FFT circuit, the probability that the leaking wires cannot
be perfectly simulated is lower than n/|K|. Besides the linearity of the FFT circuit, the
only requirement for this upper bound to apply is that the choice of the leaking wires is
made independently of ω, which occurs in the region probing model since the placement of
the probes by the adversary is done independently of the random generation of ω. We
can then directly apply Theorem 3 and obtain the probing rate rn from Equation 11 with
γ = n−1

n ≈ 1 and β = 3.

In Appendix B, we further detail the security proof of GJR+ in the random probing
model which holds from its security in the region probing model by applying the Chernoff’s
bound. This further implies the security of GJR+ in the noisy leakage model by the
reduction from [25].

6 Application
In this section, we present an application of our extended GJR scheme and compare it with
a more standard scheme based on SNI gadgets. We investigate the masked computation of
two different ciphers:

• The Advanced Encryption Standard (AES) [1]: a very common application scenario
which favors efficient masking schemes on the field F256;

• MiMC [4]: a cipher with efficient arithmetic representation on a large field. MiMC
has been designed with the aim to minimize the number of multiplications (which
makes it particularly amenable to masked computation). We focus on the prime-field
variant of MiMC (the base field is a prime field Fp).

For these two application contexts, we described masked computations based on the
two following masking schemes:

• The GJR+ scheme described in Section 5 of this paper, in two modes of application:

– on a binary field with the Gao-Mateer FFT algorithm (to mask AES),
– on a prime field with NTT algorithm (to mask MiMC).

• An extended ISW scheme, that we shall refer to as ISW+, and which is based on

– the ISW multiplication gadget [31] over the base field K (either F256 for AES
or Fp for MiMC),

– share-wise linear gadgets (for additions, subtractions, F256-squares, multiplica-
tions by constants),

– the BCPZ quasilinear refresh gadget [10].

We first address implementation aspects of the two above masking schemes, then
describes masking of AES and MiMC with these schemes and finally provide comparison
of performances in terms of operation counts and randomness consumption.

Cautionary note: To ease the presentation, we consider that each gadget includes a
refreshing of its output sharing, except the ISW multiplication gadget which achieves the
SNI notion without further refreshing. In a masked computation, a sharing might be input

25

of several gadgets which would be an issue with respect to region probing security (e.g.
one could accumulate t probes on this sharing per gadget). We therefore impose that such
a sharing is refreshed before each new usage.

6.1 Implementation of GJR+

6.1.1 Multiplication gadget on Fp based on the NTT

It is well-known that polynomials can be multiplied in quasi-linear time in finite fields
using the Number Theoretic Transform (NTT), a Fast Fourier Transform (FFT) which
requires that the coefficient ring contain certain roots of unity. More precisely, it is possible
to multiply two polynomials of degree ≤ N in a finite field Fq in O(N logN) arithmetic
operations in Fq if Fq contains a primitive 2N -th root of unity (which occurs if and only if
2N divides q − 1). The number theoretic transform was introduced by Pollard [37] and we
refer the reader to [43, Section 8.2] for an exhaustive description. As stated in [43, Theorem
8.18], if N is a power of S (N = 2m), the multiplication of two polynomials of degree
< N in a finite field Fq which contains a 2N -th root of unity requires 6N log(N) + 6N
additions in Fq, 3N log(N) + 4N − 2 multiplications by constants in Fq, 2N (bilinear)
multiplications in Fq and 2N divisions by 2N in Fq.

Our multiplication gadget (for an encoding order n) described in Subsection 5.1 over such
a finite field has thus a total complexity of 8n log(n)+11n additions in Fq, 5n log(n)+7n−2
multiplications by constants in Fq and 2n (bilinear) multiplications in Fq. It requires
2n log(n) + 2n random elements from Fq.

6.1.2 Multiplication gadget on F2k based on the Gao-Mateer FFT

The classical NTT cannot be applied when the underlying field does not have the desired
roots of unity. We describe the additive FFT algorithm proposed by Gao and Mateer in
2010 [27], which works over fields of characteristic two. The idea of this class of FFTs is to
evaluate polynomials of degree m over a linear (additive) subspace of K[x] rather than a
group and it comes in two flavors: generic algorithms for an arbitrary m, or specialized
ones for m a power of two. The specialized algorithms are faster than the generic ones, but
the condition on m heavily constraints their use. We will use it with a slight generalization
of Cantor bases which we call self-folding bases, and which allow even more aggressive
optimization than what is done in [16, 15, 21] and may be of independent interest.

Let F = F2k be a finite field of characteristic two.We consider the additive FFT of a
polynomial f ∈ F[x], that is we evaluate f over the F2-linear span generated by m elements
β0, . . . , βm ∈ F linearly independent over F2. This span contains N = 2m elements, and is
defined if and only if N ≤ 2k, or equivalently m ≤ k.

Taylor Expansion. An important subroutine of the Gao-Mateer additive FFT is the
Taylor expansion, a slight variant of the usual notion of Taylor series. It consists of writing
any polynomial f ∈ F[x] of degree < N as follows:

f(x) =
N/2−1∑

i=0
hi(x) · (x2 − 1)i, (16)

where each hi is a polynomial of F[x] of degree at most 1. Algorithm 6 (provided in
Appendix D) is an algorithm presented in [27] for computing the Taylor expansion of a
polynomial in the case where m is generic (and not a power of 2), in which it is shown to
require 1

2N logN − 1
2N field additions and no multiplication.

26

Basis folding. We abusively call basis any subset B = {β0, . . . , βm−1} ⊂ Fm of m
elements of F linearly independent over F2.3 For a basis B of length m and an integer
0 ≤ i < 2m which can be written as i =

∑m−1
j=0 aj2j with aj ∈ {0, 1}, we will note:

B[i] =
m−1∑

j=0
ajβj . (17)

We will say that B[i] is the i-th element of 〈B〉. An important subroutine in [27] consists
of what we call folding a basis, a process we recall in Algorithm 7.

Additive FFT. Gao and Mateer [27] proposed an algorithm for computing the additive
FFT of a polynomial f over the subspace 〈B〉 generated by a basis B. This algorithm is
described in Algorithm 8 (Appendix D), which costs 2N logN − 2N + 1 field additions,
as well as 1

4N(logN)2 + 3
4N logN − N

2 scalar field multiplications. No formal description
of the inverse algorithm is given, but it is observed that an inverse additive FFT can
be obtained by performing the inverse of each operation in the reverse order. Since the
scalar field multiplications and their inversions can be precomputed, the cost of the inverse
additive FFT is the same as for the forward algorithm.

Self-Folding Bases. One could assume that the choice of B is not too important, because
the operations involving B can be precomputed anyway. However, we show in this
subsection that carefully choosing B can go a long way in making the additive FFT faster,
simpler to implement and less costly in memory.

In fact, in the case where m is a power of two, by taking βm−1 = 1 for their Cantor
basis, Bernstein et al. [16] showed that one could saved up some of the multiplication
operations (namely the computation that involved the inverse of βm−1) for the top-level
recursion cases. We take this idea further and propose a specific kind of bases such that
βm−1 = 1 at every layer of the recursion. In the following, those kind of bases are called
self-folding bases.

Definition 9 (Self-folding bases). Let F be a finite field of characteristic two and let
m ≥ 1. A self-folding basis B = {β0, . . . , βm−1} ⊂ Fm is a basis which verifies the two
following conditions:

1. βm−1 = 1;

2. for i ∈ {0, . . . ,m− 2}, it holds that β2
i − βi = βi+1.

We have the following properties about self-folding bases:

Proposition 1. Let F be a finite field of characteristic two and let m ≥ 1. The following
properties hold:

1. Let B = {β0, . . . , βm−1} be a self-folding basis and G,D ← Fold(B). We have
G = {β0, β1, . . . , βm−2} and D = {β1, β2, . . . , βm−1}.

2. Let F′ be a subfield of F of cardinality 2k′ . For any m ≤ k′, there exists a self-folding
basis B of m elements such that 〈B〉 is included in F′.

Proof. The first item is immediate from the definition. The second item is proven in the
special case F′ = F and m = k′ in the appendix of [27], and the proof is constructive. From
there, the general case is immediate to obtain by embedding the solutions for F′ in the
larger field F and keeping only the m last elements of B.

3Here our notation differ slightly from [27], where B denotes the linear space spanned by the basis. We
find it more natural for our purposes to denote by B the basis.

27

From Proposition 1, we can see that B “folds onto itself”: folding B into G,D yields
subsets of B, and this self-folding property transfers to D.

The notion of self-folding basis is close to that of Cantor basis [17, 27]; the only
difference is that the elements are taken in reverse order, and that no condition is imposed
on the basis elements belonging to a subfield F2m (such a subfield does not always exist,
thus self-folding bases are slightly more general objects than Cantor bases). The most
important difference, however, is how they are used. In [27, 16, 15], Cantor bases are used
to speed up the specialized additive FFT algorithm of [27], which only works on a restricted
set of parameters (namely, when m is a power of two). In comparison, our improvements
apply to speed up the generic algorithm of [27], which works for any value of m.

Half-FFT. Our improved (half-)FFT works with a self-folding basis and its iterated
foldings. It is described in Appendix D. Its main advantage is that the step 3 of
Algorithm 8 becomes unnecessary; in total, this saves us N logN scalar multiplications.
Moreover, it divides by two the number of precomputed tables. As another algorithmic
optimization, we make full use of the fact that for polynomial multiplications, half the
inputs of the FFT’s call are zero coefficients which leads to speed up to the computations
by a factor two compared to a regular additive FFT. These optimizations applies in a
similar way to the inverse additive FFT (with the difference here is that we cannot exploit
anymore the fact that half of the polynomial coefficients are zero).

Complexity. In this section, we provide the complexity of our new algorithms (the
detailed analysis is provided in Appendix D). Table 1 gives the operation counts for
our variant of the Gao-Mateer additive FFT. For N being a power of 2 (N = 2m), the
multiplication of two polynomials of degree lower than N in a finite field F2k requires
(1/2)N log2(N) + 2N log(N)− 2N additions in F2k , (3/2)N log(N)− 2N multiplications
by constants in F2k and 2N (bilinear) multiplications in F2k . Our multiplication gadget
(for an encoding order n) described in Subsection 5.1 has thus a total complexity of
(1/2)n log2(n) + 4n log(n) + n additions in F2k , (7/2)n log(n) multiplications by constants
in F2k , and 2n (bilinear) multiplications in F2k . It further requires 2n log(n) + 2n random
elements from F2k . Table 2 summarizes the operation counts for the different gadgets for
GJR+.

Table 1: Complexity of our variant of Gao-Mateer additive FFT.

Gao-Mateer FFT [27] HalfFFT InverseFFT

Add 1
4 ·N · (log2(N))2 + 3

4 ·N · log2(N) − 1
2 ·N 1

8 ·N · (log2(N))2 + 5
8 ·N · log2(N) −N 1

4 ·N · (log2(N))2 + 3
4 ·N · log2(N)

Mult 2 ·N · log2(N)− 2N − 1 1
2 ·N · log2(N) − 3

4 ·N 1
2N · log2(N) − 1

2 ·N

Table 2: Operation counts for GJR+.

Mult Add Random
Mult. gadget (Fp) 5n log(n) + 9n− 2 8n log(n) + 11n 2n log(n) + 2n
Mult. gadget (F2m) 7n log(n)/2 + 2n n log2(n)/2 + 4n log(2n) 2n log(n) + 2n
Addition gadget 0 n 0
Refresh gadget n log(n)/2 n log(n) n log(n)/2

6.2 Implementation of ISW+

Table 3 summarizes the operation counts of the different gadgets for ISW+.

28

Table 3: Operation counts for ISW+.

Mult Add Random
Mult. gadget (ISW) [31] n2 2n(n− 1) n(n− 1)/2
Addition gadget 0 n 0
Refresh gadget (BCPZ) [10] 0 2n log(n)− n n log(n)− n/2

6.3 Masking of AES

We consider the AES cipher as an arithmetic circuit over F256, composed of additions,
multiplications, squares, multiplication by constants, and a special gate computing the
affine part of the AES s-box. Besides the multiplication, all these operations give rise to a
linear gadget in the masked setting, i.e. a gadget which applies the operation share-wisely
and refreshes the output sharing.

Algorithm 3 Masked AES
Require: n-sharings x1, . . . , x16 of plaintext bytes x1, . . . , x16 ∈ F256, n-sharings y1, . . . ,

y16 of the round key bytes kj1, . . . , k
j
16 ∈ F256, for 0 ≤ j ≤ r

Ensure: n-sharing of AES(x, k)
1: (x1, . . . ,x16)← (G⊕n (x1,k

0
1), . . . , G⊕n (x16,k

0
16)))

2: for j = 1, . . . , r − 1 do
3: (x1, . . . ,x16)← (GAff

n (MaskedExp(x1)), . . . , GAff
n (MaskedExp(x16)))

4: (x1, . . . ,x16)← ShiftRows(x1, . . . ,x16)
5: (x1, . . . ,x16)← MaskedMixColumns(x1, . . . ,x16)
6: (x1, . . . ,x16)← (G⊕n (x1,k

j
1), . . . , G⊕n (x16,k

j
16)))

7: (x1, . . . ,x16)← (GAff
n (MaskedExp(x1)), . . . , GAff

n (MaskedExp(x16)))
8: (x1, . . . ,x16)← ShiftRows(x1, . . . ,x16)
9: (x1, . . . ,x16)← (G⊕n (x1,k

r
1), . . . , G⊕n (x16,k

r
16)))

10: return (x1, . . . ,x16)

The masked description of AES is described in Algorithm 3. The linear gadget for the
s-box affine transformation is denoted GAff

n . The ShiftRows transformation simply permutes
the byte indexes and is virtually free (in particular it does not involve any computation
on the shares). The MaskedMixColumns transformation simply applies the MixColumns
transformation by using gadgets G⊕n and Gxtimes

n in place of xors and xtimes operations
(i.e. multiplications by the constant 02 on the field F256). We consider the implementation
described in [26] which involves 15 additions and 3 xtimes per column:

acc ← x1 ⊕ x2 ⊕ x3 ⊕ x4
y1 ← xtimes(x1 ⊕ x2)⊕ acc ⊕ x1
y2 ← xtimes(x2 ⊕ x3)⊕ acc ⊕ x2
y3 ← xtimes(x3 ⊕ x4)⊕ acc ⊕ x3
y4 ← y1 ⊕ y2 ⊕ y3 ⊕ acc

A masked implementation of this process thus involves 18 linear gadgets as well as 15
refresh gadgets (for the variables used multiple times). The MaskedExp procedure is further
depicted in Algorithm 4, which is based on the Rivain-Prouff scheme [41]. As explained
above, a sharing in input of several gadgets is refreshed before each new usage.

29

Algorithm 4 MaskedExp
Require: n-sharing x of x ∈ F256
Ensure: n-sharing of x254

1: z ← G
(·)2

n (x) ; x← GR
n(x)

2: y ← G⊗n (x, z) ; z ← GR
n(z)

3: w ← G
(·)4

n (y) ; y ← GR
n(y)

4: y ← G⊗n (y,w) ; w ← GR
n(w)

5: y ← G
(·)16

n (y)
6: y ← G⊗n (y,w)
7: y ← G⊗n (y, z)
8: return y

The gadget count of the masked AES is given in Table 4. According to Algorithm 4,
the MaskedExp involves 4 multiplication gadgets, 3 linear gadgets and 4 refresh gadgets.
According to the above description, we get a total of 72 linear gadgets and 60 refresh gadgets
for the full MaskedMixColumns. One full round is composed of 16 calls to MaskedExp,
one call to MaskedMixColumns, plus 32 linear gadgets (16 gadgets G⊕n and 16 gadgets
GAff
n). A full AES computation is composed of 9 full rounds, 1 partial round (without the

MixColumns) plus one key addition (16 gadgets G⊕n).

Table 4: Gadget counts for masked AES.

Mult. Linear Refresh
MaskedExp 4 3 4
MaskedMixColumns 0 72 60
One round 64 136 124
Full masked AES 640 1304 1180

6.4 Masking of MiMC
Let x be some plaintext and k be some secret key, both belonging to some large field K.
The MiMC cipher is defined as:

MiMC(x, k) = Fk,cr
◦ · · · ◦ Fk,c1(x) + k ,

with Fk,ci
(x) = (x+ k + ci)3, with r = dlog(|K|)/ log(3)e.

For our application, we consider the prime field variant of MiMC for which K can
be chosen as any prime field Fp such that gcd(3, p − 1) = 1 (so that x3 is invertible on
Fp). Since we wish to apply the GJR+ scheme based on the NTT (as in the original GJR
scheme), the chosen field must further satisfy p − 1 = α · (2nmax) for some odd integer
α and some integer nmax which is a power of two. In practice nmax is the maximum
masking order which can be achieved by the GJR+ scheme. We hence choose a prime
p = α · 2`+1 + 1 with gcd(α, 3) = 1 and ` = log2 nmax. Specifically, for a given target field
size λ = dlog2 pe, we search for greatest integer ` and smallest integer α such that: (i)
3 - α, (ii) log2 α+ `+ 1 < λ, and (iii) p = α · 2`+1 + 1 is prime. For our application, we
thus instantiate MiMC with such 128-bit and 256-bit prime fields:

• for λ = 128, we get p = 407 · 2119 + 1, giving nmax = 118,

• for λ = 256, we get p = 467 · 2247 + 1, giving nmax = 246.

30

Algorithm 5 gives a masked description of MiMC based on any standard circuit compiler.
For the sake of clarity, we omit to apply the refresh gadget GR

n to the output of an arithmetic
gadget G⊕n or G⊗n and consider that the refresh is part of these gadget when necessary.
For λ = 128 (resp. λ = 256), the number of rounds is r = 81 (resp. r = 162).

Algorithm 5 Masked MiMC
Require: n-sharing x of plaintext x ∈ Fp, n-sharing k of secret key k ∈ Fp
Ensure: n-sharing of MiMC(x, k)
1: for i = 1, . . . , r do
2: x← G⊕n (x,k, ci)
3: k← GR

n(k)
4: y ← G⊗n (x,x)
5: x← G⊗n (x,y)
6: x← G⊕n (x,k)
7: return x

Table 5: Gadget counts for masked MiMC.

Mult. Linear Refresh
One round 2 2 1
Full MiMC (λ = 128) 162 163 81
Full MiMC (λ = 256) 324 325 162

6.5 Performances and Comparison
Table 6 and Table 7 summarize the operation counts for full MiMC (with λ = 128) and
full AES with the two masking schemes ISW+ and with GJR+ implemented over the same
finite field. They show that our approach results in a 62% decrease in the randomness
complexity and a 51% decrease of the number of multiplication for MiMC masked at order
128 and in a 46% (resp. 59%) decrease in the randomness complexity and a 20% (resp.
52%) decrease of the number of multiplication for AES masked at order 64 (resp. 128).

For AES, the masking scheme ISW+ can always be implemented over the F256 finite
field. However, to achieve provable region-probing security without relying on Hypothesis 1,
Corollary 1 imposes that the masking scheme GJR+ is implemented over a larger finite field
such as F2128 (which has less efficient arithmetic). To compare the different complexities
of the schemes GJR+ and ISW+, we can implement F2128 as a degree 16 extension
of F28 = F256, so that: (1) an addition over F2128 takes 16 additions over F256, (2) a
multiplication over F2128 takes 81 multiplications (and a large number of additions) over
F256 using Karatsuba’s algorithm (since a multiplication of two polynomials of degree
at most 16 = 24 over F256 requires 81 = 34 multiplications, see [43, Section 8.1]) and
(3) a random element of F2128 requires 16 random elements of F256. The computational
efficiency of the masking scheme GJR+ for AES compared to ISW+ is then only better
for masking order n ≥ 8192 and its randomness complexity is better for masking order
n ≥ 2048.

31

Table 6: Performances comparison for masked MiMC (λ = 128).

n Mul Add. Random

8
Full MiMC with ISW+ 10416.0 45408.0 17544.0
Full MiMC with GJR+ 40512.0 66128.0 20100.0
Efficiency ratio (GJR+/ISW+) 3.89 1.46 1.15

16
Full MiMC with ISW+ 41600.0 153056.0 55856.0
Full MiMC with GJR+ 100796.0 165968.0 51872.0
Efficiency ratio (GJR+/ISW+) 2.43 1.09 0.93

32
Full MiMC with ISW+ 166208.0 513536.0 173984.0
Full MiMC with GJR+ 240812.0 399360.0 127088.0
Efficiency ratio (GJR+/ISW+) 1.45 0.78 0.74

64
Full MiMC with ISW+ 664320.0 1773696.0 555456.0
Full MiMC with GJR+ 559740.0 933568.0 300864.0
Efficiency ratio (GJR+/ISW+) 0.85 0.53 0.55

128
Full MiMC with ISW+ 2656000.0 6367744.0 1857664.0
Full MiMC with GJR+ 1275388.0 2136832.0 695104.0
Efficiency ratio (GJR+/ISW+) 0.49 0.34 0.38

Table 7: Performances comparison for masked AES.

n Mul Add. Random

8
Full AES with ISW+ 64896 297088 123520
Full AES with GJR+ 157056 257408 110080
Efficiency ratio (GJR+/ISW+) 2.43 0.87 0.9

16
Full AES with ISW+ 211712 926976 372480
Full AES with GJR+ 396032 683776 286720
Efficiency ratio (GJR+/ISW+) 1.88 0.74 0.77

32
Full AES with ISW+ 751104 2847232 1077760
Full AES with GJR+ 955904 1725952 706560
Efficiency ratio (GJR+/ISW+) 1.28 0.61 0.66

64
Full AES with ISW+ 2812928 8991744 3148800
Full AES with GJR+ 2239488 4209664 1679360
Efficiency ratio (GJR+/ISW+) 0.8 0.47 0.54

128
Full AES with ISW+ 10868736 29820928 9594880
Full AES with GJR+ 5134336 10016768 3891200
Efficiency ratio (GJR+/ISW+) 0.48 0.34 0.41

32

Acknowledgments
This work was partly supported by the French FUI-AAP25 VeriSiCC project and by
the Innovate UK Research Grant 104423 (PQ Cybersecurity). We would like to thank
Jean-Sébastien Coron as well as the anonymous reviewers for meaningful comments and
suggestions. Special thanks to Gaëtan Cassiers for reporting a flaw in the original version
of Section 4 (refresh gadget and IOS proof) and for follow-up discussions that helped to
patch the flaw.

References
[1] Advanced Encryption Standard (AES). National Institute of Standards and Technology

(NIST), FIPS PUB 197, U.S. Department of Commerce, Nov. 2001.

[2] M. Ajtai. Secure computation with information leaking to an adversary. In L. Fortnow
and S. P. Vadhan, editors, 43rd ACM STOC, pages 715–724. ACM Press, June 2011.

[3] M.-L. Akkar and C. Giraud. An implementation of DES and AES, secure against
some attacks. In Çetin Kaya. Koç, D. Naccache, and C. Paar, editors, CHES 2001,
volume 2162 of LNCS, pages 309–318. Springer, Heidelberg, May 2001.

[4] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In
J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 191–219. Springer, Heidelberg, Dec. 2016.

[5] P. Ananth, Y. Ishai, and A. Sahai. Private circuits: A modular approach. In
H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 427–455. Springer, Heidelberg, Aug. 2018.

[6] M. Andrychowicz, S. Dziembowski, and S. Faust. Circuit compilers with O(1/ log(n))
leakage rate. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 586–615. Springer, Heidelberg, May 2016.

[7] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, F.-X. Standaert, and
P.-Y. Strub. Improved parallel mask refreshing algorithms: Generic solutions with
parametrized non-interference & automated optimizations. Cryptology ePrint Archive,
Report 2018/505, 2018. https://eprint.iacr.org/2018/505.

[8] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and
R. Zucchini. Strong non-interference and type-directed higher-order masking. In E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS
2016, pages 116–129. ACM Press, Oct. 2016.

[9] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel
attacks and countermeasures on the ISW masking scheme. In B. Gierlichs and
A. Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS, pages 23–39. Springer,
Heidelberg, Aug. 2016.

[10] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. Cryptology ePrint Archive, Report
2016/540, 2016. https://eprint.iacr.org/2016/540.

[11] S. Belaïd, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard, and D. Vergnaud.
Randomness complexity of private circuits for multiplication. In M. Fischlin and J.-S.
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 616–648.
Springer, Heidelberg, May 2016.

33

[12] S. Belaïd, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard, and D. Vergnaud.
Private multiplication over finite fields. In J. Katz and H. Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 397–426. Springer, Heidelberg,
Aug. 2017.

[13] S. Belaïd, J.-S. Coron, E. Prouff, M. Rivain, and A. R. Taleb. Random probing security:
Verification, composition, expansion and new constructions. In D. Micciancio and
T. Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 339–368.
Springer, Heidelberg, Aug. 2020.

[14] S. Belaïd, D. Goudarzi, and M. Rivain. Tight private circuits: Achieving probing
security with the least refreshing. In T. Peyrin and S. Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 343–372. Springer, Heidelberg,
Dec. 2018.

[15] D. J. Bernstein and T. Chou. Faster binary-field multiplication and faster binary-field
MACs. In A. Joux and A. M. Youssef, editors, SAC 2014, volume 8781 of LNCS,
pages 92–111. Springer, Heidelberg, Aug. 2014.

[16] D. J. Bernstein, T. Chou, and P. Schwabe. McBits: Fast constant-time code-based
cryptography. In G. Bertoni and J.-S. Coron, editors, CHES 2013, volume 8086 of
LNCS, pages 250–272. Springer, Heidelberg, Aug. 2013.

[17] D. G. Cantor. On arithmetical algorithms over finite fields. J. Comb. Theory, Ser. A,
50(2):285–300, 1989.

[18] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-order masking
schemes for S-boxes. In A. Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages
366–384. Springer, Heidelberg, Mar. 2012.

[19] G. Cassiers and F. Standaert. Trivially and efficiently composing masked gadgets with
probe isolating non-interference. IEEE Trans. Inf. Forensics Secur., 15:2542–2555,
2020.

[20] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to
counteract power-analysis attacks. In M. J. Wiener, editor, CRYPTO’99, volume
1666 of LNCS, pages 398–412. Springer, Heidelberg, Aug. 1999.

[21] T. Chou. McBits revisited. In W. Fischer and N. Homma, editors, CHES 2017,
volume 10529 of LNCS, pages 213–231. Springer, Heidelberg, Sept. 2017.

[22] J.-S. Coron. Higher order masking of look-up tables. In P. Q. Nguyen and E. Os-
wald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 441–458. Springer,
Heidelberg, May 2014.

[23] J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security
and mask refreshing. In S. Moriai, editor, FSE 2013, volume 8424 of LNCS, pages
410–424. Springer, Heidelberg, Mar. 2014.

[24] J.-S. Coron, A. Roy, and S. Vivek. Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In L. Batina and M. Robshaw,
editors, CHES 2014, volume 8731 of LNCS, pages 170–187. Springer, Heidelberg, Sept.
2014.

[25] A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing attacks
to noisy leakage. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 423–440. Springer, Heidelberg, May 2014.

34

[26] G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain. Affine masking against higher-
order side channel analysis. In A. Biryukov, G. Gong, and D. R. Stinson, editors,
SAC 2010, volume 6544 of LNCS, pages 262–280. Springer, Heidelberg, Aug. 2011.

[27] S. Gao and T. Mateer. Additive fast Fourier transforms over finite fields. IEEE
Transactions on Information Theory, 56(12):6265–6272, Dec 2010.

[28] L. Goubin and J. Patarin. DES and differential power analysis (the “duplication”
method). In Çetin Kaya. Koç and C. Paar, editors, CHES’99, volume 1717 of LNCS,
pages 158–172. Springer, Heidelberg, Aug. 1999.

[29] D. Goudarzi, A. Joux, and M. Rivain. How to securely compute with noisy leakage in
quasilinear complexity. In T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018,
Part II, volume 11273 of LNCS, pages 547–574. Springer, Heidelberg, Dec. 2018.

[30] D. Goudarzi and M. Rivain. How fast can higher-order masking be in software? In
J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 567–597. Springer, Heidelberg, Apr. / May 2017.

[31] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
463–481. Springer, Heidelberg, Aug. 2003.

[32] A. Journault and F.-X. Standaert. Very high order masking: Efficient implementation
and security evaluation. In W. Fischer and N. Homma, editors, CHES 2017, volume
10529 of LNCS, pages 623–643. Springer, Heidelberg, Sept. 2017.

[33] H. Kim, S. Hong, and J. Lim. A fast and provably secure higher-order masking of
AES S-box. In B. Preneel and T. Takagi, editors, CHES 2011, volume 6917 of LNCS,
pages 95–107. Springer, Heidelberg, Sept. / Oct. 2011.

[34] A. Mathieu-Mahias. Securisation of implementations of cryptographic algorithms in
the context of embedded systems. Theses, Université Paris-Saclay, Dec. 2021.

[35] T. S. Messerges. Securing the AES finalists against power analysis attacks. In
B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 150–164. Springer,
Heidelberg, Apr. 2001.

[36] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A side-channel analysis
resistant description of the AES S-box. In H. Gilbert and H. Handschuh, editors,
FSE 2005, volume 3557 of LNCS, pages 413–423. Springer, Heidelberg, Feb. 2005.

[37] J. M. Pollard. The fast Fourier transform in a finite field. Mathematics of Computation,
25:365–374, 1971.

[38] T. Prest, D. Goudarzi, A. Martinelli, and A. Passelègue. Unifying leakage models
on a Rényi day. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 683–712. Springer, Heidelberg, Aug. 2019.

[39] E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 142–159. Springer, Heidelberg, May 2013.

[40] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and I. Verbauwhede. Consolidating
masking schemes. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 764–783. Springer, Heidelberg, Aug. 2015.

35

[41] M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In S. Mangard
and F.-X. Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 413–427.
Springer, Heidelberg, Aug. 2010.

[42] A. Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, Nov. 1979.

[43] J. von zur Gathen and J. Gerhard. Modern computer algebra (2. ed.). Cambridge
University Press, 2003.

[44] J. Wang, P. K. Vadnala, J. Großschädl, and Q. Xu. Higher-order masking in practice:
A vector implementation of masked AES for ARM NEON. In K. Nyberg, editor,
CT-RSA 2015, volume 9048 of LNCS, pages 181–198. Springer, Heidelberg, Apr. 2015.

[45] Y. Wang and X. Zhu. A fast algorithm for the Fourier transform over finite fields
and its VLSI implementation. IEEE Journal on Selected Areas in Communications,
6(3):572–577, April 1988.

A General Definitions
We give hereafter the formal security properties of uniformity and input-output separation
for general gadgets for binary operations which generalize the definitions given for the
refresh gadgets in Subsection 3.1.

Definition 10 (Uniformity). Let v ∈ Kn and g be any binary operation g : (x, y) ∈ K2 7→
z ∈ K. A v-gadget G of g is uniform if for every x ∈ Kn and y ∈ Kn, the output G(x,y)
is a uniform v-linear sharing of g(〈v,x〉, 〈v,y〉).

Let g be any binary operation g : (x, y) ∈ K2 7→ z ∈ K and G be a v-gadget for g. In
the following, we shall say that a triple of vector (x,y, z) ∈ (Kn)3 is admissible for G if
there exists a random tape ρ such that z = Gρ(x, z). For an admissible triple (x,y, z) and
a set W ⊆ [|G|], the wire distribution of G in W induced by (x,y), denoted GW(x,y, z),
is the random vector GρW(x,y), i.e. the tuple of wire values for the wire indexes in W,
obtained for a uniform drawing of ρ among the set {ρ ∈ Kq ; GρW(x,y) = z}.

Definition 11 (IOS). Let v ∈ Kn and g be any binary operation g : (x, y) ∈ K2 7→ z ∈ K.
A v-gadget G of g is said t-input-output separative (t-IOS), if it is uniform and if for every
admissible triple (x,y, z) and every set of wires W ⊆ [s] with |W| ≤ t, there exists a
(two-stage) simulator SG,W =

(
S(1)
G,W ,S

(2)
G,W

)
such that

1. S(1)
G,W(⊥) = (I1, I2, J) where I1, I2, J ⊆ [n], with |I1|+ |I2| ≤ |W| and |J | ≤ |W|;

2. S(2)
G,W(x|I1 ,y|I2 , z|J) id= GW(x,y, z).

A v-gadget is simply said to be IOS if it is n-IOS.

B Random Probing and Noisy Leakage Security
Ajtai introduced in [2] the so-called random probing model in which an adversary cannot
choose a fixed number of arbitrary wires but instead the leaking wires are chosen indepen-
dently, each with some given probability p. This model is therefore similar to the binary
erasure channel used in coding theory and information theory.

36

Definition 12 (Random Probing Model). Let ε, p ∈ [0, 1]. A randomized arithmetic
circuit Ĉ is (p, ε)-random probing secure w.r.t. an encoding algorithm Encode if there
exists a simulator S

Ĉ
such that, sampling a set of wires W ⊆

[
|Ĉ|
]
, where each wire from

Ĉ belongs to W independently with probability p, and for every plain input x, we have:

S
Ĉ,W(⊥) id= ĈW(Encode(x)) . (18)

with probability at least 1 − ε over the random sampling of W. A circuit compiler
(Compile,Encode,Decode) is (p, ε)-random probing secure if for every circuit C the compiled
circuit Ĉ = Compile(C) is (p, ε)-random probing secure w.r.t. Encode (where p and ε might
be a function of the encoding order and the circuit size).

Using the classical Chernoff’s inequality, it is easy to prove that security in the region
probing model implies security in the random probing model with appropriate parameters.

Proposition 2. Let r ∈ [0, 1] and Ĉ be a randomized circuit r-region probing secure w.r.t.
an encoding algorithm Encode with a circuit partition Ĉ ≡ (C1, C2, . . . , Cm) where |Ci| ≥ t
for each i ∈ {1, . . . ,m}. The circuit Ĉ is (p, ε)-random probing secure w.r.t. Encode with

p = r

2 and ε ≤ m · exp(−p · t/3).

Proof. More generally, let δ ≥ 1 and let us suppose that p ≤ r/(1 + δ). LetW ⊆
[
|Ĉ|
]
be a

wire set where each wire from Ĉ belongs to W independently with probability p. For each
subcircuit Ci of the circuit partition Ĉ ≡ (C1, C2, . . . , Cm), we denoteWi =W∩Ci for i ∈
{1, . . . ,m}. By Chernoff’s bound, we have Pr[|Wi| ≥ (1+δ)p|Ci|] ≤ exp(−δ2p|Ci|/(δ+2))]
for i ∈ {1, . . . ,m} and therefore

Pr
(
|Wi| ≥ dr|Ci|e

)
≤ exp(−δp · t/3)

for i ∈ {1, . . . ,m}. Using the union bound over the m sets Wi for i ∈ {1, . . . ,m} and
setting δ = 1, we get the claimed bounds.

Noisy Leakage Model. The noisy leakage model was first formalized by Prouff and
Rivain [39]. In this model, the adversary may learn information about every single wire;
however, instead of learning exactly the value x of a wire (as in the probing model), the
adversary learns a randomized function f(x) of x. The generality of the noisy leakage
model allows it to encompass several real-life instances of leakages, making it a very
realistic leakage model. However, due to its somewhat analytical nature, security proofs
are notoriously hard to do in it.

Thankfully, is has been shown that the noisy leakage and random probing models are
equivalent: one implication was proven [25] and improved in [38], the other one was proven
in [38]. As a workaround to the complexity of the noisy leakage model, one can therefore
establish security proofs in the random probing model and subsequently transfer them in
the noisy leakage model using the equivalence between the two. Proposition 2 provides an
additional tool to this proof strategy and, combined with results of [25, 38], imply that a
compiler secure in the region probing model is secure in the noisy leakage model.

Security of the GJR+ scheme. We have the following corollary of Theorem 3.

Corollary 2. If the FFT circuit is linear and under the tRn-IOS property of the refresh
gadget, the GJR+ compiler is (pn, εn)-random probing secure with

pn = 1
2 max
t≤tRn

min
((n− 1)− 6t

2 · |FFTn|
,

t

|GR
n|
)

(19)

37

and
εn = (2N⊕ + 4N⊗) · exp(−n · pn) + 3N⊗ · n|F| , (20)

where N⊕ (resp. N⊗) is the number of addition gates (resp. multiplication gates) in the
original circuit.

Proof. Let C be an arithmetic circuit composed of N⊕ addition (or linear) gates and N⊗
multiplication gates and let Ĉ be the corresponding compiled circuit output from the
GJR+ compiler. We consider a split of Ĉ into different regions following the region probing
security reduction of the GJR+ scheme. Specifically, each addition (or sharewise) gadget
and each refresh gadget consists in a single region while each multiplication gadget gives
rise to three different regions: the first block (i.e. the circuit considered in Lemma 1),
the internal refresh, and the second block (i.e. the circuit considered in Lemma 2). We
hence get a total of Nreg = 2N⊕ + 4N⊗ regions in Ĉ (counting the refresh gadgets). In
the random probing model, each wire leaks independently of the other wires with a given
probability, denoted pn here. We show hereafter that with overwhelming probability over
the distribution of the indexes of the leaking wires, the full random probing leakage can
be perfectly simulated. More specifically, we exhibit two failure events F1 and F2 that
may prevent such a perfect simulation. Whenever none of these failure events occur, a
perfect simulation is achieved in the same way as in the region probing security reduction
given above.

The first failure event F1 occurs when the number of leaking wires in at least one region
R exceeds the threshold 2pn|R| where |R| denotes the number of wires in R. Applying the
Chernoff bound, this occurs in a given region with probability lower than

exp
(
− pn · |R|

3

)
≤ exp(−n · pn) , (21)

where the inequality holds since the minimal value of |R| is obtained for the addition
gadget with |R| = 3n. We deduce that the first failure event occurs with probability

Pr(F1) ≤ Nreg · exp(−n · pn) . (22)

Provided that the first failure event does not occur, the random probing simulator
needs to simulate less than 2pn|R| wires per region that is rn|R| wires per region where
rn = 2pn is as defined in Theorem 3 for tFFT

n = (n − 1). This translates to simulating
at most tFFT

n = (n− 1) probes in each FFT circuit through the above security reduction.
Our second failure event F2 occurs whenever the n− 1 leaking wires within a FFT circuit
cannot be perfectly simulated. Using Lemma 2 from [29] (see Appendix C) and thanks to
the linearity of the FFT circuit, we have that for any choice of n− 1 leaking wires from
the FFT circuit, the probability that the leaking wires cannot be simulated is lower than
n/|F|. Besides the linearity of the FFT circuit, the only requirement for this upper bound
to apply is that the choice of the leaking wires is made independently of ω, which occurs
in the random probing model since the placement of the probes is randomly draw (with
leakage probability p for each wire) independently of the random generation of ω. We
deduce that the second failure event F2 occurs with probability

Pr(F2) ≤ 3N⊗ · n|F| . (23)

Whenever no failure event occur, the leaking wires within each FFT circuit can be
perfectly simulated which –following the above reduction– implies that the overall leaking
wires can be perfectly simulated. It results that the GJR+ scheme is (pn, εn)-random
probing secure with

εn ≤ Pr(F1 ∧ F2) ≤ Pr(F1) + Pr(F2) , (24)
which together with Equation 22 and Equation 23 concludes the proof.

38

In the above random probing security proof, the tolerated number of probes in an FFT
circuit is tFFT

n = (n−1) which implies γ ≈ 1 in Equation 11. On the other hand, our refresh
gadget is such that β = 3. Assuming a FFT algorithm satisfying |FFTn| = α · n logn, we
finally get

pn = rn
2 ≈

(1
4α+ 36

)
· 1

logn . (25)

For instance, the NTT algorithm used in the original GJR scheme satisfies α ≈ 6, which
gives pn ≈ 1

60 logn .

C Lemmas from [29]
We recall hereafter the key lemmas from [29] for the security of the GJR scheme. Let
FFTn be a linear FFT circuit on field K taking an ω-encoding as input. Every value v
taken by a wire of FFTncan be expressed as

v =
n−1∑

i=0
αiai (26)

where the αi’s are constant coefficients over K. The lemmas use the following notation

[v] = (α0, α1, . . . , αn−1)T (27)

for the column vector of coefficients of such a wire value. Similarly, we shall denote
[a] = (1, ω, ω2, . . . , ωn−1)T for an ω-encoding (a1, . . . , an) of a variable a since we have
a =

∑n−1
i=0 ω

iai by definition. Moreover, [v0, v1, . . . , v`] shall denote the matrix with column
vectors [v0], [v1], . . . , [v`].

Lemma 3 (Lemma 1 of [29]). Let v1, v2, . . . , v` be the values taken by ` < n wires of FFTn
on input a uniform ω-encoding of a variable a. The distribution of the tuple (v1, v2, . . . , v`)
is statistically independent of a iff

[a] /∈ span([v1, . . . , v`]) , (28)

where span(·) refers to the linear span of the input matrix.

Lemma 4 (Lemma 2 of [29]). Let ω be a uniform random element in K∗. And let
v1, v2, . . . , v` be a set of ` < n intermediate variables of FFTn on input an ω-encoding of a
variable a. We have:

Pr
(
[a] ∈ span([v1, . . . , v`])

)
≤ `

|K| − 1 <
n

|K| , (29)

where the above probability is taken over a uniform random choice of ω.

From these two lemmas, the values taken by any set of ` < n wires of FFTn can be
perfectly simulated without knowledge of a. The simulation simply works by taking a
random a, picking a random ω-encoding of a, and evaluating the wires v1, . . . , v` accordingly
leads to a perfect simulation. According to Lemma 2 of [29] such a simulation fails with
probability lower than n/|K|.

D Complements on Gao-Mateer additive FFT
D.1 Algorithms used in the Gao-Mateer additive FFT
This section presents the detailed algorithms used in the Gao-Mateer additive FFT.

39

Algorithm 6 TaylorExpansion(f,N)
Require: f ∈ F[x] of degree < N
Ensure: The Taylor expansion {h0, . . . , hN/2−1} of f w.r.t. (x2 − x)
1: if N ≤ 2 then
2: return {f}
3: k ← N/4
4: g0 ←

∑2k
i=0 fi · xi . g0 is the low-order coefficients of f

5: g1 ←
∑2k
i=0 fi+2k · xi . g1 is the high-order coefficients of f

6: for i = 0, . . . , k − 1 do
7: g1(x)← g1(x)⊕ g1,i+k · xi
8: g0(x)← g0(x)⊕ g1,i · xi+k
9: V0 ← TaylorExpansion(g0, N/2) . Recursive call
10: V1 ← TaylorExpansion(g1, N/2) . Recursive call
11: return V0‖V1

Algorithm 7 Fold(B)
Require: A basis B = {β0, . . . , βm−1} ⊂ Fm
Ensure: Two new basis G,D ⊂ Fm−1

1: for i = m− 2, . . . , 0 do
2: γi ← βi/βm−1
3: δi ← γ2

i − γi
4: G← {γ0, . . . , γm−2}
5: D ← {δ0, . . . , δm−2}
6: return G,D

Algorithm 8 GaoMateerFFT(f,m,B)
Require: A polynomial f ∈ F[x] of degree < 2m, a basis B = {β0, . . . , βm−1} ⊂ Fm
Ensure: The additive FFT of f over the span 〈B〉
1: if m = 1 then
2: return {f(0), f(β0)}.
3: Compute g(x) = f(βm−1x).
4: Compute the Taylor expansion of g, i.e. g(x) =

∑
i(gi,0 + gi,1x) · (x2 − x)i.

5: Let g0 ←
∑
i gi,0x

i and g1 ←
∑
i gi,1x

i.
6: Let G,D ← Fold(B), and k = 2m−1.
7: {u0, u1, . . . , uN

2 −1} ← GaoMateerFFT(g0,m− 1, D)
8: {v0, v1, . . . , vN

2 −1} ← GaoMateerFFT(g1,m− 1, D)
9: for i = 0, . . . , N2 − 1 do
10: wi ← ui ⊕G[i] · vi
11: wN

2 +i ← wi ⊕ vi
12: return {w0, w1, . . . , wn−1}

D.2 Half-FFT
Our improved (half-)FFT works with a self-folding basis and its iterated foldings. We clarify
the notation: let B = {β0, . . . , βm−1} be a self-folding basis, and Bk = {βm−k, . . . , βm−1}
for k ∈ {1, . . . ,m}. We also denote Gk = {βm−k−1, . . . , βm−2}, so that |Bk| = |Gk| = k,
and (Gk−1, Bk−1) = Fold(Bk).

40

For our purposes, it is adequate to precompute Gj [i] for 1 ≤ j < m and 0 ≤ i < 2j . In
this section, we describe how various algorithmic tricks can help to improve the additive
FFT of [27] in our setting. First, we observe that from Proposition 1, it holds that for
each Bk, the (k − 1)-th element of Bk is 1, hence the step 3 of Algorithm 8 becomes
unnecessary; in total, this saves us N logN scalar multiplications. Second, we note that
since each Gk is a subset of Gm−1, storing precomputed multiplication tables for the
step 10 does not require to store N

2 + N
4 + · · ·+ 1 = N − 1 precomputed tables anymore,

but rather N
2 − 1 (not having to store the multiplication by zero saves an additional

element). Added to the removal of step 3, this more than divides by two the number of
precomputed tables. As a final algorithmic optimization, we make full use of the fact that
for polynomial multiplications, half the inputs of the FFT’s call are zero coefficients which
leads to speed up to the computations by a factor two compared to a regular additive
FFT. This optimized FFT is described in Algorithm 9.

Algorithm 9 HalfFFT(f,B)
Require: f ∈ F[x] of degree < N = 2m−1, a self-folding basis B = {β0, . . . , βm−1} and

its iterated foldings Gm−1, . . . , G1.
Ensure: The evaluation of f over the F2-linear space generated by Bm
1: W ← 0N
2: if m = 2 then . Bottom of the recursion
3: W0 ← f0 . Since ∀j,Gj [0] = 0, it simplifies the computation
4: W1 ← f0 ⊕G1[1] · f1
5: W2 ← f0 ⊕ f1
6: W3 ←W1 ⊕ f1
7: return W
8: T ← TaylorExpansion(f,N/2) . T is a list of N/4 polynomials Ti = Ti,0 ⊕ Ti,1x
9: g0 ←

∑N/4−1
i=0 Ti,0 · xi

10: g1 ←
∑N/4−1
i=0 Ti,1 · xi

11: U ← HalfFFT(g0, {β1, . . . , βm−1}) . Recursive call
12: V ← HalfFFT(g1, {β1, . . . , βm−1}) . Recursive call
13: for i = 0, . . . , N/2 do
14: Wi ← Ui ⊕Gm−1[i] · Vi
15: Wi+N/2 ←Wi ⊕ Vi
16: return W

The optimizations we just described apply in a similar way to the inverse additive
FFT. The only difference here is that we cannot exploit anymore the fact that half of
the polynomial coefficients are zero: indeed, since we use the additive FFT to multiply
two polynomials of degree at most n− 1 = N/2− 1, we expect the degree of the result to
be at most N − 2. Hence, simply applying the inverse of each operations of Algorithm 9
in reverse order would yield an incorrect result. Our optimized inverse additive FFT is
described in Algorithm 10.

41

Algorithm 10 InverseFFT(W,B)
Require: A self-folding basis B = {β0, . . . , βm−1} and its foldings Gm−1, . . . , G1, the

evaluation W of f over the F2-linear space generated by B
Ensure: A polynomial f ∈ F[x] of degree < N = 2m
1: if m = 2 then . Bottom of the recursion
2: u←W1 ⊕W2
3: v ←W1 ⊕W3
4: f0 ←W0 ⊕ (G1[0] · u)
5: f1 ← (G1[1] · (v))⊕ f0 ⊕W0 ⊕ u
6: f2 ← f1 ⊕ v
7: f3 ← f1 ⊕ f2 ⊕W0 ⊕W2
8: return f0 ⊕ f1 · x⊕ f2 · x2 ⊕ f3 · x3

9: for i = 0, . . . , N/2 do
10: Vi ←Wi ⊕Wi+N/2
11: Ui ←Wi ⊕Gm−1[i] · Vi
12: U ← (Ui)i, V ← (Vi)i
13: g0 ← InverseFFT(U, {β1, . . . , βm−1}) . Recursive call
14: g1 ← InverseFFT(V, {β1, . . . , βm−1}) . Recursive call
15: T ← (g0,i + g1,i · x)0≤i≤N/2
16: f ← inverseTaylorExpansion(T,N)
17: return f

D.3 Complexity Analysis
In this section, we provide the complexity of our new algorithms. We do not change the
algorithm for the Taylor expansion, which cost remains the same: N(logN − 1)/2 field
additions and no multiplication.

Let A(N) and M(N) denote the number of field additions and multiplications entailed
by Algorithm 9:

• We note that M(4) = 1 and that M(N) = 2 ·M(N/2) +N/2. From these two facts,
one can show by induction that M(N) = 1

2 ·N · log2(N)− 3
4 ·N .

• Similarly, we have A(4) = 3 and A(N) = 1
4N log N

2 − 1
4N + 2A(N/2) +N . It follows

by induction that A(N) = 1
8 ·N · (log2(N))2 + 5

8 ·N · log2(N)−N .

Using the same techniques, one can show that Algorithm 10 performs 1
4 ·N · (log2(N))2 +

3
4 · log2(N) additions and 1

2 · log2(N)− 1
2 ·N multiplications.

We note that thanks to our use of self-folding bases, we divide by about 4 the number of
multiplications compared to [27]. Similarly, exploiting the degree of the input polynomials
divides the number of additions in Algorithm 8 by two. For all practical purposes, our
algorithms even perform better than the specialized additive FFT described in [27, Section
IV]. This FFT requires slightly more multiplications (1

2N log2(N)) than ours, and the
number of additions (N log2(N) + 1

2N log2(N) log2 log2N), while asymptotically better
than ours, remains larger than the number of additions in Algorithm 10 for any N ≤ 256.
Since the specialized FFT works only for m a power of two, it will only start to outperform
Algorithm 10 for N ≥ 216, corresponding to a masking order n = 32768. It also remains
to be studied whether this algorithm can exploit the degree of the input polynomials to
reduce the number of additions, as done by Algorithm 8. We note that just like in [27], all
the multiplications in our algorithms are field multiplications by a constant, which can be
stored in precomputed tables.

42

Appendix F
Random Probing Security:
Verification, Composition, Expansion
& New Constructions
Hereafter is appended the full version of our paper [BCP+20], joint work with Sonia
Belaïd, Jean-Sébastien Coron, Emmanuel Prouff and Abdul Rahman Taleb, published
at CRYPTO 2020.

Random Probing Security: Verification,
Composition, Expansion and New Constructions

Sonia Beläıd1, Jean-Sébastien Coron2, Emmanuel Prouff3,4, Matthieu Rivain1, and
Abdul Rahman Taleb1

1 CryptoExperts, France
2 University of Luxembourg

3 ANSSI, France
4 Sorbonne Universités, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6, F-75005, Paris, France

{sonia.belaid,matthieu.rivain,abdul.taleb}@cryptoexperts.com
5 jean-sebastien.coron@uni.lu
6 emmanuel.prouff@ssi.gouv.fr

Abstract. The masking countermeasure is among the most powerful countermeasures to counteract
side-channel attacks. Leakage models have been exhibited to theoretically reason on the security of
such masked implementations. So far, the most widely used leakage model is the probing model defined
by Ishai, Sahai, and Wagner at (CRYPTO 2003). While it is advantageously convenient for security
proofs, it does not capture an adversary exploiting full leakage traces as, e.g., in horizontal attacks.
Those attacks target the multiple manipulations of the same share to reduce noise and recover the
corresponding value. To capture a wider class of attacks another model was introduced and is referred
to as the random probing model. From a leakage parameter p, each wire of the circuit leaks its value with
probability p. While this model much better reflects the physical reality of side channels, it requires
more complex security proofs and does not yet come with practical constructions.
In this paper, we define the first framework dedicated to the random probing model. We provide an
automatic tool, called VRAPS, to quantify the random probing security of a circuit from its leakage
probability. We also formalize a composition property for secure random probing gadgets and exhibit
its relation to the strong non-interference (SNI) notion used in the context of probing security. We
then revisit the expansion idea proposed by Ananth, Ishai, and Sahai (CRYPTO 2018) and introduce
a compiler that builds a random probing secure circuit from small base gadgets achieving a random
probing expandability property. We instantiate this compiler with small gadgets for which we verify
the expected properties directly from our automatic tool. Our construction can tolerate a leakage
probability up to 2−8, against 2−25 for the previous construction, with a better asymptotic complexity.

Keywords: Compiler, Masking, Automated verification, Random probing model

1 Introduction

Most cryptographic algorithms are assumed to be secure against black-box attacks where the ad-
versary is limited to the knowledge of some inputs and outputs to recover the manipulated secrets.
However, as revealed in the late nineties [21], when implemented on physical devices, they be-
come vulnerable to the more powerful side-channel attacks which additionally exploit the physical
emanations such as temperature, time, power consumption, electromagnetic radiations.

As such attacks may only require cheap equipment and can be easily mounted in a short time
interval, the community had to adapt quickly by looking for efficient countermeasures. The most
widely deployed approach to counteract side-channel attacks was simultaneously introduced in 1999
by Chari et al. [12] and by Goubin and Patarin [18] and is now called masking. Basically, the idea
is to split each sensitive variable x of the implementation into n shares such that n − 1 of them

are generated uniformly at random and the last one is computed as the combination of x and
all the previous shares according to some group law ∗. When ∗ is the (bitwise) addition, we talk
about linear sharing (aka Boolean masking). The adversary thus needs to get information on all
the shares of x to recover information on the sensitive value. This countermeasure is really simple
to implement for linear operations which are simply applied on each share separately. However,
things are getting trickier for non-linear operations where it is impossible to compute the result
without combining shares.

To reason about the security of masked implementations, the community introduced leakage
models. One of the most broadly used is the probing model, introduced by Ishai, Sahai, and Wag-
ner [20]. In a nutshell, a circuit is claimed to be t-probing secure if the exact values of any set of t
intermediate variables do not reveal any information on the secrets. As leakage traces are assumed
to reveal noisy functions of the manipulated data, this model is motivated by the difficulty to re-
cover information from the combination of t variables from their noisy functions in masking schemes
(as t grows). Nevertheless, the probing model fails to capture the huge amount of information re-
sulting from the leakage of all manipulated data, and in particular from the repeated manipulation
of identical values (see horizontal attacks in [7]). Therefore, after a long sequence of works building
and analyzing masking schemes with respect to their security in the probing model [25, 15, 9], the
community is now looking for security in more practical models.

The noisy leakage model was originally considered by Chari et al. in [12] and was later formalized
by Prouff and Rivain in [24] as a specialization of the only computation leaks model [23] in order to
better capture the reality of the physical leakage. Informally, a circuit is secure in the noisy leakage
model if the adversary cannot recover the secrets from a noisy function of each intermediate variable
of the implementation. While realistic, this model is not convenient for security proofs, and therefore
masking schemes continued to be verified in the probing model relying on the not tight reduction
that was formally established by Duc, Dziembowski, and Faust [17].

The latter reduction actually came with an intermediate leakage model, called random probing
model, to which the security in the noisy leakage model reduces to. In the random probing model,
each intermediate variable leaks with some constant leakage probability p. A circuit is secure in this
model if there is a negligible probability that these leaking wires actually reveal information on the
secrets. It is worth noting that this notion advantageously captures the horizontal attacks which
exploit the repeated manipulations of variables throughout the implementation. Classical probing-
secure schemes are also secure in the random probing model but the tolerated leakage probability
(a.k.a. leakage rate) might not be constant which is not satisfactory from a practical viewpoint.
Indeed, in practice the side-channel noise might not be customizable by the implementer.

Only a few constructions [1, 3, 2] tolerate a constant leakage probability. These three construc-
tions are conceptually involved and their practical instantiation is not straightforward. The first
one from Ajtai et al. and its extension [3] are based on expander graphs. The tolerated probability
is not made explicit. The third work [2] is based on multi-party computation protocols and an
expansion strategy; the tolerated probability is around 2−26 and for a circuit with |C| gates, the
complexity is O(|C| · poly(κ)) for some parameter κ but the polynomial is not made explicit.

Following the long sequence of works relying on the probing security, formal tools have recently
been built to supervise the development of masking implementations proven secure in the probing
model. Namely, verification tools are now able to produce a security proof or identify potential
attacks from the description of a masked implementation at up to some masking orders (i.e.,
< 5) [4, 14, 11]. In the same vein, compilers have been built to automatically generate masked

2

implementations at any order given the high level description of a primitive [5, 11, 10]. Nevertheless,
no equivalent framework has yet been proposed to verify the security of implementations in the
random probing model.

Our contributions. In this paper, we aim to fill this huge gap by providing a framework to verify,
compose, and build random probing secure circuits from simple gadgets. Our contributions are
three-fold.

Automatic verification tool. As a first contribution, we define a verification method that we in-
stantiate in a tool to automatically exhibit the random probing security parameters of any small
circuit defined with addition and multiplication gates whose wires leak with some probability p. In
a nutshell, a circuit is (p, f)-random probing secure if it leaks information on the secret with prob-
ability f(p), where f(p) is the failure probability function. From these notations, our tool named
VRAPS (for Verifier of Random Probing Security), based on top of a set of rules that were previ-
ously defined to verify the probing security of implementations [4], takes as input the description
of a circuit and outputs an upper bound on the failure probability function. While it is limited to
small circuits by complexity, the state-of-the-art shows that verifying those circuits can be partic-
ularly useful in practice (see e.g. the maskVerif tool [4]), for instance to verify gadgets and then
deduce global security through composition properties and/or low-order masked implementations.
The source code of VRAPS is publicly available.7

Composition and expanding compiler. We introduce a composition security property to make gad-
gets composable in a global random probing secure circuit. We exhibit the relation between this
new random probing composability (RPC) notion and the strong non-interference (SNI) notion
which is widely used in the context of probing security [5]. Then, we revisit the modular approach
of Ananth, Ishai, and Sahai [2] which uses an expansion strategy to get random probing security
from a multi-party computation protocol. We introduce the expanding compiler that builds ran-
dom probing secure circuits from small base gadgets. We formalize the notion of random probing
expandability (RPE) and show that a base gadget satisfying this notion can be securely used in the
expanding compiler to achieve arbitrary/composable random probing security. As a complementary
contribution, our verification tool, VRAPS, is extended to verify the newly introduced RPC and
RPE properties.

Instantiation. We instantiate the expanding compiler with new constructions of simple base gadgets
that fulfill the desired RPE property, which is verified by VRAPS. For a security level κ, our
instantiation achieves a complexity of O(κ7.5) and tolerates a constant leakage probability p ≈
0.0045 > 2−8. In comparison, and as a side contribution, we provide a precise analysis of the
construction from [2] and show that it achieves an O(κ8.2) complexity for a much lower tolerated
leakage probability (p ≈ 2−26). Finally, we note that our framework probably enables more efficient
constructions based on different base gadgets; we leave such optimizations open for future works.

2 Preliminaries

Along the paper, K shall denote a finite field. For any n ∈ N, we shall denote [n] the integer
set [n] = [1, n] ∩ Z. For any tuple x = (x1, . . . , xn) ∈ Kn and any set I ⊆ [n], we shall denote

7 See https://github.com/CryptoExperts/VRAPS

3

x|I = (xi)i∈I . Any two probability distributions D1 and D2 are said ε-close, denoted D1 ≈ε D2, if
their statistical distance is upper bounded by ε, that is

SD(D1;D2) :=
1

2

∑

x

|pD1(x)− pD2(x)| ≤ ε ,

where pD1(·) and pD1(·) denote the probability mass functions of D1 and D2.

2.1 Circuit Compilers

In this paper, an arithmetic circuit over a field K is a labeled directed acyclic graph whose edges
are wires and vertices are arithmetic gates processing operations over K. We consider three types
of arithmetic gate:

– an addition gate, of fan-in 2 and fan-out 1, computes an addition over K,

– a multiplication gate, of fan-in 2 and fan-out 1, computes a multiplication over K,

– a copy gate, of fan-in 1 and fan-out 2, outputs two copies of its input.

A randomized arithmetic circuit is equipped with an additional type of gate:

– a random gate, of fan-in 0 and fan-out 1, outputs a fresh uniform random value of K.

A (randomized) arithmetic circuit is further formally composed of input gates of fan-in 0 and fan-
out 1 and output gates of fan-in 1 and fan-out 0. Evaluating an `-input m-output circuit C consists
in writing an input x ∈ K` in the input gates, processing the gates from input gates to output gates,
then reading the output y ∈ Km from the output gates. This is denoted by y = C(x). During the
evaluation process, each wire in the circuit is assigned with a value on K. We call the tuple of all
these wire values a wire assignment of C (on input x).

Definition 1 (Circuit Compiler). A circuit compiler is a triplet of algorithms (CC,Enc,Dec)
defined as follows:

– CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic circuit
C and outputs a randomized arithmetic circuit Ĉ.

– Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ K` to an encoded input
x̂ ∈ K`′.

– Dec (output decoding) is a deterministic algorithm that maps an encoded output ŷ ∈ Km′ to a
plain output y ∈ Km.

These three algorithms satisfy the following properties:

– Correctness: For every arithmetic circuit C of input length `, and for every x ∈ K`, we have

Pr
(
Dec

(
Ĉ(x̂)

)
= C(x)

∣∣ x̂← Enc(x)
)

= 1 , where Ĉ = CC(C).

– Efficiency: For some security parameter λ ∈ N, the running time of CC(C) is poly(λ, |C|), the
running time of Enc(x) is poly(λ, |x|) and the running time of Dec

(
ŷ
)

is poly(λ, |ŷ|), where
poly(λ, q) = O(λk1qk2) for some constants k1, k2.

4

2.2 Linear Sharing and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function
⋃
nKn → K

defined as
LinDec : (x1, . . . , xn) 7→ x1 + · · ·+ xn ,

for every n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every n, ` ∈ N, on input
(x̂1, . . . , x̂`) ∈ (Kn)` the n-linear decoding mapping acts as

LinDec : (x̂1, . . . , x̂`) 7→ (LinDec(x̂1), . . . , LinDec(x̂`)) .

Let us recall that for some tuple x̂ = (x1, . . . , xn) ∈ Kn and for some set I ⊆ [n], the tuple
(xi)i∈I is denoted x̂|I .
Definition 2 (Linear Sharing). Let n, ` ∈ N. For any x ∈ K, an n-linear sharing of x is a random
vector x̂ ∈ Kn such that LinDec(x̂) = x. It is said to be uniform if for any set I ⊆ [n] with |I| < n
the tuple x̂|I is uniformly distributed over K|I|. A n-linear encoding is a probabilistic algorithm
LinEnc which on input a tuple x = (x1, . . . , x`) ∈ K` outputs a tuple x̂ = (x̂1, . . . , x̂`) ∈ (Kn)` such
that x̂i is a uniform n-sharing of xi for every i ∈ [`].

In the following, we shall call an (n-share, `-to-m) gadget, a randomized arithmetic circuit
that maps an input x̂ ∈ (Kn)` to an output ŷ ∈ (Kn)m such that x = LinDec(x̂) ∈ K` and
y = LinDec(ŷ) ∈ Km satisfy y = g(x) for some function g. In this paper, we shall consider gadgets
for three types of functions (corresponding to the three types of gates): the addition g : (x1, x2) 7→
x1 + x2, the multiplication g : (x1, x2) 7→ x1 · x2 and the copy g : x 7→ (x, x). We shall generally
denote such gadgets Gadd, Gmult and Gcopy respectively.

Definition 3 (Standard Circuit Compiler). Let λ ∈ N be some security parameter and let n =
poly(λ). Let Gadd, Gmult and Gcopy be n-share gadgets respectively for the addition, multiplication
and copy over K. The standard circuit compiler with sharing order n and base gadgets Gadd, Gmult,
Gcopy is the circuit compiler (CC,Enc,Dec) satisfying the following:

1. The input encoding Enc is an n-linear encoding.
2. The output decoding Dec is the n-linear decoding mapping LinDec.
3. The circuit compilation CC consists in replacing each gate in the original circuit by an n-share

gadget with corresponding functionality (either Gadd, Gmult or Gcopy), and each wire by a set
of n wires carrying a n-linear sharing of the original wire. If the input circuit is a randomized
arithmetic circuit, each of its random gates is replaced by n random gates, which duly produce
a n-linear sharing of a random value.

For such a circuit compiler, the correctness and efficiency directly holds from the correctness and
efficiency of the gadgets Gadd, Gmult and Gcopy.

2.3 Random Probing Leakage

Let p ∈ [0, 1] be some constant leakage probability parameter. This parameter is sometimes called
leakage rate in the literature. Informally, the p-random probing model states that during the eval-
uation of a circuit C each wire leaks its value with probability p (and leaks nothing otherwise),
where all the wire leakage events are mutually independent.

In order to formally define the random-probing leakage of a circuit, we shall consider two
probabilistic algorithms:

5

– The leaking-wires sampler takes as input a randomized arithmetic circuit C and a probability
p ∈ [0, 1], and outputs a set W, denoted as

W ← LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with probability p to
W (where all the probabilities are mutually independent).

– The assign-wires sampler takes as input a randomized arithmetic circuit C, a set of wire labels
W (subset of the wire labels of C), and an input x, and it outputs a |W|-tuple w ∈ (K∪{⊥})|W|,
denoted as

w ← AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W for an evaluation on
input x.

We can now formally define the random probing leakage of a circuit.

Definition 4 (Random Probing Leakage). The p-random probing leakage of a randomized
arithmetic circuit C on input x is the distribution Lp(C,x) obtained by composing the leaking-wires
and assign-wires samplers as

Lp(C,x)
id
= AssignWires(C, LeakingWires(C, p),x) .

Remark 1. By convention the output wires of C (i.e. the wires incoming output gates) are excluded
by the LeakingWires sampler whereas the input wires of C (i.e. the wires connecting input gates to
subsequent gates) are included. Namely the output set W of LeakingWires(C, p) does not include
any output wire label of C. This is because when composing several circuits (or gadgets), the output
wires of a circuit are the input wires in a next circuit. This also relates to the widely admitted only
computation leaks assumption [23]: the processing of a gate leaks information on its input values
(and information on the output can be captured through information on the input).

Definition 5 (Random Probing Security). A randomized arithmetic circuit C with ` · n ∈ N
input gates is (p, ε)-random probing secure with respect to encoding Enc if there exists a simulator
Sim such that for every x ∈ K`:

Sim(C) ≈ε Lp(C,Enc(x)) . (1)

A circuit compiler (CC,Enc,Dec) is (p, ε)-random probing secure if for every (randomized) arith-
metic circuit C the compiled circuit Ĉ = CC(C) is (p, |C| · ε)-random probing secure where |C| is
the size of original circuit.

As in [2] we shall consider a simulation with abort. In this approach, the simulator first calls
the leaking-wires sampler to get a set W and then either aborts (or fails) with probability ε or
outputs the exact distribution of the wire assignment corresponding toW. Formally, for any leakage
probability p ∈ [0, 1], the simulator Sim is defined as

Sim(Ĉ) = SimAW(Ĉ, LeakingWires(Ĉ, p)) (2)

6

where SimAW, the wire assignment simulator, either returns ⊥ (simulation failure) or a perfect
simulation of the requested wires. Formally, the experiment

W ← LeakingWires(Ĉ, p)

out← SimAW(Ĉ,W)

leads to

Pr[out = ⊥] = ε and
(
out | out 6= ⊥

) id
=
(
AssignWires(Ĉ,W,Enc(x)) | out 6= ⊥

)
. (3)

It is not hard to see that if we can construct such a simulator SimAW for a compiled circuit Ĉ, then
this circuit is (p, ε)-random probing secure.

3 Formal Verification

In this section we show how to compute the simulation failure probability f(p) as a function of
the leakage probability p for the base gadgets. Since even for simple gadgets this tasks would be
difficult to perform by hand, we use a formal verification tool to compute f(p).

3.1 Simulation Failure probability

We first derive an upper bound on the simulation failure probability as a function of the leakage
probability p. We consider a compiled circuit Ĉ composed of s wires labeled from 1 to s and a
simulator SimAW as defined in previous section. For any sub-set W ⊆ [s] we denote by δW the
value defined as follows:

δW =

{
1 if SimAW(Ĉ,W) = ⊥,

0 otherwise.

The simulation failure probability ε in (3) can then be explicitly expressed as a function of p.
Namely, we have ε = f(p) with f defined for every p ∈ [0, 1] by:

f(p) =
∑

W⊆[s]

δW · p|W| · (1− p)s−|W| . (4)

Letting ci be the number of sub-sets W ⊆ [s] of cardinality i for which δW = 1, namely for which
the simulation fails, we have ci =

∑
|W|=i δW and hence (4) simplifies to

f(p) =
s∑

i=1

ci · pi · (1− p)s−i . (5)

For any circuit Ĉ achieving t-probing security, the values δW with |W| ≤ t are equal to zero,
and therefore the corresponding ci’s are zero, which implies the following simplification:

f(p) =
s∑

i=t+1

ci · pi · (1− p)s−i .

7

Moreover, by definition, the coefficients ci satisfy:

ci 6
(
s

i

)
(6)

which leads to the following upper-bound for f(p):

f(p) 6
s∑

i=t+1

(
s

i

)
· pi · (1− p)s−i .

Example: evaluating f(p) for the 2-share ISW multiplication gadget (ISW-2). This gadget takes at
input the 2-sharings (x0, x1) and (y0, y1) of x and y respectively, and outputs the 2-sharing

(z0, z1) = (x0 · y0 + r0, x1 · y1 + r0 + x0 · y1 + x1 · y0)

where r0 is a random value. The processing is composed of the following intermediate results, where
each variable is assigned a wire:

c0 = x0 ∗ y0 z0 = c0 + r0 c1 = x1 ∗ y1 c2 = c1 + r0

c3 = x0 ∗ y1 c4 = c2 + c3 c5 = x1 ∗ y0 z1 = c4 + c5

When the same variable is involved as input of several operations, a copy gadget (with 1 input wire
and 2 output wires) is applied to duplicate it. Consequently, each new use of the same variable
as input of an operation adds 2 wires to the final count of overall wires. It may be checked that
the circuit corresponding to ISW-2 is composed of 21 wires, excluding the 2 output wires. Since
it is 1-SNI but not 2-SNI, every set with a single wire can be simulated, which is not the case
for all pairs of wires. Actually, 51 among the latter pairs cannot be simulated. If we continue the
test for the sets of cardinality from 3 to 21, we get the following list of coefficients ci, 1 ≤ i ≤ 21,
computed with the verification tool described in the next section: 0, 51, 754, 4827, 18875, 52994,
115520, 203176, 293844, 352702, 352715, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210,
21, 1. Directly injecting these coefficients in (5) gives the expression of f(p) for ISW-2.

3.2 Verification method

For any compiled circuit Ĉ and any simulator defined as in Section 2.3, the computation of the
function f(p) for any probability p essentially amounts to computing the values of the coefficients
ci’s appearing in (5). If no assumption is made on the circuit, this task seems difficult to carry out
by hand. Actually, it may be checked that an exhaustive testing of all the possible tuples of wires
for a gadget with s wires has complexity lower bounded by 2s, which gives 221 for a simple gadget
like the ISW multiplication gadget with two shares per input. Here, we introduce a verification
tool, that we call VRAPS, enabling to automatically test the perfect simulation for any set of wires
of size lower than or equal to some threshold β. The role of the latter threshold is simply to control
the verification duration (which can be long if the circuit to test is complex). Our tool implicitly
defines a simulator that may fail with a probability ε = f(p) satisfying (5).

8

The verification tool takes as input the representation of a compiled circuit Ĉ and a test
parameter β, and outputs the list of coefficients c1, ..., cβ. It is assumed that Ĉ takes as input the

n-linear encoding Enc(x) of vector x = (x1, . . . , x`) defined in K`. It is moreover assumed that Ĉ
is composed of s wires respectively denoted by w1, ..., ws. In the following, we consider s-tuples in
the form of u = (u1, . . . , us) ∈ {0, 1}s together with the common rule u′ ⊂ u iff for every i ∈ [s],
u′i = 1 ⇒ ui = 1 (in this case u′ will be said to be included in u). An s-tuple u for which there
exists an assignment of the wires in W = {wi; i ∈ [s], ui = 1} such that the simulation fails shall
be called a failure tuple. Such a tuple shall be said to be incompressible if no tuple t′ ⊂ t is a
failure tuple. The main idea of the proposed verification tool is to test the simulation failure only
on incompressible failure tuples whose Hamming weight ranges from 1 to β. The steps are described
in Algorithm 1.

Algorithm 1 Verification tool

Input: a compiled circuit Ĉ with s wires and a threshold β 6 s
Output: a list of β coefficients c1, ..., cβ

1: `p ← [] . will be used to store a list of failure tuples
2: c← (0, . . . , 0) . will be used to store the output coefficients
3: for h = 1 to β do
4: `h ← listTuples(s,h) . list of s-tuples of Hamming weight h
5: (`ph, `

f1
h)← eliminateFromSmaller(`h, `p) . select tuples including an incompressible failure tuple

6: `f2h ← failureTest(Ĉ, `ph) . identify failure tuples in `ph
7: `p ← `p ∪ `f2h . update list of incompressible failure tuples

8: c← updateCoeffs(c, `f1h ∪ `f2h) . update coefficients
9: end for

10: return c

The function listTuples outputs the list of all s-tuples with Hamming weight h with h ∈ [s]. The
function eliminateFromSmaller takes as input the list `h of current tuples of Hamming weight h and
the list of incompressible failure tuples `p. It returns two lists:

– `f1h : the elements of `h which are not incompressible (i.e. which include at least one element
from `p)

– `ph: the elements of `h which are incompressible (i.e. `h\`f1h)

The function failureTest takes as input the second list `ph and checks if a perfect simulation can
be achieved for each wire family W corresponding to a tuple in `ph. Basically, for each wire family,
a sequence of rules taken from maskVerif [4] is tested to determine whether W can be perfectly

simulated. It outputs `f2h , the list of incompressible failure s-tuples of Hamming weight h. In a
nutshell, each wire wi in W is considered together with the algebraic expression ϕi(·) describing its
assignment by Ĉ as a function of the circuit inputs and the random values returned by the random
gates, then the three following rules are successively and repeatedly applied on all the wires families
W (see [4] for further details):

rule 1: check whether all the expressions ϕi(·) corresponding to wires wi in W contain all the
shares of at least one of the coordinates of x;

rule 2: for every ϕi(·), check whether a random r (i.e. an output of a random gate) additively
masks a sub-expression e (which does not involve r) and appears nowhere else in the other ϕj(·)

9

with j 6= i; in this case replace the sum of the so-called sub-expression and r by r, namely
e+ r ← r;

rule 3: apply mathematical simplifications on the tuple.

Function updateCoeffs takes as input the current array of β coefficients ci for 1 6 i 6 β and the
concatenation of both lists of potential failure tuples `f1h and `f2h . For each failure tuple, these
coefficients are updated.

Link with the tool maskVerif . This tool was introduced in [4] to automatically and formally
verify higher-order masking implementations, and has further been improved to verify the t-NI and
t-SNI security properties. Essentially, this tool verifies each property by analyzing the dependency
of sets of fixed number of wires (say t) with a specific number of input shares. In our case, the size
of the wires’ sets which must be tested (to decide whether the corresponding coefficient ci must be
incremented or not) is a priori not bounded, or (for efficiency reasons) is bounded by a threshold β
that is not a security parameter but an efficiency one. Moreover, our testing must take intermediate
failures into account. Although maskVerif does not directly allows to answer our specific needs,
we could have exploited its rules directly in our tool with dedicated add-ons. However we wanted
to provide an easy-to-understand global tool and we therefore re-implemented the common parts
(essentially those enabling to decided whether a given set of wires can be simulated or not).

Optimization 1 (grouping the wires). In most of the compiled circuits that we usually consid-
ered, several wires are always assigned the same value. Grouping those wires altogether allows us
to significantly reduce the number of wires to be considered by the verification tool. Let us denote
by s? the number of groups, by αi the size of the i-th group and by wi a representative of the i-th
group. Then, Algorithm 1 can be almost directly applied to the shortened list of s? wires (instead of
s). The single main difference is that the updateCoeffs procedure also takes into account the weights
αi when updating the coefficients ci. For instance, considering h = 3, and the tuple (1, 1, 1, 0, ..., 0)
with respective weights α1 = 2 (for w1), α2 = 1 (for w2) and α3 = 3 (for w3), the function would
increase c3 with 6, c4 with 6, c5 with 4 and c6 with 1. The latter evaluation is performed using a
recursive function which evaluates the number of partitions of an integer j into h parts with the
constraints that each part should be at least one. When this optimization is applied, it may be
observed that the updateCoeffs procedure also starts to update some coefficients ci for i > β. These
updated coefficients can be used as lower bounds of the final ci values. They will be called cinf

i in
the rest of this paper. csup

i will be used to denote the maximal possible value for ci, namely the
binomial coefficient

(
s
i

)
.

Optimization 2 (using the ‘longest failure tuple’). To build all the potential failure tuples, a
strategy consists in exhaustively testing all the s-tuples with Hamming weight below the Hamming
weight of the longest incompressible attack tuple. Once this set, let say Uinc , has been built, the
set of all potential failure tuples can be deduced by executing the following procedure:

– for one uinc ∈ Uinc define Ufailure = {u ∈ {0, 1}s; uinc ⊂ u}.
– for every new uinc ∈ Uinc , update Ufailure = Ufailure ∪ {u ∈ {0, 1}s; uinc ⊂ u}

Implementation. An implementation of Algorithm 1 has been developed in Python. This tool,
named VRAPS, has been open sourced at:

https://github.com/CryptoExperts/VRAPS

10

Small examples. In order to illustrate our automatic verification of gadgets in the random probing
model, we give the list of coefficients and the subsequent failure functions obtained for three known
gadgets from the literature, namely the 2-share and 3-share multiplication gadgets introduced by
Ishai, Sahai, and Wagner in [20] and a 3-share multiplication gadget from [8] with an optimal
number of random variables to achieve security in the 2-probing model. Descriptions for these
three gadgets are given below together with an approximation of the corresponding failure function
f produced by our tool. Operations are performed according to the standard priority rules. Sharings
x and y denote the inputs, sharings z denote the outputs, and ri are random variables. Copy gates
are implicit when variables are used more than once. Hereafter O(p5) is to be interpreted as p tends
to 0.

2-share ISW multiplication gadget (ISW-2):
{
z0 = x0 · y0 + r0

z1 = x1 · y1 + r0 + x0 · y1 + x1 · y0
⇒ f(p) = 51p2 + 754p3 + 4827p4 +O(p5)

3-share multiplication gadget from [8] (EC16-3):



z0 = x0 · y0 + r0 + x0 · y2 + x2 · y0

z1 = x1 · y1 + r1 + x0 · y1 + x1 · y0

z2 = x2 · y2 + r0 + r1 + x1 · y2 + x2 · y1

⇒ f(p) = 1116p3 + 44909p4 +O(p5)

3-share ISW multiplication gadget (ISW-3):




z0 = x0 · y0 + r0 + r1

z1 = x1 · y0 + (x0 · y1 + r0) + x1 · y1 + r2

z2 = x2 · y0 + (x0 · y2 + r1)+
(x2 · y1 + (x1 · y2 + r2)) + x2 · y2

⇒ f(p) = 1219p3 + 55756p4 +O(p5)

For our three examples, our verification tool (Algorithm 1) has been launched respectively with
β = s = 21 for ISW-2, with β = 9 < s = 57 for ISW-3 and with β = 13 < s = 52 for EC16-3. In
the two later cases, the missing coefficients ci with i > β have been either set to 0 or to

(
s
i

)
. This

allowed us to define a lower bound finf and an upper bound fsup for the functions f corresponding
to ISW-3 and EC16-3. The behavior of these functions is plotted in Figures 1 to 3.

4 Composition

This section aims to provide composition properties for random-probing secure gadgets. In a nut-
shell, we aim to show how to build random probing secure larger circuits from specific random
probing secure building blocks.

4.1 Random Probing Composability

We introduce hereafter the random probing composability notion for a gadget. In the following
definition, for an n-share, `-to-m gadget, we denote by I a collection of sets I = (I1, . . . , I`) with
I1 ⊆ [n], . . . , I` ⊆ [n] where n ∈ N refers to the number of shares. For some x̂ = (x̂1, . . . , x̂`) ∈ (Kn)`,
we then denote x̂|I = (x̂1|I1 , . . . , x̂`|I`) where x̂i|Ii ∈ K|Ii| is the tuple composed of the coordinates
of the sharing x̂i of indexes included in Ii.

11

Fig. 1: Values taken by finf(p) for ISW-3 (red) and EC16-3 (green) compared to the function p 7→ p
(black).

Fig. 2: Values of log(finf(p)) (red) and log(fsup(p))
(blue) for ISW-3.

Fig. 3: For values p ranging from 1 to 0, values of
log(finf(p)) for ISW-3 (red) and EC16-3 (green) to-
gether with the values of log(f(p)) for ISW-2 (blue).

Definition 6 (Random Probing Composability). Let n, `,m ∈ N. An n-share gadget G :
(Kn)` → (Kn)m is (t, p, ε)-random probing composable (RPC) for some t ∈ N and p, ε ∈ [0, 1] if
there exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every

input x̂ ∈ (Kn)` and for every set collection J1 ⊆ [n], . . . , Jm ⊆ [n] of cardinals |J1| ≤ t, . . . ,
|Jm| ≤ t, the random experiment

W ← LeakingWires(G, p)

I ← SimG
1 (W,J)

out← SimG
2

(
x̂|I
)

yields

Pr
(
(|I1| > t) ∨ . . . ∨ (|I`| > t)

)
≤ ε (7)

and

out
id
=
(
AssignWires(G,W, x̂) , ŷ|J

)

where J = (J1, . . . , Jm) and ŷ = G(x̂). Let f : R → R. The gadget G is (t, f)-RPC if it is
(t, p, f(p))-RPC for every p ∈ [0, 1].

In the above definition, the first-pass simulator SimG
1 determines the necessary input shares

(through the returned collection of sets I) for the second-pass simulator SimG
2 to produce a perfect

simulation of the leaking wires defined by the setW together with the output shares defined by the

12

collection of sets J . Note that there always exists such a collection of sets I since I = ([n], . . . , [n])
trivially allows a perfect simulation whatever W and J . However, the goal of SimG

1 is to return a
collection of sets I with cardinals at most t. The idea behind this constraint is to keep the following
composition invariant: for each gadget we can achieve a perfect simulation of the leaking wires plus
t shares of each output sharing from t shares of each input sharing. We shall call failure event the
event that at least one of the sets I1, . . . , I` output of SimG

1 has cardinality greater than t. When
(t, p, ε)-RPC is achieved, the failure event probability is upper bounded by ε according to (7). A
failure event occurs whenever SimG

2 requires more than t shares of one input sharing to be able to
produce a perfect simulation of the leaking wires (i.e. the wires with label in W) together with the
output shares in ŷ|J . Whenever such a failure occurs, the composition invariant is broken. In the
absence of failure event, the RPC notion implies that a perfect simulation can be achieved for the
full circuit composed of RPC gadgets. This is formally stated in the next theorem.

4.2 Composition Security

Theorem 1 (Composition). Let t ∈ N, p, ε ∈ [0, 1], and CC be a standard circuit compiler with
(t, p, ε)-RPC base gadgets. For every (randomized) arithmetic circuit C composed of |C| gadgets,
the compiled circuit CC(C) is (p, |C| · ε)-random probing secure. Equivalently, the standard circuit
compiler CC is (p, ε)-random probing secure.

Proof. LetW denote the leaking wires of the randomized circuit CC(C) with probability p for each
wire. We now build a simulator Sim taking as inputs CC(C) and W and that perfectly simulates
W with probability at least (1− |C| · ε) from the simulators of the (t, p, ε)-RPC base gadgets.

We start with splitting setW into |C| distinct subsetsWi for i ∈ {1, . . . , |C|} such that eachWi

stands for the output of LeakingWires when applied to the i’th gadget Gi of CC(C) with probability
p. Then, we start from end gadgets whose outputs coincide with the circuit’s outputs. We execute
their SimGi

1 with Wi and J = ∅, to get the sets I of required inputs. Then, we target their parents,
that are gadgets whose outputs are inputs of end gadgets. For each such gadget Gi, we execute
SimGi

1 with Wi and J as defined by children sets I, to get the new sets I of required inputs. The
simulation goes through the circuit from bottom to top by applying the SimG

1 simulators to get
the Wi and I/J sets. The simulation fails if at least one set I is of cardinal greater than t. For |C|
gadgets, this happens with probability 1− (1− ε)|C| ≤ |C| · ε. Otherwise, the simulation runs the
SimG

2 simulators from top to bottom by randomly picking the initial (xi)I , which completes the
construction of our global simulator Sim. �

4.3 Relation with Standard Probing Composition Notions

We first reformulate the Strong Non-Interference notion introduced in [5] with the formalism used
for our definition of the Random Probing Composability.

Definition 7 (Strong Non-Interference (SNI)). Let n, ` and t be positive integers. An n-share
gadget G : (Kn)` → Kn is t-SNI if there exists a deterministic algorithm SimG

1 and a probabilistic
algorithm SimG

2 such that for every set J ⊆ [n] and subset W of wire labels from G satisfying
|W|+ |J | 6 t, the following random experiment with any x̂ ∈ (Kn)`

I ← SimG
1 (W, J)

out← SimG
2

(
x̂|I
)

13

yields
|I1| 6 |W|, . . . , |I`| 6 |W| (8)

and
out

id
=
(
AssignWires(G,W, x̂) , ŷ|J

)
(9)

where I = (I1, . . . , I`) and ŷ = G(x̂).

Then, we demonstrate that gadgets satisfying the t-SNI notion are also random probing com-
posable for specific values that we explicit in the following proposition, whose proof is available in
Appendix A.

Proposition 1. Let n, ` and t be positive integers and let G be a gadget from (Kn)` to Kn. If G
is t-SNI, then it is also (t/2, p, ε)-RPC for any probability p and ε satisfying:

ε =

s∑

i=b t
2

+1c

(
s

i

)
pi(1− p)s−i , (10)

where s is the number of wires in G.

4.4 Verification of Gadget Composability

Our random probing verification tool (Algorithm 1) can be easily extended to define a simulator
for the (t, p, ε)-random probing composability of a gadget for some t and some p. This essentially
amounts to extend Algorithm 1 inputs with a multi-set O and to modify the failureTest procedure
in order to test the simulation for each tuple in the input list `pn augmented with the outputs
coordinates with indices in O. Then, our extended algorithm is called for every set O composed of
at most t indices in each of the sets J1, . . . , Jm. The output for the call with input set O is denoted
by cO = (cO1 , . . . , c

O
β). For our simulator construction, the probability ε satisfies

ε =
s∑

i=1

ci · pi · (1− p)s−i,

where s denotes the number of wires in the tested gadget. Moreover, the ci’s satisfy ci = maxO cOi .

Example. As an illustration of the proposition, let us consider the well deployed 3-share ISW
multiplication gadget GISW-3 : (K3)2 → (K3) displayed in Section 3 and satisfying 2-SNI from [5].
Considering implicit copy gadgets that are mandatory in the circuit definition when a variable is
reused, the corresponding circuit contains s = 57 wires. From Proposition 1, this gadget is also
(1, p, εISW)-RPC for any probability p and εISW such that

εISW =

57∑

i=2

(
s

i

)
pi(1− p)57−i.

Figure 4 displays for p ∈ [0, 1] the values taken by εISW (in red). It also displays (in green) the
values ε′ISW obtained by calling our verification tool on the same gadget GISW-3 with β = 5 (see
Algorithm 1) and by replacing the missing coefficients ci with i > β by their upper bound

(
s
i

)
(see

(6)). It may be checked for small values of p the failure probability ε′ISW is smaller than εISW which
directly implies that the simulation induced by our verification tool is tighter than that deduced
from Proposition 1.

14

Fig. 4: Values taken by εISW and ε′ISW as a function of p ∈ [0, 1].

5 Expansion

Constructing random-probing-secure circuit compilers with a gadget expansion strategy has been
proposed by Ananth, Ishai and Sahai in [2]. Such strategy was previously used in the field of multi-
party computation (MPC) with different but close security goals [13, 19]. Note that such approach is
called composition in [2] since it roughly consists in composing a base circuit compiler several times.
We prefer the terminology of expansion here to avoid any confusion with the notion of composition
for gadgets as considered in Section 4 and usual in the literature – see for instance [5, 9, 11].

We recall hereafter the general principle of the gadget expansion strategy and provide an asymp-
totic analysis of the so-called expanding circuit compiler. Then we propose an implementation of
this strategy which relies on the new notion of gadget expandability. In contrast, the construction
of [2] relies on a t-out-n secure MPC protocol in the passive security model. The advantage of our
notion is that it can be achieved and/or verified by simple atomic gadgets leading to simple and
efficient constructions. After introducing the gadget expandability notion, we show that it allows
to achieve random-probing security with the expansion strategy. We finally explain how to adapt
the verification tool described in Section 3 to this expandability notion.

5.1 Expansion Strategy

The basic principle of the gadget expansion strategy is as follows. Assume we have three n-share
gadgets Gadd, Gmult, Gcopy and denote CC the standard circuit compiler for these base gadgets. We

can derive three new n2-share gadgets by simply applying CC to each gadget: G
(2)
add = CC(Gadd),

G
(2)
mult = CC(Gmult) and G

(2)
copy = CC(Gcopy). Let us recall that this process simply consists in

replacing each addition gate in the original gadget by Gadd, each multiplication gate by Gmult and
each copy gate by Gcopy, and by replacing each wire by n wires carrying a sharing of the original
wire. Doing so, we obtain n2-share gadgets for the addition, multiplication and copy on K. This
process can be iterated an arbitrary number of times, say k, to an input circuit C:

C
CC−−−→ Ĉ1

CC−−−→ · · · CC−−−→ Ĉk .

The first output circuit Ĉ1 is the original circuit in which each gate is replaced by a base gadget
Gadd, Gmult or Gcopy. The second output circuit Ĉ2 is the original circuit C in which each gate

is replaced by an n2-share gadget G
(2)
add, G

(2)
mult or G

(2)
copy as defined above. Equivalently, Ĉ2 is the

circuit Ĉ1 in which each gate is replaced by a base gadget. In the end, the output circuit Ĉk is hence

15

the original circuit C in which each gate has been replaced by a k-expanded gadget and each wire
as been replaced by nk wires carrying an (nk)-linear sharing of the original wire. The underlying
compiler is called expanding circuit compiler which is formally defined hereafter.

Definition 8 (Expanding Circuit Compiler). Let CC be the standard circuit compiler with
sharing order n and base gadgets Gadd, Gmult, Gcopy. The expanding circuit compiler with expansion

level k and base compiler CC is the circuit compiler (CC(k),Enc(k),Dec(k)) satisfying the following:

1. The input encoding Enc(k) is an (nk)-linear encoding.
2. The output decoding Dec is the (nk)-linear decoding mapping.
3. The circuit compilation is defined as

CC(k)(·) = CC ◦ CC ◦ · · · ◦ CC︸ ︷︷ ︸
k times

(·)

The goal of the expansion strategy in the context of random probing security is to replace
the leakage probability p of a wire in the original circuit by the failure event probability ε in the
subsequent gadget simulation. If this simulation fails then one needs the full input sharing for the
gadget simulation, which corresponds to leaking the corresponding wire value in the base case.
The security is thus amplified by replacing the probability p in the base case by the probability ε
(assuming that we have ε < p). If the failure event probability ε can be upper bounded by some
function of the leakage probability: ε < f(p) for every leakage probability p ∈ [0, pmax] for some
pmax < 1, then the expanding circuit compiler with expansion level k shall result in a security
amplification as

p = ε0
f−−→ ε1

f−−→ · · · f−−→ εk = f (k)(p) ,

which for an adequate function f (e.g. f : p 7→ p2) provides exponential security. In order to get
such a security expansion, the gadgets must satisfy a stronger notion than the composability notion
introduced in Section 4 which we call random probing expandability ; see Section 5.3 below.

5.2 Asymptotic Analysis of the Expanding Compiler

In this section we show that the asymptotic complexity of a compiled circuit Ĉ = CC(k)(C) is
|Ĉ| = O

(
|C| · κe

)
for security parameter κ, for some constant e that we make explicit.

Let us denote by N = (Na, Nc, Nm, Nr)
T the column vector of gate counts for some base gadget

G, where Na, Nc, Nm, Nr stands for the number of addition gates, copy gates, multiplication gates
and random gates respectively. We have three different such vectors

Nadd
.
= (Nadd,a, Nadd,c, Nadd,m, Nadd,r)

T

Nmult
.
= (Nmult,a, Nmult,c, Nmult,m, Nmult,r)

T

Ncopy
.
= (Ncopy,a, Ncopy,c, Ncopy,m, Ncopy,r)

T

for the gate counts respectively in the base addition gadget Gadd, in the base multiplication gadget
Gmult and in the base copy gadgets Gcopy. Let us define the 4× 4 square matrix M as

M =
(
Nadd |Ncopy |Nmult |Nrand

)
with Nrand = (0, 0, 0, n)T ,

where the definition Nrand holds from the fact that the standard circuit compiler replaces each
random gate by n random gates.

16

It can be checked that applying the standard circuit compiler with base gadgets Gadd, Gmult

and Gcopy to some circuit C with gate-count vector NC gives a circuit Ĉ with gate-count vector
N
Ĉ

= M ·NC . It follows that the kth power of the matrix M gives the gate counts for the level-k
gadgets as:

Mk = M ·M · · ·M︸ ︷︷ ︸
k times

=
(
N

(k)
add |N (k)

copy |N (k)
mult |N

(k)
rand

)
with N

(k)
rand =




0
0
0
nk




where N
(k)
add, N

(k)
mult and N

(k)
copy are the gate-count vectors for the level-k gadgets G

(k)
add, G

(k)
mult and

G
(k)
copy respectively. Let us denote the eigen decomposition of M as M = Q ·Λ ·Q−1, we get

Mk = Q ·Λk ·Q−1 with Λk =




λk1
λk2

λk3
λk4




where λ1, λ2, λ3, λ4 are the eigenvalues of M . We then obtain an asymptotic complexity of

|Ĉ| = O
(
|C| · (λk1 + λk2 + λk3 + λk4)

)
= O

(
|C| ·max(λ1, λ2, λ3, λ4)k

)

for a compiled circuit Ĉ = CC(k)(C) (where the constant in the O(·) depends on Q and shall be
fairly small).

Interestingly, if multiplication gates are solely used in the multiplication gadget (i.e. Nadd,m =
Ncopy,m = 0) which is the case in the constructions we consider in this paper, it can be checked
that (up to some permutation) the eigenvalues satisfy

(λ1, λ2) = eigenvalues(Mac) , λ3 = Nk
mult,m and λ4 = nk

where Mac is the top left 2× 2 block matrix of M i.e.

Mac =

(
Nadd,a Ncopy,a

Nadd,c Ncopy,c

)
.

We finally get

|Ĉ| = O
(
|C| ·Nk

max

)
with Nmax = max(eigenvalues(Mac), Nmult,m) . (11)

In order to reach some security level ε = 2−κ for some target security parameter κ and assuming
that we have a security expansion p → f (k)(p), the expansion level k must be chosen so that
f (k)(p) ≤ 2−κ. In practice, the function f is of the form

f : p 7→
∑

i≥d
ci p

i ≤ (cd +O(p)) pd .

where O(p) is to be interpredted as p tends to 0. In the rest of this paper, we shall say that such a
function has amplification order d.

17

The upper bound f(p) ≤ c′d pd with c′d = cd +O(p) implies f (k)(p) < (c′d p)
dk . Hence, to satisfy

the required security f (k)(p) ≤ 2−κ while assuming c′d p < 1, the number k of expansions must
satisfy:

k > logd(κ)− logd(− log2(c′d p)) .

We can then rewrite (11) as

|Ĉ| = O
(
|C| · κe

)
with e =

logNmax

log d
. (12)

5.3 Random Probing Expandability

In the evaluation of random probing composability, let us recall that the failure event in the simu-
lation of a gadget means that more that t shares from one of its inputs are necessary to complete a
perfect simulation. For a gadget to be expandable we need slightly stronger notions than random
probing composability. As first requirement, a two-input gadget should have a failure probability
which is independent for each input. This is because in the base case, each wire as input of a gate
leaks independently. On the other hand, in case of failure event in the child gadget, the overall
simulator should be able to produce a perfect simulation of the full output (that is the full input
for which the failure occurs). To do so, the overall simulator is given the clear output (which is
obtained from the simulation of the base case) plus any set of n−1 output shares. This means that
whenever the set J is of cardinal greater than t, the gadget simulator can replace it by any set J ′

of cardinal n− 1.

Definition 9 (Random Probing Expandability). Let f : R → R. An n-share gadget G :
Kn×Kn → Kn is (t, f)-random probing expandable (RPE) if there exists a deterministic algorithm
SimG

1 and a probabilistic algorithm SimG
2 such that for every input (x̂, ŷ) ∈ Kn ×Kn, for every set

J ⊆ [n] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W, J)

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (13)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(14)

where ẑ = G(x̂, ŷ).

18

The RPE notion can be simply extended to gadgets with 2 outputs: the SimG
1 simulator takes

two sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′1 and J ′2 satisfying the same
property as J ′ in the above definition (w.r.t. J1 and J2). The SimG

2 simulator must then produce
an output including ẑ1|J ′1 and ẑ2|J ′1 where ẑ1 and ẑ2 are the output sharings. The RPE notion can

also be simply extended to gadgets with a single input: the SimG
1 simulator produces a single set I

so that the failure event (|I| > t) occurs with probability lower than ε (and the SimG
2 simulator is

then simply given x̂|I where x̂ is the single input sharing). For the sake of completeness, and since
we only focus in 2 → 1 and 1 → 2 gadgets in this paper, the RPE definition for the 1 → 2 case is
given in Appendix B.

It is not hard to check that the above expandability notion is stronger that the composability
notion introduced in Section 4. Formally, we have the following reduction:

Proposition 2. Let f = R → R and n ∈ N. Let G be an n-share gadget. If G is (t, f)-RPE then
G is (t, f ′)-RPC, with f ′(·) = 2 · f(·).

Proof. We consider a (t, f)-RPE n-share gadget G : Kn × Kn → Kn. The (t, 2 · f)-random com-
posability property is directly implied by the (t, f)-random probing expandability by making use
of the exact same simulators and observing that

Pr
(
(|I1| > t) ∨ (|I2| > t)

)
≤ Pr(|I1| > t) + Pr(|I2| > t) = 2 · ε.

The case of 1→ 2 gadgets is even more direct. �

5.4 Expansion Security

Definition 9 of random probing expandability is valid for base gadgets. For level-k gadgets G(k) =
CC(k−1)(G) where G ∈ {Gadd, Gmult, Gcopy} is a base gadget, we provide a generalized definition of
random probing expandability.

Adequate subsets of [nk]. We first define the notion of “adequate” subsets of [nk], instead of
only bounded subsets. For this we define recursively a family Sk ∈ P([nk]), where P([nk]) denotes
the set of all subsets of [nk], as follows:

S1 = {I ∈ [n], |I| ≤ t}
Sk = {(I1, . . . , In) ∈ (Sk−1 ∪ [nk−1])n, Ij ∈ Sk−1 ∀ j ∈ [1, n] except at most t}

In other words, a subset I belongs to Sk if among the n subset parts of I, at most t of them are full,
while the other ones recursively belong to Sk−1; see Figure 9 in Appendix C.1 for an illustration
with n = 3 and t = 1.

Generalized definition of Random Probing Expandability. We generalize Definition 9 as
follows. At level k the input sets I1 and I2 must belong to Sk, otherwise we have a failure event.
As in Definition 9, the simulation is performed for an output subset J ′ with J ′ = J if J ∈ Sk,
otherwise J ′ = [nk] \ {j?} for some j? ∈ [nk].

19

Definition 10 (Random Probing Expandability with {Sk}k∈N). Let f : R → R and k ∈ N.

An nk-share gadget G : Knk × Knk → Knk is (Sk, f)-random probing expandable (RPE) if there
exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input

(x̂, ŷ) ∈ Knk ×Knk , for every set J ∈ Sk ∪ [nk] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W, J)

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
I1 /∈ Sk

)
and F2 ≡

(
I2 /∈ Sk

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (15)

with ε = f(p) (in particular F1 and F2 are mutually independent),
2. the set J ′ is such that J ′ = J if J ∈ Sk, and J ′ = [nk] \ {j?} for some j? ∈ [nk] otherwise,
3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(16)

where ẑ = G(x̂, ŷ).

The notion of random probing expandability from Definition 10 naturally leads to the statement
of our main theorem; the proof is given in Appendix C.1.

Theorem 2. Let n ∈ N and f : R → R. Let Gadd, Gmult, Gcopy be n-share gadgets for the addi-
tion, multiplication and copy on K. Let CC be the standard circuit compiler with sharing order n
and base gadgets Gadd, Gmult, Gcopy. Let CC(k) be the expanding circuit compiler with base com-

piler CC. If the base gadgets Gadd, Gmult and Gcopy are (t, f)-RPE then, G
(k)
add = CC(k−1)(Gadd),

G
(k)
mult = CC(k−1)(Gmult), G

(k)
copy = CC(k−1)(Gcopy) are (Sk, f

(k))-RPE, nk-share gadgets for the addi-
tion, multiplication and copy on K.

The random probing security of the expanding circuit compiler can then be deduced as a
corollary of the above theorem together with Proposition 2 (RPE⇒ RPC reduction) and Theorem 1
(composition theorem).

Corollary 1. Let n ∈ N and f : R→ R. Let Gadd, Gmult, Gcopy be n-share gadgets for the addition,
multiplication and copy on K. Let CC be the standard circuit compiler with sharing order n and base
gadgets Gadd, Gmult, Gcopy. Let CC(k) be the expanding circuit compiler with base compiler CC. If

the base gadgets Gadd, Gmult and Gcopy are (t, f)-RPE then CC(k) is (p, 2 · f (k)(p))-random probing
secure.

5.5 Relaxing the Expandability Notion

The requirement of the RPE property that the failure events F1 and F2 are mutually independent
might seem too strong. In practice it might be easier to show or verify that some gadgets satisfy a
weaker notion. We say that a gadget is (t, f)-weak random probing expandable (wRPE) if the failure
events verify Pr(F1) ≤ ε, Pr(F2) ≤ ε and Pr(F1∧F2) ≤ ε2 instead of (22) in Definition 9. Although
being easier to achieve and to verify this notion is actually not much weaker as the original RPE.
We have the following reduction of RPE to wRPE; see Appendix C.3 for the proof.

20

Proposition 3. Let f = R → [0, 0.14]. Let G : Kn × Kn → Kn be an n-share gadget. If G is
(t, f)-wRPE then G is (t, f ′)-RPE with f ′(·) = f(·) + 3

2f(·)2.

Assume that we can show or verify that a gadget is wRPE with the following failure event
probabilities

Pr(F1) = f1(p) , Pr(F2) = f2(p) and Pr(F1 ∧ F2) = f12(p) ,

for every p ∈ [0, 1]. Then the above proposition implies that the gadget is (p, f)-RPE with

f : p 7→ fmax(p) +
3

2
fmax(p)2 with fmax = max(f1, f2,

√
f12) .

We shall base our verification of the RPE property on the above equation as we describe hereafter.

5.6 Verification of Gadget Expandability

We can easily adapt our automatic tool to verify the weak random probing expandability for base
gadgets (Definition 9). Basically, the verification is split into two steps that we first describe for
the case of addition and multiplication gadgets with fan-in 2 and fan-out 1.

In a first step, our tool computes the function f to check the (t, f)-wRPE property for output sets
of shares of cardinal at most t. For 2-input gadgets, this step leads to the computation of coefficients
ci corresponding to three failure events F1, F2, and F1∧F2 as defined above but restricted to output
sets of shares of cardinal less than t. The process is very similar to the verification of random probing
composability but requires to separate the failure events counter into failure events for the first input
(|I1| > t), for the second input (|I2| > t) or for both ((|I1| > t) ∧ (|I2| > t)). In the following, we

denote the three functions formed from the corresponding coefficients as f
(1)
1 , f

(1)
2 , and f

(1)
12 .

Then, in a second step, our tool verifies that there exists at least one set of n−1 shares for each
output, such that the simulation failure is limited by f(p) for some probability p ∈ [0, 1]. In that
case, it still loops on the possible output sets of shares (of cardinal n− 1) but instead of computing
the maximum coefficients, it determines whether the simulation succeeds for at least one of such
sets. A failure event is recorded for a given tuple if no output sets of cardinal n−1 can be simulated
together with this tuple from at most t shares of each input. As for the first verification step, we

record the resulting coefficients for the three failure events to obtain functions f
(2)
1 , f

(2)
2 , and f

(2)
12 .

From these two steps, we can deduce f such that the gadget is (t, f)-wRPE:

∀p ∈ [0, 1], f(p) = max(f1(p), f2(p),
√
f12(p))

with

fα(p) = max(f (1)
α (p), f (2)

α (p)) for α ∈ {1, 2, 12}

The computation of f for a gadget to satisfy (t, f)-weak random probing expandability is a bit
trickier for copy gadgets which produce two outputs. Instead of two verification steps considering
both possible ranges of cardinals for the output set of shares J , we need to consider four scenarios
for the two possible features for output sets of shares J1 and J2. In a nutshell, the idea is to follow
the first verification step described above when both J1 and J2 have cardinal equal or less than
t and to follow the second verification step described above when both J1 and J2 have greater
cardinals. This leads to functions f (1) and f (2). Then, two extra cases are to be considered, namely

21

when (|J1| ≤ t) and (|J2| > t) and the reverse when (|J1| > t) and (|J2| ≤ t). To handle these
scenarios, our tool loops over the output sets of shares of cardinal equal or less than t for the first
output, and it determines whether there exists a set of n − 1 shares of the second output that a
simulator can perfectly simulate with the leaking wires and the former set. This leads to function
f (12) and reversely to function f (21). From these four verification steps, we can deduce f such that
the copy gadget is (t, f)-wRPE:

∀p ∈ [0, 1], f(p) = max(f (1)(p), f (2)(p), f (12)(p), f (21)(p)).

Once gadgets have been proven (t, f)-weak RPE, they are also proven to be (t, f ′)-RPE from
Proposition 3 with f ′ : p 7→ f(p) + 3

2f(p)2. Examples of such computations for 3-share gadgets are
provided in Section 6.

6 New Constructions

In this section, we exhibit and analyze (1, f)-wRPE gadgets for the addition, multiplication, and
copy (on any base field K) to instantiate the expanding circuit compiler. These gadgets are sound
in the sense that their function f has amplification order strictly greater than one. As explained
in previous sections, an amplification order strictly greater than one guarantees that there exists
a probability pmax ∈ [0, 1] such that ∀p ≤ pmax, f(p) ≤ p, which is necessary to benefit from the
expansion. For 2-input gadgets, f is defined as the maximum between f1, f2, and

√
f12. Therefore,

the constraint on the amplification order also applies to the functions f1, f2, and
√
f12. For the

function f12, this means that the amplification order should be strictly greater than two.
We start hereafter with an impossibility result, namely there are no (2-share, 2-to-1) (1, f)-

RPE gadgets such that f has an amplification order greater than one. Then, we provide concrete
instantiations of addition, multiplication, and copy gadgets based on 3 shares which successfully
achieve (1, f)-RPE for amplification order greater than one and can be used in the expansion
compiler.

6.1 About 2-Share Gadgets

Consider a gadget G with a 2-share single output z = (z0, z1) and two 2-share inputs x = (x0, x1)
and y = (y0, y1). We reasonably assume that the latter are the outputs of gates with fan-in at most
two (and not direct input shares). For G to be (1, f)-RPE with f of amplification order strictly
greater than one, then f12 must be of amplification strictly greater than two. In other words, we
should be able to exhibit a simulator such that one share of each input is enough to simulate
anyone of the output shares and an arbitrary couple of leaking wires. But the output wire z0 and
both input gates of the second output share z1 represent the full output and require the knowledge
of both inputs to be simulated. Therefore, f12 has a non-zero coefficient in p and is thus not of
amplification order strictly greater than two. We thus restrict our investigation to n-share gadgets,
with n ≥ 3 to instantiate our compiler.

In the upcoming gadget descriptions, notice that variables ri are fresh random values, operations
are processed with the usual priority rules, and the number of implicit copy gates can be deduced
from the occurrences of each intermediate variable such that n occurrences require n − 1 implicit
copy gates. Also, the function expression below each gadget corresponds to the function obtained
from our verification tool when verifying weak random probing expandability. It implies that the
gadget is (t, f)-wRPE for t usually equal to one except when defined otherwise. A more complete
description of each function (with more coefficients) is available in Appendix D.1.

22

6.2 Addition Gadgets

The most classical masked addition schemes are sharewise additions which satisfy the simpler
probing security property. Basically, given two input n-sharings x and y, such an addition computes
the output n-sharing z as z1 ← x1 + y1, z2 ← x2 + y2, . . . , zn ← xn + yn. Unfortunately, such
elementary gadgets do not work in our setting. Namely consider an output set of shares J of
cardinality t. Then, for any n, there exists sets W of leaking wires of cardinality one such that no
set I of cardinality ≤ t can point to input shares that are enough to simulate both the leaking wire
and the output shares of indexes in J . For instance, given a set J = {1, . . . , t}, if W contains xt+1,
then no set I of cardinal ≤ t can define a set of input shares from which we can simulate both the
leaking wire and z1, . . . , zt. Indeed, each zi for 1 ≤ i ≤ t requires both input shares xi and yi for its
simulation. Thus, a simulation set I would contain at least {1, . . . , t} and t + 1 for the simulation
of the leaking wire. I would thus be of cardinal t+ 1 which represents a failure event in the random
probing expandability definition. As a consequence, such a n-share addition gadget could only be
(t, f)-RPE with f with a first coefficient c1 as defined in Section 3 strictly positive. In other words,
f would be of amplification order one such that ∀p ∈ [0, 1], f(p) ≥ p.

In the following, we introduce two 3-share addition gadgets. From our automatic tool, both are
(1, f)-wRPE with f of amplification order strictly greater than one. Basically, in our first addition
gadget G1

add, both inputs are first refreshed with a circular refreshing gadget as originally introduced
in [6]:

G1
add : z0 ← x0 + r0 + r1 + y0 + r3 + r4

z1 ← x1 + r1 + r2 + y1 + r4 + r5 fmax(p) =
√

10p3/2 +O(p2)

z2 ← x2 + r2 + r0 + y2 + r5 + r3

The second addition gadget G2
add simply rearranges the order of the refreshing variables:

G2
add : z0 ← x0 + r0 + r4 + y0 + r1 + r3

z1 ← x1 + r1 + r5 + y1 + r2 + r4 fmax(p) =
√

69p2 +O(p3)

z2 ← x2 + r2 + r3 + y2 + r0 + r5

In each gadget, x and y are the input sharings and z the output sharing; fmax additionally
reports the maximum of the first non zero coefficient (as defined in Section 3) of the three functions
f1, f2, and f12, as defined in the previous section, obtained for the random probing expandability
automatic verifications. A further definition of these functions can be found in Appendix D.1. Note
that both gadgets G1

add and G2
add are built with 15 addition gates and 6 implicit copy gates.

6.3 Multiplication Gadget

We start by proving an impossibility result: no 3-share multiplication gadget composed of direct
products between input shares satisfies (1, f)-RPE with amplification order strictly greater than
one. Consider such a gadget G with two 3-input sharings x and y whose shares are directly mul-
tiplied together. Let (xi · yj) and (xk · y`) be two such products such that i, j, k, ` ∈ [3] and i 6= k
and j 6= `. If both results are leaking, then the leakage can only be simulated using the four input
shares. Namely, {i, k} ⊆ I1 and {j, `} ⊆ I2. This scenario represents a failure since cardinals of
I1 and I2 are both strictly greater than one. As a consequence, function f12 which records the

23

failures for both inputs is defined with a coefficient c2 at least equal to one. Hence f12 is not of
amplification greater than two and f cannot be of amplification order greater than one. Regular
3-share multiplication gadgets consequently cannot be used as base gadgets of our compiler.

To circumvent this issue, we build a 3-share multiplication gadget G1
mult whose both inputs are

first refreshed, before any multiplication is performed:

u0 ← x0 + r5 + r6; u1 ← x1 + r6 + r7; u2 ← x2 + r7 + r5

v0 ← y0 + r8 + r9; v1 ← y1 + r9 + r10; v2 ← y2 + r10 + r8

z0 ←
(
u0 · v0 + r0

)
+
(
u0 · v1 + r1

)
+
(
u0 · v2 + r2

)

z1 ←
(
u1 · v0 + r1

)
+
(
u1 · v1 + r4

)
+
(
u1 · v2 + r3

)

z2 ←
(
u2 · v0 + r2

)
+
(
u2 · v1 + r3

)
+
(
u2 · v2 + r0

)
+ r4

fmax(p) =
√

83p3/2 +O(p2)

6.4 Copy Gadget

We exhibit a 3-share (1, f)-wRPE copy gadget G1
copy with f of amplification order strictly greater

than one:

v0 ← u0 + r0 + r1; w0 ← u0 + r3 + r4

v1 ← u1 + r1 + r2; w1 ← u1 + r4 + r5 fmax(p) = 33p2 +O(p3)

v2 ← u2 + r2 + r0; w2 ← u2 + r5 + r3

It simply relies on two calls of the circular refreshing from [6] on the input. This last gadget is made
of 6 addition gates and 9 implicit copy gates.

6.5 Complexity and Tolerated Probability

Following the asymptotic analysis of Section 5.2, our construction yields the following instantiation
of the matrix M

M =




15 12 28 0
6 9 23 0
0 0 9 0
6 6 11 3


 (17)

with

Mac =

(
15 12
6 9

)
and Nmult,m = 9 .

The eigenvalues of Mac are 3 and 21, which gives Nmax = 21. We also have a random probing
expandability with function f of amplification order d = 3

2 . Hence we get

e =
logNmax

log d
=

log 21

log 1.5
≈ 7.5

24

which gives a complexity of |Ĉ| = O
(
|C| · κ7.5

)
. Finally, it can be checked from the coefficients of

the RPE functions given in Appendix D that our construction tolerates a leakage probability up
to

pmax ≈ 0.0045 > 2−8 .

This corresponds to the maximum value p for which we have f(p) < p which is a necessary and
sufficient condition for the expansion strategy to apply with (t, f)-RPE gadgets.

As explained in Sec. 5.2, we can compute the new gate count vectors for each of the compiled

gadgets G
2(k)
add , G

1(k)
copy, G

1(k)
mult by computing the matrix Mk. In Fig. 5, we plot the total number of

gates (Na +Nc +Nm +Nr) in each of the compiled gadgets as a function of the level k. For instance,
for level k = 9 the number of gates in the compiled gadgets is around 1012. For the latter level and
assuming a leakage probability of p = 0.0045 (which is the maximum we can tolerate), we achieve
a security of ε ≈ 2−76. On its right side, Fig. 6 plots the values taken by the function f such that
the gadgets G1

add, G2
add, G1

mult and G1
copy are (t, f)-RPE.

Fig. 5: Number of gates for G
2(k)
add , G

1(k)
copy, G

1(k)
mult circuits

with respect to the level k. Fig. 6: Values taken by the function f for (t, f)-RPE

7 Comparison with Previous Constructions

In this section, we compare our scheme to previous constructions. Specifically, we first compare
it to the well-known Ishai-Sahai-Wagner (ISW) construction and discuss the instantiation of our
scheme from the ISW multiplication gadget. Then we exhibit the asymptotic complexity (and
tolerated leakage probability) of the Ananth-Ishai-Sahai compiler and compare their results to our
instantiation.

7.1 Comparison with ISW

The classical ISW construction [20] is secure in the t-probing model when the adversary can learn
any set of t intermediate variables in the circuit, for n = 2t + 1 shares. This can be extended to t
probes per gadget, where each gadget corresponds to a AND or XOR gate in the original circuit.
Using Chernoff bound, security in the t-probing model per gadget implies security in the p-random
probing model, where each wire leaks with probability p, with p = O(t/|G|), where |G| is the
gadget size. Since in ISW each gadget has complexity O(t2), this gives p = O(1/t). Therefore, in

25

the p-random probing model, the ISW construction is only secure against a leakage probability
p = O(1/n), where the number of shares n must grow linearly with the security parameter κ in
order to achieve security 2−κ. This means that ISW does not achieve security under a constant
leakage probability p; this explains why ISW is actually vulnerable to horizontal attacks [7], in
which the adversary can combine information from a constant fraction of the wires.

ISW-based instantiation of the expanding compiler. In our instantiation, we choose to con-
struct a new 3-share multiplication gadget instead of using the ISW multiplication gadget from [20].
In fact, ISW first performs a direct product of the secret shares before adding some randomness,
while we proved in Section 6 that no such 3-share multiplication gadget made of direct products
could satisfy (1, f)-RPE with amplification order strictly greater than one. Therefore the ISW
gadget is not adapted for our construction with 3 shares.

Table 1 displays the output of our tool when run on the ISW gadget for up to 7 shares with
different values for t. It can be seen that an amplification order strictly greater than one is only
achieved for t > 1, with 4 or more shares. And an order of 3/2 is only achieved with a minimum of
4 shares for t = 2, whereas we already reached this order with our 3-share construction for t = 1.
If we use the 4-share ISW gadget with appropriate 4-share addition and copy gadgets instead of
our instantiation, the overall complexity of the compiler would be greater, while the amplification
order would remain the same, and the tolerated leakage probability would be worse (recall that
our instantiation tolerates a maximum leakage probability p ≈ 2−8, while 4-share ISW tolerates
p ≈ 2−9.83). Clearly, the complexity of the 4-share ISW gadget (Na, Nc, Nm, Nr) = (24, 30, 16, 6) is
higher than that of our 3-share multiplication gadget (Na, Nc, Nm, Nr) = (28, 23, 9, 11). In addition,
using 3-share addition and copy gadgets (as in our case) provides better complexity than 4-share
gadgets. Hence to reach an amplification order of 3/2, a 4-share construction with the ISW gadget
would be more complex and would offer a lower tolerated leakage probability.

For higher amplification orders, the ISW gadgets with more than 4 shares or other gadgets can
be studied. This is a open construction problem as many gadgets can achieve different amplification
orders and be globally compared.

7.2 Complexity of the Ananth-Ishai-Sahai Compiler

The work from [2] provides a construction of circuit compiler (the AIS compiler) based on the
expansion strategy described in Section 5 with a (p, ε)-composable security property, analogous to
our (t, f)-RPE property. To this purpose, the authors use an (m, c)-multi-party computation (MPC)
protocol Π. Such a protocol allows to securely compute a functionality shared among m parties and
tolerating at most c corruptions. In a nutshell, their composable circuit compiler consists of multiple
layers: the bottom layer replaces each gate in the circuit by a circuit computing the (m, c)-MPC
protocol for the corresponding functionality (either Boolean addition, Boolean multiplication, or
copy). The next k − 1 above layers apply the same strategy recursively to each of the resulting
gates. As this application can eventually have exponential complexity if applied to a whole circuit
C directly, the top layer of compilation actually applies the k bottom layers to each of the gates of C
independently and then stitches the inputs and outputs using the correctness of the XOR-encoding
property. Hence the complexity is in

O(|C| ·Nk
g) , (18)

where |C| is the number of gates in the original circuit and Ng is the number of gates in the circuit
computing Π. The authors of [2] prove that such compiler satisfies (p, ε)-composition security

26

Table 1: Complexity, amplification order and maximum tolerated leakage probability of the ISW multiplication
gadgets. Some leakage probabilities were not computed accurately by VRAPS for performances reasons. An interval
on these probabilities is instead given by evaluating lower and upper bound functions finf and fsup of f(p).

shares Complexity
(Na, Nc, Nm, Nr)

t Amplification
order

log2 of maximum tolerated
leakage probability

3 (12, 15, 9, 3) 1 1 −
4 (24, 30, 16, 6)

1 1 −
2 3/2 −9.83

5 (40, 50, 25, 10)
1 1 −
2 3/2 −11.00
3 2 −8.05

6 (60, 75, 36, 15)

1 1 −
2 3/2 −13.00
3 2 [−9.83,−7.87]
4 2 [−9.83,−5.92]

7 (84, 105, 49, 21)

1 1 −
2 3/2 [−16.00,−14.00]
3 2 [−12.00,−7.87]
4 5/2 [−12.00,−2.27]
5 2 [−12.00,−3.12]

property, where p is the tolerated leakage probability and ε is the simulation failure probability.
Precisely:

ε = N c+1
g · pc+1 (19)

Equations (18) and (19) can be directly plugged into our asymptotic analysis of Sec. 5.2, with Ng

replacing our Nmax and where c+ 1 stands for our amplification order d. The obtained asymptotic
complexity for the AIS compiler is

O
(
|C| · κe

)
with e =

logNg

log c+ 1
. (20)

This is to be compared to e = logNmax

log d in our scheme. Moreover, this compiler can tolerate a leakage
probability

p =
1

N2
g

.

The authors provide an instantiation of their construction using an existing MPC protocol
due to Maurer [22]. From their analysis, this protocol can be implemented with a circuit of Ng =

(4m−c) ·
((
m−1
c

)2
+2m

(
m
c

))
gates. They instantiate their compiler with this protocol for parameters

m = 5 parties and c = 2 corruptions, from which they get Ng = 5712. From this number of gates,
they claim to tolerate a leakage probability p = 1

57122
≈ 2−25 and our asymptotic analysis gives

a complexity of O
(
|C| · κe

)
with e ≈ 7.87 according to (20). In Appendix E, we give a detailed

analysis of the Maurer protocol [22] in the context of the AIS compiler instantiation. From our
analysis, we get the following number of gates for the associated circuit:

Ng = (6m− 5) ·
((

m− 1

c

)2

+m(2k − 2) + 2k2

)
where k =

(
m

c

)
.

27

Using the parameters m = 5 and c = 2 from the AIS compiler instantiation [2], we get Ng = 8150.
This yields a tolerated leakage probability of p ≈ 2−26 and an exponent e = log 8150/log 3 ≈ 8.19
in the asymptotic complexity O

(
|C| · κe

)
of the AIS compiler.

These results are to be compared to the p ≈ 2−8 and e ≈ 7.5 achieved by our construction. In
either case (Ng = 5712as claimed in [2] or Ng = 8150 according to our analysis), our construction
achieves a slightly better complexity while tolerating a much higher leakage probability. We stress
that further instantiations of the AIS scheme (based on different MPC protocols) or of our scheme
(based on different gadgets) could lead to better asymptotic complexities and/or tolerated leakage
probabilities. This is an interesting direction for further research.

8 Implementation Results

In this section, we describe and report the performances of a proof-of-concept implementation of
the expanding compiler with our base gadgets as well as a protected AES implementation. The
source code of these implementations are publicly available at:

https://github.com/CryptoExperts/poc-expanding-compiler

All implementations were run on a laptop computer (Intel(R) Core(TM) i7-8550U CPU, 1.80GHz
with 4 cores) using Ubuntu operating system and various C, python and sage libraries.

8.1 Circuit Compiler

First, we developed an implementation in python of a compiler CC, that given three n-share gadgets

Gadd, Gmult, Gcopy and an expansion level k, outputs the compiled gadgets G
(k)
add, G

(k)
copy ,G

(k)
mult,

each as a C function. The variables’ type is given as a command line argument. Table 2 shows
the complexity of the compiled gadgets from Section 6 using the compiler with several expansion
levels k, as well as their execution time in milliseconds when run in C on randomly generated 8-
bit integers. For the generation of random variables, we consider that an efficient external random
number generator is available in practice, and so we simply use the values of an incremented counter
variable to simulate random gates.

Table 2: Complexity and execution time (in ms, on an Intel i7-8550U CPU) for compiled gadgets G
2(k)
add , G

1(k)
copy, G

1(k)
mult

from Section 6 implemented in C.

k # shares Gadget Complexity (Na, Nc, Nm, Nr) Execution time

1 3
G

2(1)
add (15, 6, 0, 6) 1, 69.10−4

G
1(1)
copy (12, 9, 0, 6) 1, 67.10−4

G
1(1)
mult (28, 23, 9, 11) 5, 67.10−4

2 9
G

2(2)
add (297, 144, 0, 144) 2, 21.10−3

G
1(2)
copy (288, 153, 0, 144) 2, 07.10−3

G
1(2)
mult (948, 582, 81, 438) 9, 91.10−3

3 27
G

2(3)
add (6183, 3078, 0, 3078) 9, 29.10−2

G
1(3)
copy (6156, 3105, 0, 3078) 9, 84.10−2

G
1(3)
mult (23472, 12789, 729, 11385) 3, 67.10−1

28

It can be observed that both the complexity and running time grow by almost the same factor
with the expansion level, with multiplication gadgets being the slowest as expected. Base gadgets
with k = 1 roughly take 10−4 ms, while these gadgets expanded 2 times (k = 3) take between
10−2 and 10−1 ms. The difference between the linear cost of addition and copy gadgets, and the
quadratic cost of multiplication gadgets can also be observed through the gadgets’ complexities.

8.2 AES Implementation

We describe hereafter a proof-of-concept AES implementation protected with our instantiation of
the expanding compiler. We start by describing the underlying AES circuit (over K = GF(256)),
followed by an analysis of the implementation in C of the complete algorithm.

AES circuit. We first describe the non-linear part of the AES, namely the sbox computa-
tion. For the field exponentiation (x 7→ x254 over GF(256)), we use the circuit representation
of the processing proposed in [16] and presented in Fig. 7. It corresponds to the addition chain
(1, 2, 4, 8, 9, 18, 19, 36, 55, 72, 127, 254) and it has been chosen due to its optimality regarding the
number of multiplications (11 in total). Each time an intermediate result had to be reused, a copy
gate (marked with ‖) has been inserted.

x ‖
‖
× ‖ × ‖ × ×

‖

‖ × ‖
‖
×

× ‖
‖
×

× × ‖ ×1 2 9

19

4 8 18 36 72 127 254

Fig. 7: Circuit for the exponentiation x 7→ x254.

For the second part of the sbox, the affine function is implemented according to the following
equation:

Affine(x) = (((((((207x)2 + 22x)2 + 1x)2 + 73x)2 + 204x)2 + 168x)2 + 238x)2 + 5x+ 99

with the necessary copy gates. Similarly, the inverse of the affine function is implemented for the
sbox inversion as follows:

Affine−1(x) = (((((((147x)2 + 146x)2 + 190x)2 + 41x)2 + 73x)2 + 139x)2 + 79x)2 + 5x+ 5

The rest of the operations (MixColumns, ShiftRows, AddRoundKey) are considered as in a standard
AES, while adding the necessary copy gates.

Gate count: Table 3 displays the gate count vectors for AES-128 encryption/decryption proce-
dures as well as for their building blocks. The sbox (resp. sbox inversion) gate count vector was
computed as the sum of the gate count vectors of both the exponentiation and affine (resp. affine
inversion) functions. We recall that Na, Nc, Nm, Nr stand for the number of addition gates, copy
gates, multiplication gates, and random gates, respectively.

Using the gadgets G2
add, G1

mult and G1
copy proposed in Sec. 6 for the compilation of the AES

algorithm, we obtain the instantiation given in Equation (17) of the matrix M introduced in Sec.

29

Table 3: AES operations complexity.

AES Operation Complexity (Na, Nc, Nm, Nr)

AddRoundKey (for 1 byte) (1, 0, 0, 0)

SubBytes (for 1 byte) (8, 25, 26, 0)

MixColumns (for all columns) (60, 60, 16, 0)

ShiftRows (for all rows) (0, 0, 0, 0)

AES-128 encryption (1996 , 4540 , 4304 , 0)

SubBytes Inversion (for 1 byte) (8, 25, 26, 0)

MixColumns Inversion (for all columns) (104, 104, 36, 0)

ShiftRows Inversion (for all rows) (0, 0, 0, 0)

AES-128 decryption (2392 , 4936 , 4484 , 0)

5.2. Applying the same complexity analysis done previously on the gate count vectors, we display
in Fig. 8 the total number of gates in the AES-128 encryption/decryption procedures as functions
of the level k. For instance, for the same security level of 2−76 exhibited in Sec. 6.5 for the gadgets
of Fig. 5, the AES-128 would have to be compiled at a level k = 9, and would count around 1016

gates.

Fig. 8: Number of gates after compilation of AES-128 encryption/decryption circuits with respect to the level k.

Implementation in C: An n-share AES-128 implementation was developed in C from the above
description. Compiled gadgets from Section 8.1 were used for basic operations (addition, multipli-
cation, copy), as generated using our circuit compiler described in Sec. 8.1. We chose the C 8-bit
unsigned integer type, and considered operations in GF(256). For the generation of random values,
we assume the availability of an efficient (pseudo)random number generator, and so we simply
considered the values of an incremented counter variable to simulate the cost.

Table 4 shows the AES-128 execution time on a 16-byte message with 10 pre-computed sub-

keys, using compiled gadgets G
2(k)
add , G

1(k)
copy, G

1(k)
mult, with respect to the expansion level k and sharing

order n = 3k. It can be seen that the execution time increases with the expansion level with a
similar growth as in Table 2. This is because the complexity of the AES circuit strongly depends
on the gadgets that are used to replace each gate in the original arithmetic circuit. For example,

30

with our 3-share gadgets that tolerate a leakage probability of p ≈ 2−8, a 27-share (k = 3) AES-128
takes almost 200 milliseconds to encrypt or decrypt a message.

Table 4: Standard and n-share AES-128 execution time (in ms, on an Intel i7-8550U CPU) using compiled gadgets

G
2(k)
add , G

1(k)
copy, G

1(k)
mult.

AES Version
Execution Time (in ms)

Encryption Decryption

Standard (no sharing) 0.06 0.05

3-share (k = 1) 1.08 1.07

9-share (k = 2) 11.71 10.26

27-share (k = 3) 200.29 197.70

Acknowledgments. This work is partly supported by the French FUI-AAP25 VeriSiCC project.

References

1. Miklós Ajtai. Secure computation with information leaking to an adversary. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd Annual ACM Symposium on Theory of Computing, pages 715–724, San Jose, CA, USA,
June 6–8, 2011. ACM Press.

2. Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular approach. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture
Notes in Computer Science, pages 427–455, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg,
Germany.

3. Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with O(1/ log(n)) leakage
rate. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 586–615, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

4. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub.
Verified proofs of higher-order masking. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
– EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science, pages 457–485, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany.

5. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub,
and Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd
Conference on Computer and Communications Security, pages 116–129, Vienna, Austria, October 24–28, 2016.
ACM Press.

6. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier Standaert, and Pierre-
Yves Strub. Parallel implementations of masking schemes and the bounded moment leakage model. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I, volume
10210 of Lecture Notes in Computer Science, pages 535–566, Paris, France, April 30 – May 4, 2017. Springer,
Heidelberg, Germany.

7. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
Cryptographic Hardware and Embedded Systems – CHES 2016, volume 9813 of Lecture Notes in Computer Science,
pages 23–39, Santa Barbara, CA, USA, August 17–19, 2016. Springer, Heidelberg, Germany.

8. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.
Randomness complexity of private circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, pages
616–648, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

31

9. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.
Private multiplication over finite fields. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer Science, pages 397–426, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

10. Sonia Beläıd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and Raphaël Wintersdorff. Tornado:
Automatic generation of probing-secure masked bitsliced implementations. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, Part III, volume 12107 of Lecture Notes in Computer
Science, pages 311–341, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

11. Sonia Beläıd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits: Achieving probing security with the
least refreshing. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,
Part II, volume 11273 of Lecture Notes in Computer Science, pages 343–372, Brisbane, Queensland, Australia,
December 2–6, 2018. Springer, Heidelberg, Germany.

12. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 398–412, Santa Barbara, CA, USA, August 15–19, 1999. Springer,
Heidelberg, Germany.

13. Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran Raz, and Ron D. Rothblum.
Efficient multiparty protocols via log-depth threshold formulae - (extended abstract). In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 185–202, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

14. Jean-Sébastien Coron. Formal verification of side-channel countermeasures via elementary circuit transforma-
tions. In Bart Preneel and Frederik Vercauteren, editors, ACNS 18: 16th International Conference on Applied
Cryptography and Network Security, volume 10892 of Lecture Notes in Computer Science, pages 65–82, Leuven,
Belgium, July 2–4, 2018. Springer, Heidelberg, Germany.

15. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-order side channel security
and mask refreshing. In Shiho Moriai, editor, Fast Software Encryption – FSE 2013, volume 8424 of Lecture
Notes in Computer Science, pages 410–424, Singapore, March 11–13, 2014. Springer, Heidelberg, Germany.

16. Ivan Damg̊ard and Marcel Keller. Secure multiparty AES. In Radu Sion, editor, FC 2010: 14th International
Conference on Financial Cryptography and Data Security, volume 6052 of Lecture Notes in Computer Science,
pages 367–374, Tenerife, Canary Islands, Spain, January 25–28, 2010. Springer, Heidelberg, Germany.

17. Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing attacks to
noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014,
volume 8441 of Lecture Notes in Computer Science, pages 423–440, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany.

18. Louis Goubin and Jacques Patarin. DES and differential power analysis (the “duplication” method). In Çetin
Kaya Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES’99, volume 1717
of Lecture Notes in Computer Science, pages 158–172, Worcester, Massachusetts, USA, August 12–13, 1999.
Springer, Heidelberg, Germany.

19. Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect multiparty
computation. Journal of Cryptology, 13(1):31–60, January 2000.

20. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks. In Dan
Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 463–481, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

21. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J. Wiener, editor,
Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397,
Santa Barbara, CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

22. Ueli M. Maurer. Secure multi-party computation made simple (invited talk). In Stelvio Cimato, Clemente Galdi,
and Giuseppe Persiano, editors, SCN 02: 3rd International Conference on Security in Communication Networks,
volume 2576 of Lecture Notes in Computer Science, pages 14–28, Amalfi, Italy, September 12–13, 2003. Springer,
Heidelberg, Germany.

23. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Moni Naor, editor,
TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in Computer Science, pages
278–296, Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany.

24. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security proof. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881
of Lecture Notes in Computer Science, pages 142–159, Athens, Greece, May 26–30, 2013. Springer, Heidelberg,
Germany.

32

25. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems – CHES 2010, volume 6225
of Lecture Notes in Computer Science, pages 413–427, Santa Barbara, CA, USA, August 17–20, 2010. Springer,
Heidelberg, Germany.

A Proof of Proposition 1

Proof. Since G is t-SNI there exist two simulators SimG
1 and SimG

2 satisfying (8) and (9) for any
J ⊆ [n] and anyW satisfying |W|+ |J | 6 t. This is in particular true for everyW and every J both
of cardinality lower than or equal to t

2 . For every set W such that |W| > t
2 and every set J such

that |J | 6 t
2 , we modify simulator SimG

1 to return the full set of input indices (i.e. I = [n]`). Then,

the second simulator SimG
2 is simply augmented to perfectly simulate (AssignWires(G,W, x̂) , ŷ|J)

from the full knowledge of the gadget inputs (which is trivially possible). By construction, for any
J with |J | 6 t

2 , the output I = (I1, . . . , I`) of SimG
1 (W, J) contains at least one Ij with cardinality

greater than t
2 only when W has cardinality strictly greater than t

2 (and in this case all the Ij ’s
have full cardinality [n]). Hence, the probability Pr

(
(|I1| > t

2) ∨ . . . ∨ (|I`| > t
2)
)

when J is a given
set with |J | 6 t

2 andW is the output of LeakingWires(G, p) satisfies (10), which concludes the proof.
�

B Random Probing Expandability for 1-to-2 Gadgets

We provide hereafter the formal definition of the RPE notion for gadgets with 1 input sharing and
2 output sharings.

Definition 11 (Random Probing Expandability). Let f = R → R. An n-share gadget G :
Kn → Kn×Kn is (t, f)-random probing expandable (RPE) if there exists a deterministic algorithm
SimG

1 and a probabilistic algorithm SimG
2 such that for every input x̂ ∈ Kn, for every pair of sets

J1 ⊆ [n] and J2 ⊆ [n], and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I, J ′1, J
′
2)← SimG

1 (W, J1, J2)

out← SimG
2 (W, J ′1, J

′
2, x̂|I)

ensures that

1. the failure event probability satisfies Pr
(
|I| > t

)
≤ ε with ε = f(p),

2. the set J ′1 is such that J ′1 = J1 if |J1| ≤ t and J ′1 ⊆ [n] with |J ′1| = n− 1 otherwise,

3. the set J ′2 is such that J ′2 = J2 if |J2| ≤ t and J ′2 ⊆ [n] with |J ′2| = n− 1 otherwise,

4. the output distribution satisfies

out
id
=
(
AssignWires(G,W, x̂) , ŷ|J ′1 , ẑ|J ′2

)
(21)

where (ŷ, ẑ) = G(x̂).

33

C Expandability

C.1 Illustration of the subsets Sk

∈ S1

∈ S1

∈ S1

∈ S2

∈ S2

∈ S2

Fig. 9: Illustration of all elements of S1 and some elements of S2, for n = 3 and t = 1.

C.2 Proof of Theorem 2

The proof of the theorem relies on what we shall call the assignment expansion property. Through-
out the proof we shall denote εk = f (k)(p). We call level-k gadget a gadget that has been expanded
k − 1 times G(k) = CC(k−1)(G) where G is a base gadget (or a level-1 gadget) among Gadd, Gmult,
Gcopy.

We proceed by induction to show that the level-k gadgets are (Sk, f
(k))-RPE. The base case

is one of the theorem hypotheses, namely the base gadgets Gadd, Gmult and Gcopy (i.e. the level-1
gadgets) are (t, f)-RPE, which is equivalent to (S1, f)-RPE. We must then show the induction
step: assuming that the level-k gadgets are (Sk, f

(k))-RPE, show that the level-(k + 1) gadgets are
(Sk+1, f

(k+1))-RPE. For the sake of simplicity, we depict our proof by assuming that all the gadgets
are 2-to-1 gadget (which is actually not the case for copy gadgets). The proof mechanism for the
general case (with 2-to-1 and 1-to-2 gadgets) is strictly similar but heavier on the form.

In order to show that G(k+1) is (Sk+1, f
(k+1))-RPE we must construct two simulators SimG(k+1)

1

and SimG(k+1)

2 that satisfy the conditions of Definition 10 for the set of subsets Sk+1. More precisely,

we must construct two simulators SimG(k+1)

1 and SimG(k+1)

2 such that for every (x̂∗, ŷ∗) ∈ Knk+1 ×
Knk+1

, and for every set J∗ ∈ Sk+1 ∪ [nk+1], the random experiment

W∗ ← LeakingWires(G(k+1), p)

(I∗1 , I
∗
2 , J

∗′)← SimG
1 (W∗, J∗)

out← SimG
2 (W∗, J∗, x̂∗|I∗1 , ŷ

∗|I∗2)

ensures that

1. the failure events F∗1 ≡
(
I∗1 /∈ Sk+1) and F∗2 ≡

(
I∗2 /∈ Sk+1) verify

Pr(F∗1) = Pr(F∗2) = εk+1 and Pr(F∗1 ∧ F∗2) = ε2
k+1 (22)

2. the set J∗′ is such that J∗′ = J∗ if J∗ ∈ Sk+1 and J∗′ = [nk+1] \ {j?} otherwise,

34

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J∗′

)
(23)

where ẑ = G(k+1)(x̂, ŷ).
We distinguish two cases: either J∗ ∈ Sk+1 (normal case), or J∗ = [nk+1] (saturated case).

Normal case: J∗ ∈ Sk+1. By definition of the expanding compiler, we have that a level-(k + 1)
gadget G(k+1) is obtained by replacing each gate of the base gadget by the corresponding level-k
gadget and by replacing each wire of the base gadget by nk wires carrying a (nk)-linear sharing of
the original wire. In particular G(k+1) has nk+1 output wires which can be split in n groups of nk

wires, each group being the output of a different G(k) gadget. We split the set J∗ accordingly so
that J∗ = J∗1 ∪ · · · ∪ J∗n, where each set J∗i pertains to the ith group of output wires. By definition
of Sk, since J∗ ∈ Sk+1, we must have J∗i ∈ Sk for all 1 ≤ i ≤ n, except at most t of them for
which J∗i = [nk]. We define Jbase as the set of indexes i such that J∗i /∈ Sk. Therefore we must have
|Jbase| ≤ t.

We first describe the simulator SimG(k+1)

1 that takes the leaking wires W∗ and the output wires
J∗ ∈ Sk+1 to be simulated and produce the sets I∗1 ⊆ [nk+1] and I∗2 ⊆ [nk+1] of required inputs.

The simulator SimG(k+1)

1 starts by defining a set Wbase which is initialized to ∅; this will correspond
to the set of leaking wires for the base gadget. Then the simulation goes through all the level-k
gadgets composing G(k+1) from bottom to top i.e. starting with the level-k gadgets producing the

output sharing up to the level-k gadgets processing the input sharings. Let us denote by {G(k)
j }j

these level-k gadgets. For each G
(k)
j , one runs the simulator Sim1 from the (Sk, f

(k))-RPE property
on input Wj and Jj defined as follows. The set of leaking wires Wj is defined as the subset of W∗
corresponding to the wires of G

(k)
j . For the gadgets G

(k)
j on the bottom layer, the set Jj is set to

one of the J∗i (with indices scaled to range in [nk]). For all the other gadgets G
(k)
j (which are not

on the bottom layer), the set J is defined as the set I1 or I2 output from Sim1 for the child gadget
G(k)

j′ (for which Sim1 has already been run).

Whenever a failure event occurs for a G
(k)
j gadget, namely when the set I (either I1 or I2)

output from Sim1 is such that I /∈ Sk, we add the index of the wire corresponding to this input

in the base gadget G to the set Wbase. Once the Sim1 simulations have been run for all the G
(k)
j

gadgets, ending with the top layers, we get the final sets I corresponding to the input shares. Each

of these sets corresponds to an nk-sharing as input of a G
(k)
j gadget, which corresponds to a wire

as input of the base gadget among the 2 · n wires carrying the two input n-sharings of the base
gadget. We denote by I∗1,1, . . . , I∗1,n and I∗2,1, . . . , I∗2,n the corresponding sets so that defining

I∗1 = I∗1,1 ∪ . . . ∪ I∗1,n and I∗2 = I∗2,1 ∪ . . . ∪ I∗2,n , (24)

the tuple x̂∗|I∗1 and ŷ∗|I∗2 contains the shares designated by the final I sets.

At the end of the SimG(k+1)

1 simulation, the set Wbase contains all the labels of wires in the

base gadget G for which a failure event has occurred in the simulation of the corresponding G
(k)
j

gadget. Thanks to the (Sk, f
(k))-RPE property of these gadgets, the failure events happen (mutually

independently) with probability εk which implies

Wbase
id
= LeakingWires(G, εk) (25)

35

Recall that |Jbase| ≤ t. We can then run SimG
1 to obtain:

(I1,base, I2,base) = SimG
1 (Wbase, Jbase) . (26)

For all 1 ≤ i ≤ n, if i ∈ I1,base, we force I∗1,i ← [nk], so that the corresponding i-th input wire of the

base gadget can be computed from the corresponding input wires in I∗1,i. The simulator SimG(k+1)

1

then returns (I∗1 , I
∗
2) as output.

The (t, f)-RPE property of the base gadget G implies that the base failure events |I1,base| = n
and |I2,base| = n are εk+1-mutually unlikely, where εk+1 = f(εk). We argue that for all 1 ≤ i ≤ n,
I∗1,i /∈ Sk ⇐⇒ i ∈ I1,base. Namely if a failure event has occurred for a set I∗1,i (i.e. I∗1,i /∈ Sk) then
we must have i ∈ I1,base. Indeed, if a failure event has occurred for a set I∗1,i then the label of the

ith input wire (for the first sharing) of the base gadget G has been added to Wbase and SimG
1 has

no choice but to include this index to the set I1,base so that SimG
2 can achieve a perfect simulation

of the wire assignment (as required by the RPE property of G). Moreover if i ∈ I1,base then by
construction we have set I∗1,i = [nk] and therefore I∗1,i /∈ Sk. This implies that if |I1,base| ≤ t then
I∗1 ∈ Sk+1 (and the same happens for I∗2 w.r.t. I2,base). We deduce that the failure events F∗1 and
F∗2 are also εk+1-mutually unlikely, as required by the (Sk+1, f

(k+1))-RPE property of G(k+1).

We now describe the simulator SimG(k+1)

2 that takes as input x̂∗|I∗1 and ŷ∗|I∗2 and produces a

perfect simulation of
(
AssignWires(G(k+1),W∗, (x̂∗, ŷ∗)), ẑ|J∗

)
where ẑ = G(k+1)(x̂, ŷ). Let x̂b and

ŷb denote the n-linear sharings obtained by applying the linear decoding to each group of nk shares
in x̂∗ and ŷ∗, so that the elements of x̂b and ŷb correspond to the input wires in the base gadget
G. The assignment expansion property implies that a perfect assignment of the wires of G(k+1) on
input x̂∗ and ŷ∗ can be derived from an assignement of the wires of the base gadget G on input x̂b

and ŷb. The simulator makes use of this property by first running

outbase ← SimG
2 (Wbase, Jbase, x̂

b|I1,base , ŷb|I2,base) , (27)

Note that the input values x̂b|I1,base and ŷb|I2,base can be obtained from the corresponding shares in
I∗1 and I∗2 . Thanks to the (t, f)-RPE property of G and by construction of I1,base and I2,base, this
outputs a distribution satisfying

outbase
id
=
(

AssignWires(G,Wbase, (x̂
b, ŷb)), ẑb|Jbase

)
(28)

The simulator then goes through all the G
(k)
j gadgets from input to output and for each of them

runs the simulator Sim2 of the RPE property on inputs Wj , Jj , x̂|I1 and ŷ|I2 where Wj and Jj are

the sets from the first phase of the simulation for the gadget G
(k)
j , I1 and I2 are the corresponding

sets produced by the Sim1 simulator for G
(k)
j , and x̂ and ŷ are the inputs of G

(k)
j in the evaluation

of G(k+1)(x̂∗, ŷ∗). Provided that the partial inputs x̂|I1 and ŷ|I2 are perfectly simulated, this call

to Sim2 produces a perfect simulation of
(
AssignWires(G

(k)
j ,Wj , (x̂, ŷ), ẑ|Jj

)
where ẑ = G

(k)
j (x̂, ŷ).

In order to get perfect simulations of the partial inputs x̂|I1 and ŷ|I2 , the simulator proceeds as
follows. For the top layer of G(k) gadgets (the ones processing the input shares) the shares x̂|I1 and
ŷ|I2 can directly be taken from the inputs x̂∗|I∗1 and ŷ∗|I∗2 . For the next gadgets the shares x̂|I1 and
ŷ|I2 match the shares ẑ|J output from the call to Sim2 for a parent gadget. The only exception
occurs in case of a failure event.

36

In that case the simulation needs the full input x̂ = (x1, . . . , xnk) (and/or ŷ = (y1, . . . , ynk)),
while we have set |I1| = nk−1 (and/or |I2| = nk−1) to satisfy the RPE requirements of the parent
gadget in the first simulation phase. Nevertheless, for such cases a perfect simulation of the plain
value x = LinDec(x̂) (and/or y = LinDec(ŷ)) is included to outbase by construction of Wbase. We
can therefore perfectly simulate the missing share from the nk − 1 other shares and the plain value

x (or y). We thus get a perfect simulation of
(
AssignWires(G

(k)
j ,Wj , (x̂, ŷ), ẑ|Jj

)
for all the level-k

gadgets G
(k)
j which gives us a perfect simulation of

(
AssignWires(G(k+1),W∗, (x̂∗, ŷ∗)), ẑ|J∗

)
.

Saturated case: J∗ = [nk+1]. The saturated case proceeds similarly. The difference is that we
must simulate all nk+1 output shares of the level-(k+ 1) gadget, except for one share index j∗ that
can be chosen by the simulator.

The simulator SimG(k+1)

1 is defined as previously. Since J∗ = [nk+1], we must define Jbase = [1, n].

Moreover we have J∗i = [nk] for all 1 ≤ i ≤ n. This implies that for the gadgets G
(k)
j on the output

layer, the sets Jj are all equal to [nk] as well. The set Wbase is defined as previously, and the

simulator SimG(k+1)

1 returns (I∗1 , I
∗
2) as previously. The failure events F∗1 and F∗2 are still εk+1-

mutually unlikely, as required by the (Sk+1, f
(k+1))-RPE property of G(k+1).

The simulator SimG(k+1)

2 is defined as previously. In particular, from the running of the base
gadget simulator SimG

2 , we obtain a perfect simulation of the output wires ẑb|J ′base for some J ′base

with |J ′base| = n − 1. Combined with the perfect simulation of the output wires corresponding to

the output sets J ′j from the gadgets G
(k)
j on the output layer, with |J ′j | = nk−1, we obtain a subset

J ′ of output wires for our level-(k + 1) gadget with |J ′| = nk+1 − 1 as required. Eventually this
gives us a perfect simulation of

(
AssignWires(G(k+1),W∗, (x̂∗, ŷ∗)), ẑ|J ′

)
. This terminates the proof

of Theorem 2.

C.3 Proposition 3

We give here the proof of Proposition 3.

Proof. Let SimG
1 be the simulator from the (t, f)-wRPE property. This simulator outputs I1 and

I2 such that

Pr(F1) = ε1 ≤ ε , Pr(F2) = ε2 ≤ ε and Pr(F1 ∧ F2) = ε12 ≤ ε2 , (29)

where F1 ≡ (|I1| > t) and F2 ≡ (|I2| > t). We show how to construct SimG
1
′

which outputs I ′1 and
I ′2 such that

Pr(F ′1) = Pr(F ′2) = ε′ and Pr(F ′1 ∧ F ′2) = (ε′)2 with ε′ = ε+
3

2
ε2 (30)

where F ′1 ≡ (|I ′1| > t) and F ′2 ≡ (|I ′2| > t) and such that I1 ⊆ I ′1 and I2 ⊆ I ′2. In particular, the
latter implies that we can keep the same SimG

2 simulator since it is always given the same input
shares plus additional input shares to achieve the same simulation as before.

The simulator SimG
1
′

first calls the simulator SimG
1 to get I1 and I2. Whenever |I1| and |I2| are

both lower than t, i.e. no failure event occurs, which happens with probability psucc = 1 − (ε1 +

37

ε2 − ε12), SimG
1
′

outputs

(I ′1, I
′
2) =





([n], I2) with probability p1 = δ1/psucc

(I1, [n]) with probability p2 = δ2/psucc

([n], [n]) with probability p12 = δ12/psucc

(I1, I2) with probability 1− (p1 + p2 + p12)

for some δ1, δ2, δ12 ≥ 0 such that δ1 + δ2 + δ12 ≤ psucc. We hence get

Pr(F ′1) = ε1 + δ1 + δ12

Pr(F ′2) = ε2 + δ2 + δ12

Pr(F ′1 ∧ F ′2) = ε12 + δ12

We must now fix δ1, δ2, δ12 ≥ 0 to satisfy (30), with ε′ := ε+ 3ε2/2 and δ1 + δ2 + δ12 ≤ psucc =
1− (ε1 + ε2− ε12). We fix δ12 = (ε′)2− ε12; this gives Pr(F ′1 ∧F ′2) = (ε′)2, and from (29) we obtain
δ12 ≥ 0 as required. We let:

δ1 := ε′ − ε1 − δ12

which gives Pr(F ′1) = ε′ as required. Moreover we obtain using (29):

δ1 = ε+
3

2
ε2 − ε1 −

(
(ε+

3

2
ε2)2 − ε12

)
≥ 3

2
ε2 −

(
ε2 + 3ε3 +

9

4
ε4

)

≥ ε2 ·
(

1

2
− 3ε− 9

4
ε2

)
≥ 0 for ε ≤ 0.14.

We obtain similar conditions for δ2 := ε′ − ε2 − δ12. Finally, we have

δ1 + δ2 + δ12 = ε′ − ε1 − δ12 + ε′ − ε2 − δ12 + δ12

= 2ε′ − ε1 − ε2 − (ε′)2 + ε12 = psucc + 2ε′ − (ε′)2 − 1

≤ psucc + 2ε′ − 1 ≤ psucc for ε < 0.14.

as required. ut

D Instantiation

D.1 Verification functions

In this section, we give the whole set of coefficients obtained for gadgets in Section 6. When sets of
coefficients are completed with . . . , then a bound of the subsequent function can be obtained from
the binomial coefficients as explained in Section 3. In such cases, the number of coefficients (as the
number of wires in the circuit) is given in a last column.

Verification timings are also given in the tables by running the tool a laptop computer (Intel(R)
Core(TM) i7-8550U CPU, 1.80GHz with 4 cores) using Ubuntu operating system.

38

D.2 Addition Gadgets

Hereafter are the coefficients ci as defined in Section 3 for addition gadgets G1
add and G2

add defined
in Section 6.

gadget function coefficient computed by our automatic tool
(β = 5)

wires Verification
Time (in s)

G1
add

f
(1)
1 {0, 3, 150, 3649, 53830, . . . }
f
(1)
2 {0, 3, 116, 2429, 34469, . . . }

36 148

f
(1)
3 {0, 0, 10, 495, 10959, . . . }
f
(2)
1 {0, 3, 144, 3342, 45611, . . . }
f
(2)
2 {0, 3, 110, 2208, 27580, . . . }
f
(2)
3 {0, 0, 4, 228, 4933, . . . }

G2
add

f
(1)
1 {0, 3, 118, 2457, 34998, . . . }

36 176

f
(1)
2 {0, 3, 106, 2035, 27812, . . . }
f
(1)
3 {0, 0, 0, 69, 3034, . . . }
f
(2)
1 {0, 3, 118, 2403, 29859, . . . }
f
(2)
2 {0, 3, 106, 2007, 22079, . . . }
f
(2)
3 {0, 0, 0, 9, 600, . . . }

D.3 Multiplication Gadgets

Hereafter are the coefficients ci as defined in Section 3 for multiplication gadget Gmult defined in
Section 6.

gadget function coefficient computed by our automatic tool
(β = 5)

wires verification
time (in s)

Gmult

f
(1)
1 {0, 3, 1232, 60940, 1653719, . . . }

97 5228

f
(1)
2 {0, 7, 1688, 74662, 2152987, . . . }
f
(1)
3 {0, 0, 62, 5300, 291603, . . . }
f
(2)
1 {0, 3, 1254, 42135, 1428624, . . . }
f
(2)
2 {0, 11, 2135, 47322, 1437774, . . . }
f
(2)
3 {0, 0, 83, 4248, 255461, . . . }

D.4 Copy Gadgets

Hereafter are the coefficients ci as defined in Section 3 for the copy gadget Gcopy defined in Section 6.

gadget function coefficient computed by our automatic tool (β = s = 33) # wires verification
time (in s)

Gcopy

f1,1

{0, 33, 1137, 16812, 145288, 852472, 3750849, 13073855,

33 49

37574146, 91573962, 192726070, 354263297, 572852089,
818662608, 1037103082, 1166786707, 1166799413,

1037157725, 818809139, 573166437, 354817320, 193536720,
92561040, 38567100, 13884156, 4272048, 1107568,

237336, 40920, 5456, 528, 33, 1}

f1,2

{0, 30, 1285, 19887, 166695, 951201, 4021599, 13567630,
38231896, 92255103, 193295461, 354654683, 573074084,

818765733, 1037141693, 1166798076, 1166801950,
1037158129, 818809180, 573166439, 354817320, 193536720,

92561040, 38567100, 13884156, 4272048, 1107568,
237336, 40920, 5456, 528, 33, 1}

f2,1 same coefficients than f1,2

f2,2

{0, 27, 1433, 23538, 188460, 1016149, 4150387, 13760724,
38465921, 92491608, 193496624, 354798258, 573159259,

818807160, 1037157912, 1166803059, 1166803107,
1037158320, 818809200, 573166440, 354817320, 193536720,
92561040, 38567100, 13884156, 4272048, 1107568, 237336,

40920, 5456, 528, 33, 1}

39

E Complexity of the MPC Protocol in the AIS Compiler

In the following we compute the complexity and the value of Ng in the instantiation of the AIS
compiler [2]. First, using this compiler, given a circuit C to compile, each gate G is implemented
using a functionality F associated to the MPC protocol. Such a functionality F receives m shares
of each input and then reconstructs them to obtain original values. This reconstruction can be
done with 2(m − 1) addition gates. Then after computing the gate G, m additive shares of the
output are computed twice. This step consists of one gate for G, and 2(m−1) gates for the additive
sharing along with 2(m− 1) random gates.8 So each gate G to compile is replaced by 6m− 5 gates,
each computed jointly by the m parties in the MPC protocol. Next, we state the complexity of
the protocol from [22]. Each gate in a functionality F is jointly computed by all m parties. In the
beginning, each party holds one share of each input.

The first step consists in a k-secret sharing of each input share where k =
(
m
c

)
. For an input of

m shares, each party will hold a total of m
(
m−1
c

)
shares. For two inputs, this step has a complexity

of m(2k − 2).
The second step is either performing an addition or a multiplication, depending on the gate G

associated to the functionality. An addition simply means each party locally adding all its shares,
holding a complexity of m

(
m−1
c

)
. In case of a multiplication gate, each party will locally compute

the sum of the product of the shares of both inputs, and then share its local result using a secret

sharing scheme as in the first step. This procedure holds a complexity of
(
m−1
c

)2
for computing the

result, m(2k − 2) for the secret sharing, and 2k2 copy gates. Clearly, the cost of the second step is
more important for the multiplication and can be upper bounded by9

(
m− 1

c

)2

+m · (2k − 2) + 2k2.

In the final step, every party broadcasts its shares to all other parties, and then adds all the
shares it receives. The complexity of this step is

(
m
c

)
.

Considering the cost of replacing each gate G in the circuit to compile by 6m−5 gates, and the
cost to compute each of these gates using the protocol Π, the total number of gates Ng is upper
bounded by

(6m− 5) ·
((

m− 1

c

)2

+m(2k − 2) + 2k2

)
.

8 In [2], the authors only consider 2(m − 1) for the cost of this step, not counting the number of random gates
necessary to compute the additive sharing of the output.

9 The authors claim in their paper a complexity of
(
m−1
c

)2
+2mk, since they do not take into account the copy gates

needed to compute the product of input shares.

40

Appendix G
On the Power of Expansion: More
Efficient Constructions in the RP
Model
Hereafter is appended the full version of our paper [BRT21], joint work with Sonia
Belaïd and Abdul Rahman Taleb, published at EUROCRYPT 2021.

On the Power of Expansion: More Efficient Constructions in the
Random Probing Model

Sonia Beläıd1, Matthieu Rivain1, and Abdul Rahman Taleb1,2

1 CryptoExperts, France
2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

{sonia.belaid,matthieu.rivain,abdul.taleb}@cryptoexperts.com

Abstract. The random probing model is a leakage model in which each wire of a circuit leaks with a
given probability p. This model enjoys practical relevance thanks to a reduction to the noisy leakage
model, which is admitted as the right formalization for power and electromagnetic side-channel attacks.
In addition, the random probing model is much more convenient than the noisy leakage model to
prove the security of masking schemes. In a recent work, Ananth, Ishai, and Sahai (CRYPTO 2018)
introduce a nice expansion strategy to construct random probing secure circuits. Their construction
tolerates a leakage probability of 2−26, which is the first quantified achievable leakage probability in
the random probing model. In a follow-up work, Beläıd, Coron, Prouff, Rivain, and Taleb (CRYPTO
2020) generalize their idea and put forward a complete and practical framework to generate random
probing secure circuits. The so-called expanding compiler can bootstrap simple base gadgets as long as
they satisfy a new security notion called random probing expandability (RPE). They further provide an
instantiation of the framework which tolerates a 2−8 leakage probability in complexity O(κ7.5) where
κ denotes the security parameter.
In this paper, we provide an in-depth analysis of the RPE security notion. We exhibit the first upper
bounds for the main parameter of a RPE gadget, which is known as the amplification order. We further
show that the RPE notion can be made tighter and we exhibit strong connections between RPE and
the strong non-interference (SNI) composition notion. We then introduce the first generic constructions
of gadgets achieving RPE for any number of shares and with nearly optimal amplification orders and
provide an asymptotic analysis of such constructions. Last but not least, we introduce new concrete
constructions of small gadgets achieving maximal amplification orders. This allows us to obtain much
more efficient instantiations of the expanding compiler: we obtain a complexity of O(κ3.9) for a slightly
better leakage probability, as well as O(κ3.2) for a slightly lower leakage probability.

Keywords: Random probing model, masking, side-channel security

1 Introduction

Most commonly used cryptographic algorithms are assumed to be secure against black-box at-
tacks, when the adversary is limited to the knowledge of some inputs and outputs. However, as
revealed in the late nineties [18], their implementation on physical devices can be vulnerable to the
more powerful side-channel attacks. The latter additionally exploit the physical emanations of the
underlying device such as the execution time or the device temperature, power consumption, or
electromagnetic radiations during the algorithm execution.

To counteract side-channel attacks which often only require cheap equipment and can be easily
mounted in a short time interval, the cryptographic community has searched for efficient coun-
termeasures. Among the different approaches, one of the most widely used is known as masking.
Simultaneously introduced by Chari, Jutla, Rao and Rohatgi [10], and by Goubin and Patarin [16]
in 1999, it happens to be strongly related to techniques usually applied in secure multi-party com-
putation. In a nutshell, the idea is to split each sensitive variable of the implementation into n

shares such that n−1 of them are generated uniformly at random whereas the last one is computed
as a combination of the original value and the random shares. Doing so, one aims to ensure that an
adversary cannot recover the secret without knowledge of all the shares. When the shares are com-
bined by bitwise addition, the masking is said to be Boolean, and it enjoys simple implementation
for linear operations which can be simply applied on each share separately. However, things are
trickier for non-linear operations for which it is impossible to compute the result without combining
shares.

In order to reason about the security of these countermeasures, the community has introduced
a variety of models. Among them, the probing model introduced by Ishai, Sahai, and Wagner in
2003 [17] is well suited to analyze the security of masked implementations. Basically, it assumes
that an adversary is able to get the exact values of a certain number t of intermediate variables
in an implementation. This way, it captures the increasing difficulty of combining noisy leakage to
recover secrets. Despite its wide use by the community [20, 13, 11, 8, 12], the probing model raised
a number of concerns regarding its relevance in practice. Therefore, in 2013, Prouff and Rivain
introduced a general and practical model, known as the noisy leakage model [19]. This model well
captures the reality of embedded devices by assuming that all the manipulated data leak together
with some noise. Unfortunately, proving the security of a masking scheme in this model is rather
tedious, which is why Duc, Dziembowski, and Faust provided in 2014 a reduction showing that a
scheme secure in the probing model is also secure in the noisy leakage model [14].

This reduction is based on an intermediate leakage model, known as random probing model,
to which the security in the noisy leakage model tightly reduces. In this model, every wire of
a circuit is assumed to leak with some constant leakage probability. Then, a circuit is secure if
there is a negligible probability that these leaking wires actually reveal information on the secrets.
Compared to the probing model, the random probing model is closer to the noisy leakage model
and, in particular, captures horizontal attacks which exploit the repeated manipulations of variables
throughout the implementation. Classical probing secure schemes are also secure in the random
probing model but the tolerated leakage probability (a.k.a. leakage rate) might not be constant
which is not satisfactory from a practical viewpoint. Indeed, in practice, the leakage probability
translates to some side-channel noise amount which might not be customizable by the implementer.

So far, only a few constructions [1, 3, 2, 9] tolerate a constant leakage probability. The two former
ones [1, 3] are based on expander graphs and the tolerated probability is not made explicit. The
third construction [2] is based on multi-party computation protocols and an expansion strategy. It
reaches a tolerated leakage probability of around 2−26 for a complexity of O(κ8.2) for some security
parameter κ, as computed by the authors of [9]. Finally, the more recent construction [9] relies on
masking gadgets and a similar expansion strategy and reaches a tolerated leakage probability of
2−8 for a complexity of O(κ7.5). While obtaining such quantified tolerated leakage probability is
of great practical interest, the obtained complexity is high which makes this construction hardly
practical.

Besides their explicit construction, the authors of [9] provide a complete and practical framework
to generate random probing secure implementations. Namely, they formalize the expanding compiler
which produces a random probing secure version of any circuit from three base gadgets (for addition,
copy, and multiplication) achieving a random probing expandability (RPE) property. The advantage
of this approach is that it enables to bootstrap small gadgets (defined for a small number of shares)
into a circuit achieving arbitrary security in the random probing model while tolerating a constant
and quantified leakage probability. Although the concrete results of [9] in terms of complexity and

2

tolerated leakage probability are promising, the authors left open the analysis of this RPE property
and the design of better gadgets in this paradigm.

Our contributions. In this paper, we provide an in-depth analysis of the random probing expand-
ability security notion. We first provide some upper bounds for the amplification order of an RPE
gadget, which is the crucial parameter in view of a low-complexity instantiation of the expanding
compiler. We further show that the RPE notion can be made tighter and we exhibit strong relations
between RPE and the strong non-interference (SNI) composition notion for probing-secure gadgets.

From these results, we introduce the first generic constructions of gadgets achieving RPE for
any number of shares and with nearly optimal amplification orders. These generic gadgets are
derived from the widely known Ishai-Sahai-Wagner (ISW) construction. We show that the obtained
expanding compiler can approach a quadratic complexity depending on the leakage probability that
must be tolerated: the smaller the leakage probability, the closer the complexity toO(κ2). We further
introduce a new multiplication gadget achieving the optimal amplification order, which allows us
to improve the convergence to a quadratic complexity.

Finally, we provide new concrete constructions of copy, addition, and multiplication gadgets
achieving maximal amplification orders for small numbers of shares. These gadgets yield much
more efficient instantiations than all the previous schemes (including the analysed ISW-based con-
structions). While slightly improving the tolerated leakage probability to p = 2−7.5, our 3-share
instantiation achieves a complexity of O(κ3.9). For a slightly lower leakage probability, our 5-share
instantiation drops the complexity to O(κ3.2).

We thus achieve a significant step forward in the quest for efficient random probing secure
schemes that tolerate a quantified leakage probability. Besides our concrete instantiations, our work
introduces several tools (new bounds, relations, and generic gadgets) that shall be instrumental for
future constructions.

2 Preliminaries

Along the paper, we shall use similar notations and formalism as [9]. In particular, K shall denote
a finite field. For any n ∈ N, we shall denote [n] the integer set [n] = [1, n] ∩ Z. For any tuple
x = (x1, . . . , xn) ∈ Kn and any set I ⊆ [n], we shall denote x|I = (xi)i∈I .

2.1 Linear Sharing, Circuits, and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function Kn → K
defined as

LinDec : (x1, . . . , xn) 7→ x1 + · · ·+ xn ,

for every n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every n, ` ∈ N, on input
(x̂1, . . . , x̂`) ∈ (Kn)` the n-linear decoding mapping acts as

LinDec : (x̂1, . . . , x̂`) 7→ (LinDec(x̂1), . . . , LinDec(x̂`)) .

Definition 1 (Linear Sharing). Let n, ` ∈ N. For any x ∈ K, an n-linear sharing of x is a random
vector x̂ ∈ Kn such that LinDec(x̂) = x. It is said to be uniform if for any set I ⊆ [n] with |I| < n
the tuple x̂|I is uniformly distributed over K|I|. A n-linear encoding is a probabilistic algorithm
LinEnc which on input a tuple x = (x1, . . . , x`) ∈ K` outputs a tuple x̂ = (x̂1, . . . , x̂`) ∈ (Kn)` such
that x̂i is a uniform n-sharing of xi for every i ∈ [`].

3

An arithmetic circuit on a field K is a labeled directed acyclic graph whose edges are wires and
vertices are arithmetic gates processing operations on K. We consider circuits composed of addition
gates, (x1, x2) 7→ x1 + x2, multiplication gates, (x1, x2) 7→ x1 · x2, and copy gates, x 7→ (x, x). A
randomized arithmetic circuit is equipped with an additional random gate which outputs a fresh
uniform random value of K.

In the following, we shall call an (n-share, `-to-m) gadget, a randomized arithmetic circuit
that maps an input x̂ ∈ (Kn)` to an output ŷ ∈ (Kn)m such that x = LinDec(x̂) ∈ K` and
y = LinDec(ŷ) ∈ Km satisfy y = g(x) for some function g. In this paper, we shall consider gadgets
for three types of functions (corresponding to the three types of gates): the addition g : (x1, x2) 7→
x1 + x2, the multiplication g : (x1, x2) 7→ x1 · x2 and the copy g : x 7→ (x, x). We shall generally
denote such gadgets Gadd, Gmult and Gcopy respectively.

2.2 Random Probing Security

Let p ∈ [0, 1] be some constant leakage probability parameter, a.k.a. the leakage rate. In the p-
random probing model, an evaluation of a circuit C leaks the value carried by each wire with a
probability p (and leaks nothing otherwise), all the wire leakage events being mutually independent.

As in [9], we formally define the random-probing leakage of a circuit from the two following
probabilistic algorithms:

– The leaking-wires sampler takes as input a randomized arithmetic circuit C and a probability
p ∈ [0, 1], and outputs a set W, denoted as

W ← LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with probability p to
W (where all the probabilities are mutually independent).

– The assign-wires sampler takes as input a randomized arithmetic circuit C, a set of wire labels
W (subset of the wire labels of C), and an input x, and it outputs a |W|-tuple w ∈ (K∪{⊥})|W|,
denoted as

w ← AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W for an evaluation on
input x.

Definition 2 (Random Probing Leakage). The p-random probing leakage of a randomized
arithmetic circuit C on input x is the distribution Lp(C,x) obtained by composing the leaking-wires
and assign-wires samplers as

Lp(C,x)
id
= AssignWires(C, LeakingWires(C, p),x) .

Definition 3 (Random Probing Security). A randomized arithmetic circuit C with ` · n ∈ N
input gates is (p, ε)-random probing secure with respect to encoding Enc if there exists a simulator
Sim such that for every x ∈ K`:

Sim(C) ≈ε Lp(C,Enc(x)) . (1)

4

2.3 Expanding Compiler

In [2], Ananth, Ishai and Sahai propose an expansion approach to build a random-probing-secure
circuit compiler from a secure multiparty protocol. This approach was later revisited by Beläıd,
Coron, Prouff, Rivain, and Taleb who formalize the notion of expanding compiler [9].

The principle of the expanding compiler is to recursively apply a base compiler, denoted CC,
and which simply consists in replacing each gate in the input circuit by the corresponding gadget.
More specifically, assume we have three n-share gadgets Gadd, Gmult, Gcopy, for the addition, the
multiplication, and the copy on K. The base compiler CC simply consists in replacing each addition
gate in the original gadget by Gadd, each multiplication gate by Gmult, and each copy gate by Gcopy,
and by replacing each wire by n wires carrying a sharing of the original wire. One can derive three

new n2-share gadgets by simply applying CC to each gadget: G
(2)
add = CC(Gadd), G

(2)
mult = CC(Gmult),

and G
(2)
copy = CC(Gcopy). Doing so, we obtain n2-share gadgets for the addition, multiplication, and

copy on K. This process can be iterated an arbitrary number of times, say k, to an input circuit C:

C
CC−−−→ Ĉ1

CC−−−→ · · · CC−−−→ Ĉk .

The first output circuit Ĉ1 is the original circuit in which each gate is replaced by a base gadget
Gadd, Gmult, or Gcopy. The second output circuit Ĉ2 is the original circuit C in which each gate

is replaced by an n2-share gadget G
(2)
add, G

(2)
mult, or G

(2)
copy as defined above. Equivalently, Ĉ2 is the

circuit Ĉ1 in which each gate is replaced by a base gadget. In the end, the output circuit Ĉk is
hence the original circuit C in which each gate has been replaced by a k-expanded gadget and each
wire has been replaced by nk wires carrying an (nk)-linear sharing of the original wire.

This expanding compiler achieves random probing security if the base gadgets verify a property
called random probing expandability [9].

2.4 Random Probing Expandability

We recall hereafter the original definition of the random probing expandability (RPE) property for
2-input 1-output gadgets.

Definition 4 (Random Probing Expandability [9]). Let f : R → R. An n-share gadget
G : Kn × Kn → Kn is (t, f)-random probing expandable (RPE) if there exists a deterministic
algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input (x̂, ŷ) ∈ Kn ×Kn, for

every set J ⊆ [n] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W, J)

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (2)

with ε = f(p) (in particular F1 and F2 are mutually independent),

5

2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(3)

where ẑ = G(x̂, ŷ).

The RPE notion can be simply extended to gadgets with 2 outputs: the SimG
1 simulator takes

two sets J1 ⊆ [n] and J2 ⊆ [n] as input and produces two sets J ′1 and J ′2 satisfying the same property
as J ′ in the above definition (w.r.t. J1 and J2). The SimG

2 simulator must then produce an output
including ẑ1|J ′1 and ẑ2|J ′1 where ẑ1 and ẑ2 are the output sharings. The RPE notion can also be

simply extended to gadgets with a single input: the SimG
1 simulator produces a single set I so that

the failure event (|I| > t) occurs with probability ε (and the SimG
2 simulator is then simply given

x̂|I where x̂ is the single input sharing). We refer the reader to [9] for the formal definitions of these
variants. Eventually, the RPE notion can also be extended to gadgets with an arbitrary number `
of inputs. The SimG

1 simulator then produces ` sets I1, . . . , I` so that the corresponding failures
(|I1| > t), . . . , (|I`| > t) occur with probability ε and are additionally mutually independent. The
SimG

2 simulator then simply gets use of the shares of each input as designated respectively by the
corresponding sets I1, . . . , I`.

Note that as explained in [9], the requirement of the RPE notion on the mutual independence
of the failure events might seem too strong. We can actually use the proposed relaxation referred
to as weak random probing expandability. Namely, the equalities (Equation (2)) are replaced by
inequalities as upper bounds are sufficient in our context. We refer the reader to [9] for the concrete
reduction, which does not impact the amplification orders.

2.5 Complexity of the Expanding Compiler

We start by recalling the definition of the amplification order of a function and of a gadget.

Definition 5 (Amplification Order).

– Let f : R→ R which satisfies
f(p) = cd p

d +O(pd+ε)

as p tends to 0, for some cd > 0 and ε > 0. Then d is called the amplification order of f .
– Let t > 0 and G a gadget. Let d be the maximal integer such that G achieves (t, f)-RPE for
f : R→ R of amplification order d. Then d is called the amplification order of G (with respect
to t).

We stress that the amplification order of a gadget G is defined with respect to the RPE threshold
t. Namely, different RPE thresholds t are likely to yield different amplification orders d for G (or
equivalently d can be thought of as a function of t).

As shown in [9], the complexity of the expanding compiler relates to the (minimum) amplifica-
tion order of the three gadgets used in the base compiler CC. If the latter achieves (t, f)-RPE with
an amplification order d, the expanding compiler achieves (p, 2−κ)-random probing security with a
complexity blowup of O(κe) for an exponent e satisfying

e =
logNmax

log d
(4)

6

with

Nmax = max

(
Nm,m , eigenvalues

((
Na,a Nc,a

Na,c Nc,c

)))
(5)

where Nx,y denotes the number of gates “x” in a gadget “y”, with “m” meaning multiplication,
“a” meaning addition, and “c” meaning copy. As an illustration, the instantiation proposed in [9]
satisfies Nmax = 21 and d = 3

2 which yields an asymptotic complexity of O(κ7.5).
Finally, we recall the notion of maximum tolerated leakage probability which corresponds to

the maximum value p for which we have f(p) < p. This happens to be a necessary and sufficient
condition for the expansion strategy to apply with (t, f)-RPE gadgets. The instantiation proposed
in [9] tolerates a leakage probability up to 2−7.80.

3 Bounding the Amplification Order

As recalled above, the amplification order of a gadget is a crucial parameter of its random probing
expandability. The higher the amplification order, the lower the asymptotic complexity of the
expanding compiler, ceteris paribus. A natural question which was left open in [9] is to determine
the best amplification order that can be hoped for given the different parameters of a gadget. In
this section, we exhibit concrete upper bounds on the amplification order that can be achieved by
a gadget depending on its input-output dimensions (`,m), its number of shares n, and its RPE
threshold t.

Before giving the bounds let us make a key observation on the amplification order of a gadget.
Let G be a 2-to-1 n-share gadget achieving (t, f)-RPE. A subsetW of the wires of G is said to be a
failure set with respect to the first input (resp. the second input) if there exists a set J ⊆ [n] such
that (I1, I2, J

′) ← SimG
1 (W, J) implies |I1| > t (resp. |I2| > t), namely if a leaking set W implies

the failure event F1 (resp. F2) in the definition of RPE. One can check that G has amplification
order d ≤ dup if one of the two following events occurs:

1. there exists a failure set W w.r.t. the first input or the second input such that |W| = dup,
2. there exists a failure set W w.r.t. the first input and the second input such that |W| = 2dup.

In the former case, the existence of the failure set implies that the function f(p) has a non-zero
coefficient in pdup and hence d ≤ dup. In the latter case, the existence of the double failure set
implies that the function f2(p) has a non-zero coefficient in p2dup and hence d ≤ dup. The case of
a single-input gadget is simpler: it has amplification order d ≤ dup if there exists a failure set W
(w.r.t. its single input) such that |W| = dup.

We start by exhibiting a generic upper bound for the amplification order and then look at the
particular case of what we shall call a standard multiplication gadget.

3.1 Generic Upper Bound

In the following we will say that a function g : K` → Km is complete if at least one of its m
outputs is functionally dependent on the ` inputs. Similarly, we say that a gadget G is complete if
its underlying function g is complete.

The following lemma gives our generic upper bound on the amplification order.

Lemma 1. Let f : R→ R, n ∈ N and `,m ∈ {1, 2}. Let G : (Kn)` → (Kn)m be an `-to-m n-share
complete gadget achieving (t, f)-RPE. Then its amplification order d is upper bounded by

min((t+ 1), (3− `) · (n− t)).

7

Proof. The first part of the bound on the amplification order d ≤ (t + 1) is immediate since by
probing t + 1 shares of any input, the considered set will be a failure set of cardinality t + 1. We
then consider two cases depending on the number of inputs:

1. 1-input gadgets (` = 1): We show that we can exhibit a failure set of size 2(n − t). Let us
denote the output shares z1, . . . , zn (for two-output gadgets, i.e. m = 2, z1, . . . , zn can be any
of the output sharings). In the evaluation of the (t, f)-RPE property, t shares among the zi’s
(corresponding to the set J) must be simulated. Without loss of generality, let z1, . . . , zt be
those shares (i.e. J = [t]). By including both input gates of each of the remaining output shares
zt+1, . . . , zn in the set W, the distribution to be simulated requires the knowledge of the full
input (by completeness of the gadget). The set W is thus a failure set with 2(n− t) elements.

2. 2-input gadgets (` = 2): Considering the same failure set as in the above case, the simulation
of out requires the full two input sharings. Hence W is a failure set of size 2(n− t) with respect
to the two inputs, and so the amplification order satisfies d ≤ (n− t).

We hence conclude that d ≤ min((t+1), 2(n−t)) for one-input gadgets, and d ≤ min((t+1), (n−t))
for two-input gadgets. �

Corollary 1 (One-input gadget). The amplification order d of a one-input gadget achieving
(t, f)-RPE is upper bounded by

d ≤ 2(n+ 1)

3
.

The above corollary directly holds from Lemma 1 for a RPE threshold t = 2n−1
3 (which balances

the two sides of the min).

Corollary 2 (Two-input gadget). The amplification order d of a two-input gadget achieving
(t, f)-RPE is upper bounded by

d ≤ n+ 1

2
.

The above corollary directly holds from Lemma 1 for a RPE threshold t = n−1
2 (which balances

the two sides of the min).
We deduce from the two above corollaries that for a circuit composed of addition, multiplication

and copy gadgets, the amplification order is upper bounded

d ≤ min

(
2(n+ 1)

3
,
n+ 1

2

)
=
n+ 1

2
,

which can only be achieved for an odd number of shares by taking t = n−1
2 as RPE threshold.

3.2 Upper Bound for Standard Multiplication Gadgets

The generic bound exhibited above is not tight in the special case of a standard multiplication
gadget which computes cross products between the input shares, such as the ISW multiplication
gadget [17]. We exhibit hereafter a tighter bound for such gadgets.

Formally, a n-share multiplication gadget G is a standard multiplication gadget, if on input
(x,y) ∈ (Kn)2, G computes the cross products xi · yj for 1 ≤ i, j ≤ n. Our upper bound on the
amplification order for such gadgets is given in the following lemma.

8

Lemma 2. Let f : R→ R and n ∈ N. Let G be an n-share standard multiplication gadget achieving
(t, f)-RPE. Then its amplification order d is upper bounded by

d ≤ min

(
t+ 1

2
, (n− t)

)
.

Proof. The second part of the bound (n−t) holds directly from Lemma 1. We now prove the bound
(t + 1)/2 by exhibiting a failure set of size t + 1 with t output shares, which will be a failure on
both inputs. Let {mij}0≤i,j≤n denote the cross products such that mij = xi · yj . Consider a set
W made of t + 1 such variables {mij} for which the indexes i and j are all distinct. Specifically,
W = {xi1 · yj1 , . . . , xit+1 · yjt+1} such that {i`}1≤`≤t+1 and {j`}1≤`≤t+1 are both sets of (t + 1)
distinct indexes. Clearly, such a set is a failure set for both inputs x and y since it requires t + 1
shares of each of them to be perfectly simulated (even without considering the output shares to be
also simulated). We hence have a double failure set of cardinality t+ 1 which implies the (t+ 1)/2
upper bound on the amplification order. �

The above lemma implies that the highest amplification order for standard multiplication gad-
gets might be achieved for a RPE threshold t = 2n−1

3 which yields the following maximal upper
bound:

d ≤ n+ 1

3
,

which is lower than the generic upper bound for 2-to-1 gadgets exhibited in Corollary 2. This
loss suggests that better amplification orders could be achieved for multiplication gadgets that do
not compute direct cross products of the input shares. We actually provide new constructions of
multiplication gadgets avoiding this loss in Section 5.

4 A Closer Look at Random Probing Expandability

In this section, we give a closer look at the RPE notion. We first show that it naturally splits
into two different notions, that we shall call RPE1 and RPE2, and further introduce a tighter
variant which will be useful for our purpose. We then study the relations between (tight) RPE and
the Strong Non-Interference (SNI) notion used for probing security. We exhibit strong connections
between (tight) RPE1 and SNI, which will be very useful for our constructive results depicted in
Section 5.

4.1 Splitting RPE

From Definition 4, we can define two sub-properties which are jointly equivalent to RPE. In the
first one, designated by RPE1, the set J is constrained to satisfy |J | ≤ t and J ′ = J (the simulator
does not choose J ′). In the second one, designated by RPE2, J ′ is chosen by the simulator such
that J ′ ⊆ [n] with |J ′| = n − 1 (and J does not matter anymore). For the sake of completeness,
these two notions are formally defined in Appendix A.

This split is somehow a partition of the RPE notion since we have:

G is (t, f)-RPE ⇐⇒ G is (t, f)-RPE1 and G is (t, f)-RPE2

for any gadget G. As a result of the above equivalence, we can show that a gadget achieves RPE1
and RPE2 independently in order to obtain RPE for this gadget. Formally, we use the following
lemma.

9

Lemma 3. An n-share gadget G : Kn ×Kn → Kn which is (t, f1)-RPE1 and (t, f2)-RPE2 is also
(t, f)-RPE with f(p) ≥ max(f1(p), f2(p)) for every p ∈ [0, 1].

We can refine the upper bounds introduced in Section 3 with respect to this split. In Lemma 1,
the bound d ≤ t + 1 applies to both RPE1 and RPE2, while the bound d ≤ (3 − `) · (n − t) only
applies to RPE1. Similarly, in Lemma 2, the bound d ≤ (t+ 1)/2 applies to both RPE1 and RPE2,
while the bound d ≤ (n− t) only applies to RPE1.

4.2 Tightening RPE

We introduce a tighter version of the RPE security property. The so-called tight random probing
expandability (TRPE) is such that a failure occurs when the simulation requires more than t input
shares (as in the original RPE notion) but also whenever this number of shares is greater than the
size of the leaking set W. Formally, the failure event Fj is defined as

Fj ≡
(
|Ij | > min(t, |W|)

)

for every j ∈ [`].
This tighter security property will be instrumental in the following to obtain generic RPE

constructions. Similarly to the original RPE property, the TRPE property can be split into two
intermediate properties, namely TRPE1 and TRPE2 and Lemma 3 also applies to the case of
TRPE. Moreover the upper bounds on the amplification order for RPE in Lemmas 1 and 2 further
apply to the amplification order for TRPE (which holds by definition). The formal TRPE, TRPE1,
and TRPE2 definitions are given in Appendix B for the sake of completeness.

We show hereafter that the TRPE notion is actually equivalent to the RPE notion if and only
if the function f is of maximal amplification order t+ 1.

Lemma 4. Let t ∈ N, let f : R→ R of amplification order d. Let G be a gadget.

1. If G achieves (t, f)-TRPE, then it achieves (t, f ′)-RPE for some f ′ : R → R of amplification
order d′ ≥ d.

2. If G is of amplification order d with respect to t (i.e. d is the max amplification order of a
function f for which G is (t, f)-RPE), then for all f ′ : R → R for which G achieves (t, f ′)-
TRPE, f ′ is of amplification order d′ ≤ d.

3. If d = t+ 1, then G achieves (t, f)-TRPE if and only if G achieves (t, f)-RPE.

Proof. The proof for the first two points is easy. In particular, for the first point, if G achieves
TRPE with an amplification order of d, then G achieves RPE with amplification order at least d,
since a failure in the TRPE setting i.e. |Ij | > min(t, |W|) does not necessarily imply a failure in
the RPE setting i.e. |Ij | > t, meanwhile if there is no failure for TRPE for a leaking set of wires
W, then this implies that |Ij | ≤ min(t, |W|) ≤ t so there is no failure in the RPE setting either.

As for the second point, the proof is similar: if G achieves an amplification of d in the RPE
setting, then it achieves an amplification order of at most d in the TRPE setting, since a failure in
the RPE setting i.e. |Ij | > t immediately implies a failure in the TRPE setting |Ij | > min(t, |W|).
But also, even if there is no failure for a leaking set of wires W in the RPE setting we might still
have a failure in the TRPE setting for the same set W. This is mainly the case where W can be
simulated with sets of input shares Ij such that |W| < |Ij | ≤ t, so we have |Ij | ≤ t (i.e. no failure

10

for RPE) and |Ij | > min(t, |W|) = |W| (i.e. failure on TRPE). This concludes the proof for the
second point.

We will now prove the third point. Let d = t + 1. We will show that for every set J ′ ⊆ [n] of
output shares and every leaking set of wires W, a failure occurs in the TRPE setting if and only
if a failure also occurs in the RPE setting. If |W| ≥ t, then the two settings are equivalent since
min(t, |W|) = t. We will thus only focus on the case |W| < t. Clearly, a failure in the RPE setting,
i.e. |Ij | > t, implies a failure in the TRPE setting, i.e. |Ij | > min(t, |W|). Let us now show that the
converse is also true.

We assume by contradiction that there exists J ′ andW implying a TRPE failure which is not an
RPE failure, that is a set Ij satisfying |W| < |Ij | ≤ t. We then show that there exists a leaking set
W ′ of size |W ′| < t+1 for which an RPE failure always occurs, which implies an amplification order
strictly lower than t + 1 and hence contradicts the lemma hypothesis. This set W ′ is constructed
as W ′ =W ∪ I ′j for some set I ′j ⊂ [n] \ Ij such that |I ′j | = t+ 1− |Ij |. The simulation of W ′ and J ′

then requires the input shares from Ij ∪ I ′j . However, we have

|Ij ∪ I ′j | = |Ij |+ |I ′j | = t+ 1

implying an RPE failure, and

|W ′| = |W ∪ I ′j | ≤ |W|+ |I ′j | = |W|+ t+ 1− |Ij | < |W|+ t+ 1− |W| = t+ 1.

Thus, we have built a failure set W ′ of size strictly less than the amplification order t + 1, which
contradicts the hypothesis and hence concludes the proof. �

The above proof also applies to the case of the split notions, specifically for ((t, f)-RPE1, (t, f)-
TRPE1) and for ((t, f)-RPE2, (t, f)-TRPE2).

4.3 Unifying (Tight) RPE and SNI

Strong non-interference (SNI) is a widely used notion to compose probing-secure gadgets [5]. In [9],
the authors exhibit a relation between the SNI and the random probing composability (RPC) prop-
erty in their Proposition 1. We go one step further and study the relation between SNI and (T)RPE.

We state hereafter some equivalence results between the (T)RPE1 and SNI notions, up to some
constraints on the parameters. Let us first recall the definition of the SNI notion.

Definition 6 (Strong Non-Interference (SNI)). Let n, ` and τ be positive integers. An n-share
gadget G : (Kn)` → Kn is τ -SNI if there exists a deterministic algorithm SimG

1 and a probabilistic
algorithm SimG

2 such that for every set J ⊆ [n] and subset W of wire labels from G satisfying
|W|+ |J | 6 τ , the following random experiment with any x̂ ∈ (Kn)`

I ← SimG
1 (W, J)

out← SimG
2

(
x̂|I
)

yields
|I1| 6 |W|, . . . , |I`| 6 |W| (6)

and
out

id
=
(
AssignWires(G,W, x̂) , ŷ|J

)
(7)

where I = (I1, . . . , I`) and ŷ = G(x̂).

11

We first formally show that (T)RPE1 implies SNI.

Lemma 5. Let t ∈ N and f : R→ R of amplification order t+ 1. Let G be a gadget which achieves
(t, f)-TRPE1. Then G is also t-SNI.

Proof. By definition of TRPE1 and by hypothesis on the amplification order, there exist input sets
I1, . . . , I` which can perfectly simulate any leaking wires set W such that |W| ≤ t and any set of
output shares J such that |J | ≤ t, satisfying |I1|, . . . , |I`| ≤ |W|. Consequently, there exist input
sets I1, . . . , I` which can perfectly simulate any leaking wires set W such that |W| = ti ≤ t and any
set of output shares J such that |W|+ |J | ≤ t with |I1|, . . . , |I`| ≤ ti. G is thus t-SNI. �

We now show that SNI implies TRPE1 up to some constraints on the parameters t and τ .

Lemma 6. Let τ, ` ∈ N. Let G be an `-to-1 gadget which achieves τ -SNI. Then G satisfies (t, f)-
TRPE1 for some f : R→ R with an amplification order of

d ≥ 1

`
min(t+ 1, τ − t+ 1) .

Proof. Since G is τ -SNI, then for any set of leaking wires W and output shares J such that
|W| + |J | ≤ τ , the wires indexed by W and the output shares indexed by J can be perfectly
simulated from input shares indexed by I1, . . . , I` such that |Ij | ≤ |W| for every 1 ≤ j ≤ `. In the
TRPE1 property, the set J of output shares can be any set of size |J | ≤ t so we can assume |J | = t
without loss of generality.

For a leaking setW of size |W| < min(t+ 1, τ − t+ 1) no failure event occurs. Indeed τ -SNI and
|W| < τ − t + 1 implies |W| + |J | ≤ τ and hence the existence of the sets I1, . . . , I` allowing the
simulation with |Ij | ≤ |W|. And |W| < t + 1 implies |Ij | ≤ min(t, |W|) for every j which implies
the absence of failure. Then for a leaking set W of size |W| ≥ min(t + 1, τ − t + 1), no condition
remains to rule out simulation failures and one could actually get a failure for every input. In the
latter case, the amplification order would equal 1

` min(t+ 1, n− t), but in all generality it could be
higher (i.e. this value is a lower bound). �

An illustrative summary of the relations between RPE1, TRPE1 and SNI is depicted in Figure 1
(d denotes the amplification order of the function f). We hence observe an equivalence between the
three notions up to some constraints on the parameters t, d, τ and `.

τ -SNI (t, f)-TRPE1 (t, f)-RPE1

d ≥ 1
`

min(t+ 1, τ − t+ 1)

τ = t iff d = t+ 1

Fig. 1: Summary of relations between the different notions.

12

Relation and separation between (T)RPE2 and SNI. For a given n-share gadget G, the
(T)RPE2 notion exclusively focuses on the simulation of a set of leaking intermediate variables
together with a chosen set of (n−1) output shares. If G is τ -SNI for τ < n−1, then nothing can be
claimed on the simulation of the latter sets. But if G is (n− 1)-SNI, then any set of (n− 1) output
shares can be perfectly simulated without the knowledge of any input share. Concretely, it implies
that G is (t, f)-(T)RPE2 of amplification order at least 1 as a chosen output set of (n− 1) shares
alone can be perfectly simulated without any additional knowledge on the input shares. Namely,
we have

(n− 1)-SNI ⇒ (t, f)-(T)RPE2 of amplification order at least 1.

Nevertheless, there is no relation from τ -SNI to (t, f)-(T)RPE2 for amplification orders strictly
greater than 1 as (T)RPE2 would then consider leaking sets of size larger than or equal to n (for
n-share gadgets, τ < n). On the other side, there is no direct implication either from (t, f)-(T)RPE2
to τ -SNI since the former property does not consider all possible output sets of size (n − 1), but
only a chosen one.

5 Generic Constructions

To the best of our knowledge, the only RPE gadgets in the literature are the ones designed in [9]
which are restricted to a small number of shares, specifically n ∈ {2, 3}. A natural open question is
the definition of RPE gadgets with good amplification orders, typically achieving or approaching the
upper bounds exhibited in Section 3, for any number of shares n. In this section, we exhibit copy,
addition, and multiplication gadgets derived from the widely known Ishai-Sahai-Wagner (ISW)
construction [17]. Based on the results demonstrated in Section 4, we are able to show that these
gadgets achieve RPE for any number of shares n with amplification orders close to the upper bounds
(up to a small constant factor). We further provide an asymptotic analysis of the expanding compiler
using these gadgets as well as a new multiplication gadget reaching the optimal amplification order
hence improving the convergence to a better asymptotic complexity.

5.1 Generic Copy and Addition Gadgets

As intuitively proposed in [9] for small gadgets, copy and addition gadgets can be naturally derived
from a refresh gadget. Such a gadget takes one sharing as input and outputs a new refreshed sharing
of the same value. We formally introduce these natural constructions hereafter and show that their
RPE security can be reduced to that of the underlying refresh gadget.

Generic Copy Gadget. Algorithm 1 displays the generic construction for the copy gadget from
a refresh gadget. It simply consists in refreshing the input sharing twice to obtain two fresh copies.

Algorithm 1: Copy gadget Gcopy

Input : (a1, . . . , an) input sharing
Output: (e1, . . . , en), (f1, . . . , fn) fresh copies of (a1, . . . , an)
(e1, . . . , en)← Grefresh(a1, . . . , an);
(f1, . . . , fn)← Grefresh(a1, . . . , an);

13

We have the following lemma (see the proof in Appendix C).

Lemma 7. Let Grefresh be an n-share (t, f)-TRPE refresh gadget of amplification order d. Then,
the copy gadget Gcopy displayed in Algorithm 1 is (t, f ′)-TRPE also of amplification order d.

As a consequence of this result, a TRPE refresh gadget directly yields a TRPE copy gadget
achieving the same amplification order. Both gadgets can then reach the upper bound for 1-input
gadgets whenever t+ 1 = 2(n− t) implying an amplification order d = 2(n+1)

3 .

Generic Addition Gadget. Algorithm 2 displays the generic construction for the addition gadget
from a refresh gadget. It simply consists in refreshing both input sharings before adding them.

Algorithm 2: Addition Gadget Gadd

Input : (a1, . . . , an), (b1, . . . , bn) input sharings
Output: (c1, . . . , cn) sharing of a+ b
(e1, . . . , en)← Grefresh(a1, . . . , an);
(f1, . . . , fn)← Grefresh(b1, . . . , bn);
(c1, . . . , cn)← (e1 + f1, . . . , en + fn);

We have the following lemma (see the proof in Appendix D).

Lemma 8. Let Grefresh be an n-share refresh gadget and let Gadd be the corresponding addition
gadget displayed in Algorithm 2. Then if Grefresh is (t, f)-RPE (resp. (t, f)-TRPE) of amplification
order d, then Gadd is (t, f ′)-RPE (resp. (t, f ′)-TRPE) for some f ′ of amplification order d′ ≥ bd2c.

The above lemma shows that a (T)RPE refresh gadget of amplification order d directly yields
a (T)RPE addition gadget of amplification order at least bd2c. If the refresh gadget achieves the

optimal d = 2(n+1)
3 , then the generic addition gadget has an amplification order at least bn3 c which

is not far from the upper bound for two-input gadgets of n+1
2 .

We stress that the results of Lemma 7 and Lemma 8 are general and apply for any refresh
gadget satisfying the (T)RPE property. In the rest of the section, we shall focus on a particular
refresh gadget, namely the ISW-based refresh gadget. We show that this gadget achieves (T)RPE
from which we obtain (T)RPE copy and addition gadgets for any number of shares n and with
amplification orders close to the upper bound (up to a small constant factor).

5.2 ISW-based Copy and Addition Gadgets

As a basis of further constructions, we focus our analysis on the most deployed refresh gadget,
which is based on the ISW construction [17].

ISW Refresh Gadget. This refresh can be seen as an ISW multiplication between the input
sharing and the n-tuple (1, 0, . . . , 0). This is formally depicted in Algorithm 3.

14

Algorithm 3: ISW Refresh

Input : (a1, . . . , an) input sharing, {rij}1≤i<j≤n random values
Output: (c1, . . . , cn) such that c1 + · · ·+ cn = a1 + · · ·+ an
for i← 1 to n do

ci ← ai;
end
for i← 1 to n do

for j ← 1 to i− 1 do
ci ← ci + rji;

end
for j ← i+ 1 to n do

ci ← ci + rij ;
end

end
return (c1, . . . , cn);

We demonstrate through Lemma 9 that the ISW refresh gadget satisfies TRPE with an ampli-
fication order close to the optimal one. The proof is given in Appendix E.

Lemma 9. Let n ∈ N. For every t ≤ n− 2, the n-share ISW refresh gadget is (t, f1)-TRPE1 and
(t, f2)-TRPE2 for some functions f1, f2 : R→ R of amplification orders d1, d2 which satisfy:

– d1 = min(t+ 1, n− t) for f1,
– d2 = t+ 1 for f2.

Corollary 3 then directly follows from Lemma 3 applied to TRPE and Lemma 9.

Corollary 3. Let n ∈ N. For every t ≤ n − 2, the n-share ISW refresh gadget is (t, f)-TRPE of
amplification order

d = min(t+ 1, n− t).
According to Lemma 1, the upper bound on the amplification order of 1-input gadgets is d ≤

min(t+ 1, 2(n− t)) which gives d ≤ 2n+2
3 for t = 2n−1

3 . In contrast, the ISW refresh gadget reaches
d = bn+1

2 c by taking t = dn−12 e. While applying this result to the generic constructions of addition
and copy gadgets introduced above, we obtain:

– a copy gadget of amplification order dc = bn+1
2 c (Lemma 7),

– an addition gadget of amplification order at least da = bn+1
4 c (Lemma 8).

In the following, we demonstrate a tighter result than Lemma 8 for the ISW-based addition
gadget (namely which does not imply the loss of a factor 2).

ISW-based Copy Gadget. The copy gadget Gcopy that uses the n-share ISW refresh gadget
as a building block in Algorithm 1 achieves the same amplification order as the ISW refresh for
the TRPE setting, i.e. d = min(t + 1, n − t). This is a direct implication from Lemma 7. Then,
from Lemma 4, we have that ISW-based Gcopy also achieves (t, f ′)-RPE with amplification order
d′ ≥ d. We can actually prove that ISW-based Gcopy achieves (t, f ′)-RPE with amplification order
d′ exactly equal to the amplification order in the TRPE setting, i.e. d′ = d = min(t+ 1, n− t). This
is stated in the following lemma which proof is given in Appendix F.

15

Lemma 10. Let Gcopy be the n-share copy gadget displayed in Algorithm 1 and instantiated with
the ISW refresh gadget. Then for every t ≤ n − 2, Gcopy achieves (t, f)-RPE with amplification
order d = min(t+ 1, n− t).

ISW-based Addition Gadget. The addition gadget Gadd that uses the n-share ISW refresh
gadget as a building block in Algorithm 2 achieves the same amplification order as the ISW refresh
gadget, which is tighter than the bound from Lemma 8. This is stated in the following Lemma,
which follows from Lemma 9, and from the fact that ISW refresh is (n− 1)-SNI. The proof is given
in Appendix G.

Lemma 11. Let Gadd be the n-share addition gadget displayed in Algorithm 2 and instantiated with
the ISW refresh gadget. Then for every t ≤ n− 2, Gadd achieves (t, f1)-TRPE1 and (t, f2)-TRPE2
for some functions f1, f2 : R→ R of amplification orders d1, d2 which satisfy:

– d1 = min(t+ 1, n− t),
– d2 = t+ 1.

Corollary 4 then directly follows from Lemma 11 by applying Lemma 3 (TRPE1 ∩ TRPE2 ⇒
TRPE) and Lemma 4 (TRPE ⇒ RPE).

Corollary 4. Let n ∈ N. For every t ≤ n−2, the n-share gadget Gadd displayed in Algorithm 2 and
instantiated with the ISW refresh gadget is (t, f)-RPE of amplification order d = min(t+ 1, n− t).

5.3 ISW Multiplication Gadget

In contrast to the copy and addition gadgets that are built from generic schemes with a refresh
gadget as a building block, the multiplication gadget can be directly defined as the standard ISW
multiplication, which is recalled in Algorithm 4.

Algorithm 4: ISW Multiplication

Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i<j≤n random values
Output: (c1, . . . , cn) sharing of a · b
for i← 1 to n do

ci ← ai · bi;
end
for i← 1 to n do

for j ← i+ 1 to n do
ci ← ci + rij ;
rji ← (ai · bj + rij) + aj · bi;
cj ← cj + rji;

end

end
return (c1, . . . , cn);

We have the following lemma (see the proof in Appendix H).

16

Lemma 12. Let n ∈ N. For every t ≤ n − 2, the n-share ISW multiplication gadget displayed in
Algorithm 4 is (t, f1)-RPE1 and (t, f2)-RPE2 for some functions f1, f2 : R → R of amplification
orders d1, d2 which satisfy:

– d1 =
min(t+ 1, n− t)

2
,

– d2 =
t+ 1

2
.

Corollary 5 then directly follows from Lemma 12 by applying Lemma 3 (RPE1 ∩ RPE2 ⇒
RPE).

Corollary 5. Let n ∈ N. For every t ≤ n− 2, the n-share ISW multiplication gadget displayed in
Algorithm 4 is (t, f)-RPE of amplification order

d =
min(t+ 1, n− t)

2
.

According to Lemma 2, the upper bound on the amplification order of a standard multiplication
gadget (i.e. which starts with the cross-products of the input shares) is d ≤ min((t+ 1)/2, (n− t))
which gives d ≤ (n+ 1)/3 for t = (2n− 1)/3. In contrast, the ISW multiplication gadget reaches
d = bn+1

4 c by taking t = dn−12 e.

5.4 Application to the Expanding Compiler

As recalled in Section 2.5, instantiating the expanding compiler with three RPE base gadgets
gives a (p, 2−κ)-random probing secure compiler (i.e. achieving κ bits of security against a leakage
probability p) with a complexity blowup of O(κe) for an exponent e satisfying

e =
logNmax

log d

where Nmax satisfies (5) and where d is the minimum amplification order of the three base gadgets.
We can instantiate the expanding compiler using the above ISW-based gadgets. Specifically, we

use the ISW multiplication for the multiplication gadget Gmult, and the generic constructions of
addition and copy gadgets based on the ISW refresh. From Lemmas 10, 11, and 12, the maximum
amplification order achievable by the compiler is the minimum of the three gadgets, which is the
order of the ISW multiplication gadget:

d =
min(t+ 1, n− t)

2
.

Hence, for a given number of shares n, the maximum amplification order achievable is

dmax =

⌊
n+ 1

4

⌋

which is obtained for t = dn−12 e. On the other hand, the value of Nmax can be characterized in
terms of the number of shares n from the ISW algorithm. Recall from Section 2.5 that

Nmax = max

(
Nm,m , eigenvalues

((
Na,a Nc,a

Na,c Nc,c

)))
.

17

In the case of the ISW-based gadgets, we have Nm,m = n2 and

(
Na,a Nc,a

Na,c Nc,c

)
=

(
n(2n− 1) 2n(n− 1)
n(n− 1) n2

)
.

The eigenvalues of the above matrix are λ1 = n and λ2 = 3n2 − 2n, implying Nmax = 3n2 − 2n.
Thus, the expanding compiler instantiated by our ISW-based gadgets has a complexity blowup
O(κe) with exponent

e =
log(3n2 − 2n)

log(b(n+ 1)/4c) .

Figure 2 (blue curve) shows the evolution of the value of this exponent with respect to the number
of shares n (where we assume an odd n). The value of e clearly decreases as the number of shares
grows, and this decrease is faster for a small number of shares (5 ≤ n ≤ 10). The exponent value
reaches e ≈ 4 for a number of shares around 25 and then slowly converges towards e = 2 as n
grows. This is to be compared with the O(κ7.5) complexity achieved by the instantiation from [2,
9].

0 5 10 15 20 25
0

5

10

15

Number of shares n

E
x
p

o
n

en
t
e

Nmax = 3n2 − 2n, d = (n + 1)/4

Nmax = 3n2 − 2n, d = (n + 1)/2

Nmax = n2, d = (n + 1)/2

Fig. 2: Evolution of the complexity exponent e = log(Nmax)/ log(d) with respect to the number
of shares n. The blue curve matches the instantiation with the ISW-based gadgets; the orange
curve assumes the optimal amplification order (i.e. an improvement of the multiplication gadget);
the pink curve assumes a better complexity for addition and copy gadgets (so that Nmax matches
Nm,m = n2).

Towards a Better Complexity. Choosing gadgets which attain the upper bound min(t+1, n−t)
on the amplification order from Lemma 1 allows the compiler to have the maximum amplification
order d = (n+1)/2 and thus have the lowest complexity blowup. Our ISW-based copy and addition
gadgets achieve this bound while the ISW multiplication gadget is limited to (n+1)/4 (Lemma 12).
To reach the optimal amplification order, one would need a different multiplication gadget and in

18

particular a multiplication gadget which does not perform a direct product of shares (because of
the bound from Lemma 2). We introduce such a multiplication gadget hereafter (see Section 5.5).
Specifically, our new multiplication gadget achieves the upper bound on the amplification order
min(t+ 1, n− t) by avoiding a direct product of shares using a prior refresh on the input sharings.
The orange curve in Figure 2 shows the evolution of the value of the exponent when instantiating
the expanding compiler with our previous addition and copy gadgets and this new multiplication
gadget. For such an instantiation, the complexity exponent still slowly converges towards e = 2 but,
as we can see from Figure 2, the exponent value is much better for small values of n. For example,
we obtain e ≈ 3 for n = 20.

Another possible direction for improvement would be to lower the complexity of the addition
and copy gadgets, which is mainly dominated by the refreshing. Assume that we can design a
(T)RPE refresh gadget in sub-quadratic complexity, e.g. as the refresh gadgets proposed in [20,
7, 15], then the eigenvalues of the matrix in (5) would also be sub-quadratic and the value of
Nmax from equation (5) would drop to Nm,m = n2 (if the multiplication gadget still requires n2

multiplication gates). The pink curve in Figure 2 depicts the evolution of the exponent value under
this assumption. We still have a slow convergence towards e = 2 but the exponent value is yet better
for small values of n. For example, a complexity blowup of O(κ2.5) is obtained with 20 shares. We
leave the task of finding such a sub-quadratic (T)RPE refresh gadget as an open question for further
research.

The above analysis shows that the expanding compiler can theoretically approach a quadratic
complexity at the cost of increasing the number of shares in the base gadgets. The downside of
it is that the tolerated leakage probability is likely to decrease as the number of shares grow. For
instance, the ISW construction is known to only tolerate a leakage probability p = O(1/n) [14].
The number of shares hence offers multiple trade-offs between the tolerated probability and the
asymptotic complexity of the compiler. Starting from a target leakage probability p, one could
determine the highest number of shares admissible from a generic construction (such as the ISW-
based instantiation exhibited above) and thus deduce the best complexity exponent achievable. In
Section 6, we exhibit concrete trade-offs that can be reached for small values of n.

5.5 Multiplication Gadget with Maximal Amplification Order

Constructing a multiplication gadget which achieves the upper bound on the amplification order
from Lemma 1 is tricky. First, as a standard multiplication gadget (i.e. which computes the cross
products of the input shares), the ISW multiplication cannot achieve the maximal amplification
order (see Lemma 2). In order to reach the upper bound for two-input gadgets (see Corollary 2), we
need a non-standard multiplication gadget, i.e. which does not perform a direct product between
the input shares. As an additional observation, the addition, copy, and random gates are virtually
free in a multiplication gadget since they do not impact the final complexity of the expanding
compiler (see Section 2.5). This suggests that we can be greedy in terms of randomness to reach
the maximal amplification order.

In the following, we will describe the construction of a new multiplication gadget which achieves
the maximum amplification order min(t+ 1, n− t). We first describe our standard n-share multipli-
cation gadget and then explain how we avoid the initial cross products of shares. First, the gadget

19

constructs the matrix of the cross product of input shares:

M =




a1 · b1 a1 · b2 · · · a1 · bn
a2 · b1 a2 · b2 · · · a2 · bn

...
...

. . .
...

an · b1 an · b2 · · · an · bn




Then, it picks n2 random values which define the following matrix:

R =




r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n

...
...

. . .
...

rn,1 rn,2 · · · rn,n




It then performs an element-wise addition between the matrices M and R:

P = M +R =




p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
...

. . .
...

pn,1 pn,2 · · · pn,n




At this point, the gadget randomizes each product of input shares from the matrix M with a single
random value from R. In order to generate the correct output, the gadget adds all the columns of
P into a single column V of n elements, and adds all the columns of the transpose matrix RT into
a single column X of n elements:

V =




p1,1 + · · ·+ p1,n
p2,1 + · · ·+ p2,n

...
pn,1 + · · ·+ pn,n


 , X =




r1,1 + · · ·+ rn,1
r1,2 + · · ·+ rn,2

...
r1,n + · · ·+ rn,n




The n-share output is finally defined as (c1, . . . , cn) = V +X.

In order to further increase the maximum amplification order attainable by the gadget, we need
to avoid performing a direct product of shares (because of the bound proved in Lemma 2). For this,
we add a pre-processing phase to the gadget using a refresh gadget Grefresh. Specifically, we refresh
the input (b1, . . . , bn) each time it is used. In other terms, each row of the matrix M uses a fresh
copy of (b1, . . . , bn) produced using the considered refresh gadget. This amounts to performing n
independent refreshes of the input (b1, . . . , bn). The matrix M is thus defined as

M =




a1 · b(1)1 a1 · b(1)2 · · · a1 · b(1)n
a2 · b(2)1 a2 · b(2)2 · · · a2 · b(2)n

...
...

. . .
...

an · b(n)1 an · b(n)2 · · · an · b(n)n




where (b
(j)
1 , . . . , b

(j)
n), j ∈ [n], are the n independent refreshings of the input (b1, . . . , bn).

20

With this refreshing scheme, we avoid using the same share more than once for one of the two
input sharings. As a consequence, the double failure set of size t + 1 which is the reason behind
the bound (t+ 1)/2 in Lemma 2, becomes a simple failure set (i.e. provoking a failure on a single
input sharing). In addition, the computational overhead of these additional n refreshes is negligible
compared to the joint contribution of the copy and addition gadgets to the complexity of the
expanding compiler.

For the sake of completeness, we present the full algorithm for this multiplication gadget in
Algorithm 5.

Algorithm 5: Our multiplication gadget

Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i≤n,1≤j≤n random values, refresh
gadget Grefresh

Output: (c1, . . . , cn) sharing of a · b
for i← 1 to n do

(b
(i)
1 , . . . , b

(i)
n)← Grefresh(b1, . . . , bn);

end
for i← 1 to n do

for j ← 1 to n do

pi,j ← ai × b(i)j + ri,j ;

end

end
(v1, . . . , vn)← (0, . . . , 0);
(x1, . . . , xn)← (0, . . . , 0);
for i← 1 to n do

for j ← 1 to n do
vi ← vi + pi,j ;
xi ← xi + ri,j ;

end

end
for i← 1 to n do

ci ← vi + xi;
end
return (c1, . . . , cn);

In the following lemma, we show that if the refresh gadget Grefresh achieves the TRPE1 property
with the amplification order at least d = min(t+ 1, n− t) for any t, then the multiplication gadget
depicted in Algorithm 5 achieves TRPE with the maximum amplification orders. The proof is given
in Appendix I.

Lemma 13. Let t ≤ n − 1. Let Grefresh be a (t, f ′)-TRPE1 refresh gadget for some function f ′ :
R → R, and Gmult the n-share multiplication gadget from Algorithm 5. If f ′ is of amplification
order d′ ≥ d = min(t+ 1, n− t), then Gmult achieves (t, f)-TRPE for some function f : R→ R of
amplification order d = min(t+ 1, n− t).

Corollary 6 then directly follows from Lemma 13 by applying Lemma 4 (TRPE ⇒ RPE).

21

Corollary 6. Let t ≤ n − 1. Let Grefresh be a (t, f ′)-TRPE1 refresh gadget for some function
f ′ : R→ R, and Gmult the n-share multiplication gadget from Algorithm 5. If f ′ is of amplification
order d′ ≥ d = min(t + 1, n − t), then Gmult achieves (t, f)-RPE for some function f : R → R of
the same amplification order d = min(t+ 1, n− t).

6 Efficient Small Gadgets

This section displays our new constructions of small gadgets for copy, addition, and multiplication
operations with a low number of shares. As explained in [9], we cannot achieve RPE security with
relevant amplification orders for gadgets of less than 3 shares. Then, as explained in Section 3.1,
the highest amplification orders can only be achieved for gadgets with an odd number of shares.
We therefore omit 4-share gadgets and display our best trade-offs in terms of RPE security and
complexity for 3-share and 5-share gadgets. Each one of these gadgets is experimentally verified
using the VRAPS verification tool from [9].

Addition and Copy Gadgets. For the construction of small 3-share and 5-share addition and
copy gadgets, we use the generic constructions depicted in Algorithms 1 and 2 (in Section 5) which
naturally use a refresh gadget as a building block. We hence start by looking for refresh gadgets that
have a good complexity in terms of gates count, and achieve the upper bound on the amplification
order for the specific case of 3-share and 5-share constructions (but not necessarily for a higher
number of shares).

Multiplication gadget. For the construction of small 3-share and 5-share multiplication gadgets,
we use the generic construction depicted in Algorithm 5 from Section 5.5 which, to the best of
our knowledge, is the only multiplication gadget which achieves the maximum amplification order
for any number of shares, and specifically for 3-share and 5-share constructions. As for the refresh
gadget Grefresh which is used to perform n refreshes on the second input, we use the same scheme
as for the construction of small addition and copy gadgets (and which shall satisfy the necessary
condition on Grefresh from Corollary 6).

While the multiplication gadget from Section 5.5 achieves the desired amplification order, we
add another pre-processing phase to the gadget in order to further improve the tolerated leakage
probability. In addition to the n refreshes performed on the second input b (see Algorithm 5), we
add another single refresh of the input (a1, . . . , an) before computing the cross-products, using the
same refresh gadget Grefresh. Refreshing the input (a1, . . . , an) before usage experimentally shows
a further increase in the maximum tolerated leakage probability, by adding more randomness to
the input shares before computing the cross-product matrix M in Algorithm 5. And since the
refresh gadget Grefresh achieves the maximum amplification order, the amplification order achieved
by Gmult is not affected by adding another refresh to the first input a.

The above construction achieves the maximum amplification order for 3-share (d = 2) and
5-share (d = 3) gadgets based on natural refresh gadgets detailed hereafter.

6.1 3-share Gadgets

We start with the construction of 3-share gadgets for our three base operations.

22

Copy and Addition Gadgets. We build our copy and addition gadgets from the instantiation of
the generic constructions of Section 5 (Algorithms 1 and 2) with 3 shares. However, we do not use
the ISW refresh gadget but the following more efficient construction with only two random values
(instead of three):

Grefresh : c1 ← r1 + a1

c2 ← r2 + a2

c3 ← (r1 + r2) + a3.

This refresh is sufficient to reach the upper bounds on the amplification orders (from Lemma 1).
From this basis, we obtain the following 3-share addition gadget with four random values:

Gadd : c1 ← (r1 + a1) + (r3 + b1)

c2 ← (r2 + a2) + (r4 + b2)

c3 ←
(
(r1 + r2) + a3

)
+
(
(r3 + r4) + b3

)

and the following 3-share copy gadget with also four random values:

Gcopy : c1 ← r1 + a1; d1 ← r3 + a1

c2 ← r2 + a2; d2 ← r4 + a2

c3 ← (r1 + r2) + a3; d3 ← (r3 + r4) + a3.

Multiplication Gadget. The following construction is a 3-share instantiation of the multiplication
gadget described in Section 5.5. For the input refreshing, we use the 3-share refresh gadget described
above with two uniformly random values. The construction achieves the bound on the amplification
order from Lemma 1 with 17 random values:

Gmult : i1,1 ← r1 + b1; i1,2 ← r2 + b2; i1,3 ← (r1 + r2) + b3

i2,1 ← r3 + b1; i2,2 ← r4 + b2; i2,3 ← (r3 + r4) + b3

i3,1 ← r5 + b1; i3,2 ← r6 + b2; i3,3 ← (r5 + r6) + b3

a′1 ← r7 + a1; a′2 ← r8 + a2; a′3 ← (r7 + r8) + a3

c1 ← (a′1 · i1,1 + r1,1) + (a′1 · i1,2 + r1,2) + (a′1 · i1,3 + r1,3) + (r1,1 + r2,1 + r3,1)

c2 ← (a′2 · i2,1 + r2,1) + (a′2 · i2,2 + r2,2) + (a′2 · i2,3 + r2,3) + (r1,2 + r2,2 + r3,2)

c3 ← (a′3 · i3,1 + r3,1) + (a′3 · i3,2 + r3,2) + (a′3 · i3,3 + r3,3) + (r1,3 + r2,3 + r3,3).

Results. Table 1 displays the results for the above gadgets obtained through the VRAPS tool.
The second column gives the complexity, where Na, Nc, Nm, Nr stand for the number of addition
gates, copy gates, multiplication gates and random gates respectively. The third column provides
the amplification order of the gadget. And the last column gives the maximum tolerated leakage
probability. The last row gives the global complexity, amplification order, and maximum tolerated
leakage probability for the expanding compiler using these three gadgets from the results provided
in [9].

23

Table 1: Results for the 3-share gadgets for (t = 1, f)-RPE, achieving the bound on the amplification
order.

Gadget
Complexity

(Na, Nc, Nm, Nr)
Amplification

order
log2 of maximum
tolerated proba

Grefresh (4, 2, 0, 2) 2 −5.14

Gadd (11, 4, 0, 4) 2 −4.75

Gcopy (8, 7, 0, 4) 2 −7.50

Gmult (40, 29, 9, 17) 2 −7.41

Compiler O(|C| · κ3.9) 2 −7.50

Remark 1. The copy gadget Gcopy instantiated in [9] which uses a refresh scheme with 3 randoms
for each output, also reaches the amplification order 2. It tolerates a better leakage probability
(i.e. 2−5.9) than the one provided here, but with a higher complexity of (12, 9, 0, 6). If it is used to
replace the 3-share copy gadget, the maximum tolerated leakage probability by the compiler from
Table 1 would be of 2−7.4 slightly better than the current value of 2−7.5 but with a higher complexity
of O(|C| ·κ4.08) instead of O(|C| ·κ3.9). Another copy gadget can be constructed by using the refresh
scheme with 3 random values from [9] for one of the outputs, and the refresh scheme presented in
this section with 2 random values for the second output. This gadget tolerates a maximum leakage
probability of around 2−7.1 with a complexity of (10, 8, 0, 5). Using it would bring the complexity
of the compiler from Table 1 to O(|C| ·κ4), while tolerating a leakage probability of 2−7.4, the same
as that of the used multiplication gadget.

6.2 5-share Gadgets

We now present our 5-share gadgets for our three base operations, which reach the optimal ampli-
fication order from Lemma 1.

Copy and Addition Gadgets. As for the 3-share case, we use the generic constructions from
Section 5. Instead of using the ISW refresh gadget which would require 10 uniformly random values
for a 5-share construction, we use the circular refresh gadget described in [4, 6] (a.k.a. block refresh
gadget):

Grefresh : c1 ← (r1 + r2) + a1

c2 ← (r2 + r3) + a2

c3 ← (r3 + r4) + a3

c4 ← (r4 + r5) + a4

c5 ← (r5 + r1) + a5.

This gadget only uses n randoms for an n-share construction, and while it does not achieve enough
security in the generic case (unless the refresh block is iterated on the input a certain number of
times [4, 6]), it proves to be more than enough to achieve the necessary amplification order for our

24

5-share constructions. We use a variant of the original version (also suggested in [4]): we choose to
sum the random values first (thus obtaining a sharing of 0) before adding them to the input shares.
The idea is to avoid using the input shares in any of the intermediate variables, so that input shares
only appear in the input variables {ai}1≤i≤n and the final output variables {ci}1≤i≤n. Intuitively,
this trick allows to have less failure tuples in the gadget because there are less variables that could
leak information about the input. This is validated experimentally where we obtain better results
in terms of amplification order and tolerated leakage probability for small gadgets.

From this circular refresh, we obtain an addition gadget with ten random values which reaches
the upper bound on the amplification order:

Gadd : c1 ←
(
(r1 + r2) + a1

)
+
(
(r6 + r7) + b1

)

c2 ←
(
(r2 + r3) + a2

)
+
(
(r7 + r8) + b2

)

c3 ←
(
(r3 + r4) + a3

)
+
(
(r8 + r9) + b3

)

c4 ←
(
(r4 + r5) + a4

)
+
(
(r9 + r10) + b4

)

c5 ←
(
(r5 + r1) + a5

)
+
(
(r10 + r6) + b5

)

and a copy gadget with also ten random values and which also reaches the upper bound on the
amplification order:

Gcopy : c1 ← (r1 + r2) + a1; d1 ← (r6 + r7) + a1

c2 ← (r2 + r3) + a2; d2 ← (r7 + r8) + a2

c3 ← (r3 + r4) + a3; d3 ← (r8 + r9) + a3

c4 ← (r4 + r5) + a4; d4 ← (r9 + r10) + a4

c5 ← (r5 + r1) + a5; d5 ← (r10 + r6) + a5.

Multiplication Gadget. The following construction is a 5-share instantiation of the multiplication
gadget described in Section 5.5. For the input refreshing, we use the 5-share circular refresh gadget
described above. The gadget advantageously achieves the optimal amplification order (given by

25

Lemma 1) with 55 random values:

Gmult : i1,1 ← (r1 + r2) + b1; i1,2 ← (r2 + r3) + b2; i1,3 ← (r3 + r4) + b3;

i1,4 ← (r4 + r5) + b4; i1,5 ← (r5 + r1) + b5

i2,1 ← (r6 + r7) + b1; i2,2 ← (r7 + r8) + b2; i2,3 ← (r8 + r9) + b3;

i2,4 ← (r9 + r10) + b4; i2,5 ← (r10 + r6) + b5

i3,1 ← (r11 + r12) + b1; i3,2 ← (r12 + r13) + b2; i3,3 ← (r13 + r14) + b3;

i3,4 ← (r14 + r15) + b4; i3,5 ← (r15 + r11) + b5

i4,1 ← (r16 + r17) + b1; i4,2 ← (r17 + r18) + b2; i4,3 ← (r18 + r19) + b3;

i4,4 ← (r19 + r20) + b4; i4,5 ← (r20 + r16) + b5

i5,1 ← (r21 + r22) + b1; i5,2 ← (r22 + r23) + b2; i5,3 ← (r23 + r24) + b3;

i5,4 ← (r24 + r25) + b4; i5,5 ← (r25 + r21) + b5

a′1 ← (r26 + r27) + a1; a′2 ← (r27 + r28) + a2; a′3 ← (r28 + r29) + a3;

a′4 ← (r29 + r30) + a4; a′5 ← (r30 + r26) + a5

c1 ← (a′1 · i1,1 + r1,1) + (a′1 · i1,2 + r1,2) + (a′1 · i1,3 + r1,3) + (a′1 · i1,4 + r1,4)

+(a′1 · i1,5 + r1,5) + (r1,1 + r2,1 + r3,1 + r4,1 + r5,1)

c2 ← (a′2 · i2,1 + r2,1) + (a′2 · i2,2 + r2,2) + (a′2 · i2,3 + r2,3) + (a′2 · i2,4 + r2,4)

+(a′2 · i2,5 + r2,5) + (r1,2 + r2,2 + r3,2 + r4,2 + r5,2)

c3 ← (a′3 · i3,1 + r3,1) + (a′3 · i3,2 + r3,2) + (a′3 · i3,3 + r3,3) + (a′3 · i3,4 + r3,4)

+(a′3 · i3,5 + r3,5) + (r1,3 + r2,3 + r3,3 + r4,3 + r5,3)

c4 ← (a′4 · i4,1 + r4,1) + (a′4 · i4,2 + r4,2) + (a′4 · i4,3 + r4,3) + (a′4 · i4,4 + r4,4)

+(a′4 · i4,5 + r4,5) + (r1,4 + r2,4 + r3,4 + r4,4 + r5,4)

c5 ← (a′5 · i5,1 + r5,1) + (a′5 · i5,2 + r5,2) + (a′5 · i5,3 + r5,3) + (a′5 · i5,4 + r5,4)

+(a′5 · i5,5 + r5,5) + (r1,5 + r2,5 + r3,5 + r4,5 + r5,5).

Results. Table 2 gives the results for the above gadgets obtained through the VRAPS tool.

26

Table 2: Results for the 5-share gadgets for (t = 2, f)-RPE, achieving the bound on the amplification
order.

Gadget Complexity
Amplification

order
log2 of maximum
tolerated proba

Grefresh (10, 5, 0, 5) 3 −4.83

Gadd (25, 10, 0, 10) 3 [−6.43,−3.79]

Gcopy (20, 15, 0, 10) 3 [−6.43,−5.78]

Gmult (130, 95, 25, 55) 3 [−12.00,−6.03]

Compiler O(|C| · κ3.23) 3 [−12.00,−6.03]

From Tables 1 and 2, we observe that the asymptotic complexity is better for the instantiation
based on 5-share gadgets as they provide a better amplification order with limited overhead. While
this result can seem to be counterintuitive, it actually comes from the fact that each gadget will be
expended less in the second scenario. We stress that we could only obtain an interval [2−12, 2−6] for
the tolerated leakage probability because it was computationally too expensive to obtain a tighter
interval from the VRAPS tool, but this could probably be improved in the future. Meanwhile, we
can consider that our best complexity O(|C| · κ3.2) comes at the price of a lower tolerated leakage
probability of 2−12 (5-share gadget) compared to the O(|C| · κ3.9) complexity and 2−7.5 tolerated
leakage probability obtained for our 3-share instantiation.

In comparison, the previous instantiation of the expanding compiler [9] could only achieve a
complexity of O(|C| ·κ7.5) for maximum tolerated probabilities of 2−8, and the instantiation of the
expanding approach with a multi-party computation protocol [2], could only achieve a complexity
of O(|C| · κ8.2) for maximum tolerated probabilities of 2−26.

Acknowledgments. This work is partly supported by the French FUI-AAP25 VeriSiCC project.

References

1. Miklós Ajtai. Secure computation with information leaking to an adversary. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd Annual ACM Symposium on Theory of Computing, pages 715–724, San Jose, CA, USA,
June 6–8, 2011. ACM Press.

2. Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular approach. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture
Notes in Computer Science, pages 427–455, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg,
Germany.

3. Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with O(1/ log(n)) leakage
rate. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 586–615, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

4. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, François-Xavier Stan-
daert, and Pierre-Yves Strub. Improved parallel mask refreshing algorithms: generic solutions with parametrized
non-interference and automated optimizations. Journal of Cryptographic Engineering, 10(1):17–26, April 2020.

5. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub,
and Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Edgar R. Weippl,

27

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd
Conference on Computer and Communications Security, pages 116–129, Vienna, Austria, October 24–28, 2016.
ACM Press.

6. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier Standaert, and Pierre-
Yves Strub. Parallel implementations of masking schemes and the bounded moment leakage model. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I, volume
10210 of Lecture Notes in Computer Science, pages 535–566, Paris, France, April 30 – May 4, 2017. Springer,
Heidelberg, Germany.

7. Alberto Battistello, Jean-Sebastien Coron, Emmanuel Prouff, and Rina Zeitoun. Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. Cryptology ePrint Archive, Report 2016/540, 2016. https:

//eprint.iacr.org/2016/540.
8. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud.

Randomness complexity of private circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, pages
616–648, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

9. Sonia Beläıd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Abdul Rahman Taleb. Random
probing security: Verification, composition, expansion and new constructions. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part I, volume 12170 of Lecture Notes in Computer
Science, pages 339–368, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

10. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 398–412, Santa Barbara, CA, USA, August 15–19, 1999. Springer,
Heidelberg, Germany.

11. Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q. Nguyen and Elisabeth Oswald,
editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science,
pages 441–458, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

12. Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel masking with pseudo-random generator.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part III, volume 12107
of Lecture Notes in Computer Science, pages 342–375, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg,
Germany.

13. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-order side channel security
and mask refreshing. In Shiho Moriai, editor, Fast Software Encryption – FSE 2013, volume 8424 of Lecture
Notes in Computer Science, pages 410–424, Singapore, March 11–13, 2014. Springer, Heidelberg, Germany.

14. Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing attacks to
noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014,
volume 8441 of Lecture Notes in Computer Science, pages 423–440, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany.

15. Stefan Dziembowski, Sebastian Faust, and Karol Zebrowski. Simple refreshing in the noisy leakage model. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT 2019, Part III, volume
11923 of Lecture Notes in Computer Science, pages 315–344, Kobe, Japan, December 8–12, 2019. Springer,
Heidelberg, Germany.

16. Louis Goubin and Jacques Patarin. DES and differential power analysis (the “duplication” method). In Çetin
Kaya Koç and Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES’99, volume 1717
of Lecture Notes in Computer Science, pages 158–172, Worcester, Massachusetts, USA, August 12–13, 1999.
Springer, Heidelberg, Germany.

17. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks. In Dan
Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 463–481, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

18. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Neal
Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages
104–113, Santa Barbara, CA, USA, August 18–22, 1996. Springer, Heidelberg, Germany.

19. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal security proof. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881
of Lecture Notes in Computer Science, pages 142–159, Athens, Greece, May 26–30, 2013. Springer, Heidelberg,
Germany.

20. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems – CHES 2010, volume 6225

28

of Lecture Notes in Computer Science, pages 413–427, Santa Barbara, CA, USA, August 17–20, 2010. Springer,
Heidelberg, Germany.

29

A Random Probing Expandability 1 & 2

Definition 7 (Random Probing Expandability 1). Let f : R → R. An n-share gadget G :
Kn × Kn → Kn is (t, f)-RPE1 if there exists a deterministic algorithm SimG

1 and a probabilistic
algorithm SimG

2 such that for every input (x̂, ŷ) ∈ Kn×Kn, for every set J ⊆ [n], such that |J | ≤ t,
and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2)← SimG
1 (W, J)

out← SimG
2 (W, J, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (8)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J

)
(9)

where ẑ = G(x̂, ŷ).

Definition 8 (Random Probing Expandability 2). Let f : R → R. An n-share gadget G :
Kn × Kn → Kn is (t, f)-RPE2 if there exists a deterministic algorithm SimG

1 and a probabilistic
algorithm SimG

2 such that for every input (x̂, ŷ) ∈ Kn × Kn, for every p ∈ [0, 1], the random
experiment

W ← LeakingWires(G, p)

(I1, I2, J)← SimG
1 (W)

out← SimG
2 (W, J, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > t

)
and F2 ≡

(
|I2| > t

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (10)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J is such that J ⊆ [n] with |J | = n− 1

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J

)
(11)

where ẑ = G(x̂, ŷ).

30

B Tight Random Probing Expandability

Definition 9 (Tight Random Probing Expandability). Let f : R → R. An n-share gadget
G : Kn×Kn → Kn is (t, f)-tight random probing expandable (TRPE) if there exists a deterministic
algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input (x̂, ŷ) ∈ Kn ×Kn, for

every set J ⊆ [n] and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J
′)← SimG

1 (W, J)

out← SimG
2 (W, J ′, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1|> min(t, |W|)

)
and F2 ≡

(
|I2|> min(t, |W|)

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (12)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J ′ is such that J ′ = J if |J | ≤ t and J ′ ⊆ [n] with |J ′| = n− 1 otherwise,

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J ′

)
(13)

where ẑ = G(x̂, ŷ),

Definition 10 (Tight Random Probing Expandability 1). Let f : R→ R. An n-share gadget
G : Kn×Kn → Kn is (t, f)-tight random probing expandable (TRPE) if there exists a deterministic
algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input (x̂, ŷ) ∈ Kn ×Kn, for

every set J ⊆ [n], such that |J | ≤ t, and for every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2)← SimG
1 (W, J)

out← SimG
2 (W, J, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > min(t, |W|)

)
and F2 ≡

(
|I2| > min(t, |W|)

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (14)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J

)
(15)

where ẑ = G(x̂, ŷ),

31

Definition 11 (Tight Random Probing Expandability 2). Let f : R→ R. An n-share gadget
G : Kn×Kn → Kn is (t, f)-tight random probing expandable (TRPE) if there exists a deterministic
algorithm SimG

1 and a probabilistic algorithm SimG
2 such that for every input (x̂, ŷ) ∈ Kn ×Kn, for

every p ∈ [0, 1], the random experiment

W ← LeakingWires(G, p)

(I1, I2, J)← SimG
1 (W)

out← SimG
2 (W, J, x̂|I1 , ŷ|I2)

ensures that

1. the failure events F1 ≡
(
|I1| > min(t, |W|)

)
and F2 ≡

(
|I2| > min(t, |W|)

)
verify

Pr(F1) = Pr(F2) = ε and Pr(F1 ∧ F2) = ε2 (16)

with ε = f(p) (in particular F1 and F2 are mutually independent),

2. J is such that J ⊆ [n] with |J | = n− 1

3. the output distribution satisfies

out
id
=
(
AssignWires(G,W, (x̂, ŷ)) , ẑ|J

)
(17)

where ẑ = G(x̂, ŷ),

C Proof of Lemma 7

Proof. To prove that Gcopy is TRPE achieving the same amplification order d as the underlying
refresh gadget Grefresh, we need to prove that any set of leaking wires W such that |W| ≤ d − 1
can be perfectly simulated together with any sets of outputs wires J1, J2 ⊆ [n] (such that J1
refers to the first output e and J2 to the second output f) from a set of input wires I such
that |I| ≤ min(t, |W|). In addition, we know from Lemma 1 that the maximal amplification order
achievable in the TRPE setting is dmax ≤ min(t+ 1, 2(n− t)). Since we consider sets W of size at
most |W| ≤ d−1 ≤ min(t+ 1, 2(n− t))−1 ≤ t then we need to prove that |I| ≤ min(t, |W|) = |W|.

The leaking set W can be split into two distinct subsets W1 and W2 such that W = W1 ∪W2

whereW1 (resp.W2) is the set of leaking wires of Grefresh for the output e (resp. f). Let J1, J2 ⊆ [n].
We consider four cases:

– |J1| ≤ t, |J2| ≤ t: since |W| ≤ d − 1, then |W1|, |W2| ≤ d − 1. Since Grefresh achieves an
amplification order d, then by definition of TRPE, the sets W1 and J1 can be simulated with
a set of input shares I1 such that |I1| ≤ min(|W1|, t). Similarly, the sets W2 and J2 can be
simulated with a set of input shares I2 such that |I2| ≤ min(|W2|, t). As a consequence, set I
defined as I = I1 ∪ I2 is enough to simulate W =W1 ∪W2 and both output shares J1 and J2.
Furthermore, we have

|I| ≤ |I1|+ |I2| ≤ min(|W1|, t) + min(|W2|, t) ≤ |W| = min(|W|, t)

32

– |J1| > t, |J2| > t: in this case, we need to prove the existence of a set of input shares I such
that |I| ≤ min(t, |W |) = |W| (since |W| ≤ d − 1 ≤ t) for which we can perfectly simulate W
together with two chosen output sets J ′1 and J ′2 such that |J ′1| = |J ′2| = n − 1. Since we have
W = W1 ∪W2 such that |W1| ≤ d − 1, |W2| ≤ d − 1, then by definition of TRPE, there exists
J ′1, |J ′1| = n− 1 such that W1 and J ′1 can be perfectly simulated from a set of inputs shares I1
such that |I1| ≤ min(|W1|, t). Similarly, there exists J ′2, |J ′2| = n−1 such thatW2 and J ′2 can be
perfectly simulated from a set of inputs shares I2 such that |I2| ≤ min(|W2|, t). By choosing such
sets J ′1, J

′
2, the overall simulation of Gcopy can be done with the set of input shares I = I1 ∪ I2,

and we have

|I| ≤ |I1|+ |I2| ≤ min(|W1|, t) + min(|W2|, t) ≤ |W| = min(|W|, t)

– |J1| ≤ t, |J2| > t: Since |J1| ≤ t, by definition of TRPE, W1 and J1 can be perfectly simulated
from a set of input shares I1 such that |I1| ≤ min(|W1|, t). In addition, for |J2| > t, we also
know that we can choose a set J ′2 such that |J ′2| = n − 1 that can be perfectly simulated with
W2 from a set of input shares I2 with |I2| ≤ min(|W2|, t). By choosing such a set J ′2, the overall
simulation of Gcopy can be achieved with the set of input wires I = I1 ∪ I2, and we have

|I| ≤ |I1|+ |I2| ≤ min(|W1|, t) + min(|W2|, t) ≤ |W| = min(|W|, t)

– |J1| > t, |J2| ≤ t: the proof is exactly the reflect of the previous one.

Since in the four cases, there is no failure tuple W of size |W| < d, then the gadget Gcopy achieves
an amplification order d. Lemma 1 finally completes the proof. �

D Proof of Lemma 8

Proof. We need to prove that when Grefresh is (t, f)-RPE (resp. (t, f ′)-TRPE) of amplification order
d, then Gadd is (t, f ′)-RPE (resp. (t, f ′)-TRPE) of amplification order at least bd2c. We will prove
the property for the RPE setting, and the proof for the TRPE setting will be exactly the same
except for the notion of failure event which changes. This amounts to proving that:

1. Any set of leaking wires W such that |W| < bd2c can be simulated together with any set of
outputs wires J ⊆ [n] from sets of input wires I1 on a and I2 on b such that |I1| ≤ t and |I2| ≤ t
(for TRPE we would have |I1| ≤ min(t, |W|) and |I2| ≤ min(t, |W|)).

2. Any set of leaking wires such that bd2c ≤ |W| < d can be simulated together with any set of
outputs wires J ⊆ [n] from sets of input wires I1, I2 such that |I1| ≤ t or |I2| ≤ t (because of
the double failure, i.e failure on both inputs) (for TRPE we would have |I1| ≤ min(t, |W|) or
|I2| ≤ min(t, |W|)).

We proceed by building the necessary simulators for Gadd from the simulators that already exist for
Grefresh. Concretely, we split each setW of leaking wires, into four subsetsW =Wr

1∪W a
1 ∪Wr

2∪W a
2

whereWr
1 (resp.Wr

2) is the set of leaking wires during the computation of Grefresh(a1, . . . , an) (resp.
Grefresh(b1, . . . , bn)), andWa

1 (resp.Wa
2) is the set of leaking wires of (e1, . . . , en) (resp. (f1, . . . , fn)).

From these notations, we build a leaking setW ′ which containsWr
1 andWr

2 and also each input
or pair of inputs of gates whose output is a wire in Wa

1 or Wa
2 . We have that

|W ′| ≤ |Wr
1 |+ |Wr

2 |+ 2|Wa
1 |+ 2|Wa

2 | ≤ 2|W|.

33

The new set W ′ can be split into two subsets W ′1 and W ′2 such that W ′1 (resp. W ′2) contains only
leaking wires during the computation of Grefresh(a1, . . . , an) (resp. Grefresh(b1, . . . , bn)). We now
demonstrate how we can simulate W ′ when the output set J is of size less that t ((T)RPE1) and
when it is of size strictly more than t ((T)RPE2).

– if |J | ≤ t ((T)RPE1): we prove both properties 1 and 2:

1. we assume that |W| < bd2c. Then we consider the set W ′ =W ′1 ∪W ′2 (as previously defined)
such that

|W ′| ≤ 2|W| < 2bd
2
c ≤ d

and hence,

|W ′1| < d and |W ′2| < d.

From the (t, f)-RPE property of Grefresh and its amplification order, there exists an input
set of shares of a I1 such that |I1| ≤ t (for TRPE we would have |I1| ≤ min(t, |W|)) and I1
perfectly simulatesW ′1 and any set J1 of up to t variables ei. Similarly, there exists an input
set of shares of b I2 such that |I2| ≤ t (for TRPE we would have |I2| ≤ min(t, |W|)) and I2
perfectly simulates W ′2 and any set J2 of up to t variables fi. J1 and J2 are chosen as the
inputs ei and fi respectively of wires ei + fi in set J . Namely |J1| = |J2| = |J |.
From these definitions, I1 and I2 together perfectly simulate W ′ and J and are both of size
less than t (less than min(t, |W|) for TRPE), which proves the first property in this scenario.

2. we now assume that bd2c ≤ |W| < d. Then we consider the set W ′ =W ′1 ∪W ′2 such that

|W ′| ≤ 2|W| < 2d

and hence,

|W ′1| < d or |W ′2| < d.

Without loss of generality, let us consider that |W ′1| < d (the proof is similar in the opposite
scenario). From the (t, f)-RPE property of Grefresh and its amplification order, there exists
an input set of shares of a I1 such that |I1| ≤ t (for TRPE we would have |I1| ≤ min(t, |W|))
and I1 perfectly simulates W ′1 and any set J1 of up to t variables ei. There also exists an
input set of shares of b I2 which perfectly simulates W ′2 and any set J2 of up to t variables
fi but not necessarily of size less than t (less than min(t, |W|) for TRPE). If J1 and J2 are
chosen as the inputs ei and fi respectively of wires ei + fi in set J , then sets I1 and I2
together perfectly simulate W ′ and J . In this case, we only have a failure on at most one of
the inputs (b in this case), which concludes the proof for the second property.

At this point, we proved that Gadd achieves an amplification order greater than or equal to bd2c
for RPE1 (for TRPE1 in the TRPE setting).

– if |J | > t ((T)RPE2): we prove both properties 1 and 2:

1. we assume that |W| < bd2c. Then we consider the set W ′ =W ′1 ∪W ′2 (as previously defined)
such that

|W ′| ≤ 2|W| < d.

W ′1 and W ′2 both point to leaking wires in instances of Grefresh. We denote by W ′′1 the set of
leaking wires on the first instance of Grefresh (on input a) such that W ′′1 contains W ′1 and all
the wires that are leaking within the second instance of Grefresh (designated by W ′2 in this

34

second instance). Hence, we have that |W ′′1 | ≤ |W ′1 ∪W ′2| < d. From the (t, f)-RPE ((t, f)-
TRPE in the TRPE setting) property of Grefresh and its amplification order, there exists an
input set of shares of a I1 such that |I1| ≤ t (for TRPE we would have |I1| ≤ min(t, |W|)) and
a set of output shares ei J

′
1 of size n− 1 such that the input shares of I1 perfectly simulate

the wires designated by W ′′1 and J ′1. Similarly, as both instances of Grefresh are identical, the
same set I2 but of input shares b perfectly simulates W ′′2 (defined as the equivalent of W ′′1
on the second instance) and J ′2 which points to the same output shares than J1 but on fi
instead of ei. We thus have two input sets I1 and I2 of size less than t (less than min(t, |W|)
for TRPE2) whose shares perfectly simulate the wires W ′ and the elements ei + fi of a set
J ′ of size n− 1 with i ∈ J ′1 = J ′2. That concludes the proof for the first property.

2. we now assume that bd2c ≤ |W| < d. Then we consider the set W ′ =W ′1 ∪W ′2 such that

|W ′| ≤ 2|W| < 2d.

Without loss of generality, let us consider that |W ′1| < d (the proof is similar in the opposite
scenario). From the (t, f)-RPE ((t, f)-TRPE in the TRPE setting) property of Grefresh and
its amplification order, there exists a set J ′1 such that |J ′1| = n − 1 and a set of input
shares I1 such that I1 perfectly simulates W ′1 and J ′1 and |I1| ≤ t (for TRPE we would have
|I1| ≤ min(t, |W|)). Thus, we can select a set J ′ of outputs of Gadd such that J ′ corresponds
to the outputs of J1 (for each element ei designated by J1, ei + fi is pointed by J). Then,
by choosing I2 = [n], we have two input sets I1 and I2 which perfectly simulate W ′ and an
output set J ′ of size n− 1 such that |I1| ≤ t (for TRPE we would have |I1| ≤ min(t, |W|)).
That concludes the proof for the second property.

We thus proved that Gadd achieves an amplification order greater than or equal to bd2c for RPE2
(for TRPE2 in the TRPE setting).

Since Gadd has an amplification order greater than or equal to bd2c for RPE1 and RPE2 (resp.
TRPE1 and TRPE2), then Gadd is a (t, f ′)-RPE (resp. (t, f ′)-TRPE) addition gadget for some
function f ′ of amplification order d′ ≥ bd2c, which concludes the proof. �

E Proof of Lemma 9

Proof. We start by proving the first property of the lemma, i.e the amplification order d1 for
TRPE1. The n-share ISW refresh gadget was proven to be (n − 1)-SNI [5], hence it follows from
Lemma 6 that d1 ≥ min(t + 1, n − t). In addition, we know from the proof of Lemma 1 and as
explained in section 4.1 that d1 ≤ t+1. It remains to show that d1 ≤ n− t. We thus have to exhibit
a simulation failure by carefully choosing n− t leaking variables (the leaking set W) together with
t leaking output variables (indexed by the set J). Consider the set of output shares indexed by
J = {1, . . . , t}, which corresponds to the first t shares c1, . . . , ct of the output. Next, we construct
the set of leaking wires W of size n − t. First, observe that the partial sums of the output shares
are of the form

ci,j =

{
ai + r1,i + · · ·+ rj,i if j < i
ai + r1,i + · · ·+ ri−1,i + ri,i+1 + · · ·+ ri,j otherwise.

Then, let W = {ct+1,t, . . . , cn,t}. We can prove that the constructed set W along with the set of
indexes of output shares J = {1, . . . , t} cannot be perfectly simulated with at most min(t, |W|)

35

input shares. For this, we consider a variable s = c1 + · · ·+ ct + ct+1,t + . . .+ cn,t, the sum of the t
output shares indexed in J , and the leaking variables from W. Each of the output shares {ci}1≤i≤t
is the sum of exactly one input share ai and n − 1 random values. Each of the leaking variables
{ci,t}t+1≤i≤n is the sum of exactly one input share ai and t random values. In addition, it can be
observed that each random value appears exactly twice in the set of expressions of the variables
{ci}1≤i≤t∪{ci,t}t+1≤i≤n, so all of the random values are eliminated in the expression of the variable
s, which is the sum of all of these variables. Since each of the variables has one input share ai
appearing in its expression, then we have s = a1 + . . . + an = a. Thus, simulating the variable
s requires the knowledge of the full input, and hence the leaking variables indexed by W and J
cannot be perfectly simulated without the knowledge of the full input. Hence, the setW of size n−t
represents a failure set with respect to TRPE1, and so the function f1 cannot be of amplification
order higher than n − t, that is d1 ≤ n − t. From the three inequalities d1 ≥ min(t + 1, n − t),
d1 ≤ t+ 1 and d1 ≤ n− t, we obtain d1 = min(t+ 1, n− t).

Next, we demonstrate the second part of the lemma, i.e. the amplification order d2 for TRPE2.
Let W be a set of leaking wires such that |W| < t + 1. We aim to prove that there exists a set
J indexing n − 1 output shares such that the leaking variables indexed by both W and J can be
perfectly simulated with the input shares indexed by a set I such that |I| ≤ min(t, |W|) = |W|.
First, we observe that the leaking wires in W are of the following forms:

1. input share ai
2. random variable rij (i < j)

3. partial sum cij =

{
ai + r1,i + · · ·+ rj,i if j < i
ai + r1,i + · · ·+ ri−1,i + ri,i+1 + · · ·+ ri,j otherwise.

We then build I from an empty set as follows. For every wire in W of the first or third form, we
add index i to I. For every wire in W of the second form (rij), if i ∈ I, we add j to I, otherwise we
add i to I. By construction we have |I| ≤ |W| ≤ t. Moreover, the wires in the set W only depends
of the input shares ai with i ∈ I which implies that we can perfectly simulate the variables indexed
by W from the input shares indexed by I. We then build the set J as the union of two subsets
J1 and J2 such that J1 = I and J2 is any set satisfying |J2| = n − 1 − |I| and J1 ∩ J2 = ∅. Now,
we aim to show that the output shares determined by the indexes in J = J1 ∪ J2 can be further
perfectly simulated from the input shares indexed by I (namely given the previous simulation of
the variables from W). The simulation works as follows:

– each output share ci such that i ∈ J1 can be perfectly simulated with ai (since i ∈ I) and n− 1
uniformly random variables (the same generated rij can be reused for several ci);

– for each output share ci such that i ∈ J2, we have i /∈ I and hence ai is not available. Since
by construction of J1, all the variables observed through the set W are included in the set of
variables observed through J1, and since |J1| ≤ |W| ≤ t ≤ n − 2 and |J2| = n − 1 − |J1|, then
each output wire ci indexed in J2 has at least one random value that does not appear in any
other observation from W or J1, so ci can be assigned to a fresh random value. This produces
a perfect simulation of all output wires indexed in J2.

We thus obtain a perfect simulation of the output shares indexed by J = J1 ∪ J2, such that
|J | = n − 1, together with the variables indexed by W, from the input shares indexed by a set I
of size |I| ≤ |W| ≤ t, so |I| ≤ min(t, |W|). Hence the ISW refresh gadget is (t, f)-TRPE2 with an
amplification order d2 ≥ t+ 1. In addition, we know from the proof of Lemma 1 and as explained
in Section 4.1 that d2 ≤ t+ 1, hence d2 = t+ 1 which concludes the proof. �

36

F Proof of Lemma 10

Proof. In order to prove that the amplification order d of Gcopy instantiated with the ISW refresh
gadget is equal to min(t + 1, n − t), we first demonstrate that d ≥ min(t + 1, n − t) and then we
show the existence of failure tuples to argue that d ≤ min(t+ 1, n− t).

In fact, we already know that the ISW refresh gadget is (t, f1)-TRPE of amplification order
d1 = min(t+ 1, n− t). Then from Lemma 7, we know that Gcopy instantiated with ISW refresh is
also (t, f2)-TRPE of amplification order d2 = d1 = min(t+ 1, n− t). Then, from Lemma 4 we have
that Gcopy is (t, f)-RPE of amplification order d ≥ d2 = min(t+ 1, n− t). Next, we need to prove
that d ≤ min(t + 1, n − t). In addition, we know from Lemma 1 that d ≤ t + 1. Hence, it remains
to show that it is also upper bounded by n− t.

We know from the proof of Lemma 9 that, for the ISW refresh gadget, we can construct a set
of leaking wires W of size n− t along with a set of t indexes of output shares J such that a perfect
simulation of both sets W and J requires the knowledge of the full input sharing i.e. I = [n]. Then,
in the case of the copy gadget Gcopy, letW be the set of leaking wires and J1, J2 ⊆ [n] be the sets of
output shares on the outputs e and f respectively. Then, we can split W into two distinct subsets
W1 andW2 such thatW =W1∪W2, whereW1 (resp.W2) is the set of leaking wires of ISW Grefresh

for the output e (resp. f). Then, in the case where |J1| ≤ t, we can construct the set W = W1 of
size n− t (W2 = ∅) in the exact same way as in the proof of Lemma 9, such that we have simulation
failure of W1 along with the output shares indexed in J1 on the input of the gadget. Otherwise, in
the case where |J2| ≤ t, we can construct the set W =W2 of size n− t (W1 = ∅) in the exact same
way, such that we have simulation failure of W2 along with the output shares indexed in J2 on the
input of the gadget. Hence, the amplification order d of Gcopy is upper bounded by n− t.

From the three inequalities d ≥ min(t+ 1, n− t), d ≤ t+ 1 and d ≤ n− t, we conclude that the
copy gadget instantiated with ISW refresh is (t, f)-RPE of amplification order d = min(t+1, n− t).
�

G Proof of Lemma 11

Proof. We proceed similarly to the proof of Lemma 8 to show that the function f1 (resp. f2) is
of amplification order at least min(t + 1, n − t) (resp. (t + 1)). We split each set W of leaking
wires, into four subsets W =Wr

1 ∪W a
1 ∪Wr

2 ∪W a
2 where Wr

1 (resp. Wr
2) is the set of leaking wires

during the computation of Grefresh(a1, . . . , an) (resp. Grefresh(b1, . . . , bn)), and Wa
1 (resp. Wa

2) is the
set of leaking wires of (e1, . . . , en) (resp. (f1, . . . , fn)). Then, we prove using previous lemmas that
the amplification order for TRPE1 (resp. for TRPE2) at most min(t + 1, n − t) (resp. (t + 1)) by
exhibiting failure tuples. Hence the final equalities.

– if |J | ≤ t (TRPE1): we prove two properties like in Lemma 8:

1. we assume that |W| < min(t+1, n−t), in particular |Wr
1 |+|Wa

1 | < min(t+1, n−t) ≤ n−t and
|Wr

2 |+ |Wa
2 | < min(t+1, n− t) ≤ n− t. Since we have |J | ≤ t, then |Wr

1 |+ |Wa
1 |+ |J | ≤ n−1

and |Wr
2 | + |Wa

2 | + |J | ≤ n − 1. Then from the (n − 1)-SNI property of the ISW refresh
gadget, and by choosing J1 and J2 as the inputs ei and fi respectively of the wires ei + fi
in set J (|J1| = |J2| = |J |), we know that there exists an input set of shares of a I1 such
that |I1| ≤ |Wr

1 | ≤ |W| ≤ t and I1 perfectly simulates Wr
1 , Wa

1 and J1. And there exists an

37

input set of shares of b I2 such that |I2| ≤ |Wr
2 | ≤ |W | ≤ t and I2 perfectly simulates Wr

2 ,
Wa

2 and J2. Thus I1 and I2 together perfectly simulate W and J and are both of size less
than |W| ≤ t so less than min(t, |W|). Hence, there is no failure on the inputs for any set of
leaking wires W of size strictly less than min(t + 1, n − t) along with a set J of at most t
output shares.

2. we now assume that min(t+1, n− t) ≤ |W| < 2 ·min(t+1, n− t). Without loss of generality,
let us consider that |Wr

1 | + |Wa
1 | < min(t + 1, n − t). We consider the set of input shares

of b I2 = [n], which trivially simulates all of the wires in Wr
2 , Wa

2 and the inputs fi of the
wires ei + fi in set J . Next, since |Wr

1 | + |Wa
1 | < min(t + 1, n − t) ≤ n − t, by choosing

J1 as the inputs ei of the wires ei + fi in set J , we know that |Wr
1 | + |Wa

1 | + |J1| ≤ n − 1
and by the (n − 1)-SNI property of ISW refresh gadget, there exists a set of input shares
of a I1 such that |I1| ≤ |Wr

1 | ≤ t so |I1| ≤ min(t, |Wr
1 |) ≤ min(t, |W|) and I1 perfectly

simulates Wr
1 , Wa

1 and J1. Then I1 and I2 together perfectly simulate W and J , and we
only have a failure on input b with |I2| = n > t. Thus, for any set of leaking wires W such
that min(t+ 1, n− t) ≤ |W| < 2 ·min(t+ 1, n− t), we have a failure on at most one of the
inputs.

From the above properties, we have that Gadd is of amplification order d1 ≥ min(t + 1, n − t)
for TRPE1. Then, from the proof of Lemma 1, we know that there exists an immediate failure
tuple of size t+ 1 (on the input shares), hence d1 ≤ t+ 1. From the same proof of Lemma 1, we
also know that there exists a failure tuple of size 2(n− t) (with a set of t output shares). Since
Gadd has two inputs, then it results in the following lower bound: d1 ≥ n− t. From these three
inequalities on d1, we obtain d1 = min(t+ 1, n− t).

– if |J | > t (TRPE2): we also prove both properties 1 and 2:

1. we assume that |W| < t+ 1 with W =Wr
1 ∪W a

1 ∪Wr
2 ∪W a

2 . We need to prove that there
exists a set J of n− 1 output wires such that W and J can be perfectly simulated with sets
of input shares I1 and I2 such that |I1| ≤ min(t, |W|) = |W| and |I2| ≤ min(t, |W|) = |W|.
Recall that all of the wires in Wr

1 (resp. Wr
2) are of the following forms:

(a) input share ai (resp. bi).
(b) random variable rij (resp. r′ij) with i < j.

(c) partial sum eij =

{
ai + r1,i + · · ·+ rj,i if j < i
ai + r1,i + · · ·+ ri−1,i + ri,i+1 + · · ·+ ri,j otherwise.

resp. fij =

{
bi + r′1,i + · · ·+ r′j,i if j < i

bi + r′1,i + · · ·+ r′i−1,i + r′i,i+1 + · · ·+ r′i,j otherwise.

In addition, the wires inWa
1 (resp.Wa

2) are output wires of Grefresh of the form ei (resp. fi).
We build I1 and I2 from empty sets as follows. For every wire in Wa

1 ∪Wa
2 , we add index

i to I1 and I2. Next, for every wire in Wr
1 ∪ Wr

2 of the first or third form, we add index
i both to I1 and I2. For every wire in Wr

1 ∪ Wr
2 of the second form, if i ∈ I1(= I2), we

add j to I1 and I2. Otherwise, we add i to I1 and I2. It is clear that I1 = I2, and that
|I1| = |I2| ≤ |W| ≤ t. Following the t-SNI proof of the ISW refresh gadget, we can show
that Wa

1 and Wr
1 are perfectly simulated using shares of indexes in I1. Respectively, Wa

2

andWr
2 are perfectly simulated using shares of indexes in I2. So all wires inW are perfectly

simulated using shares of indexes in I1 and I2. We then build the set J of n− 1 indexes of
output shares from two subsets J1 and J2. We define J1 = I1(= I2), and J2 as any set such
that J2 = n− 1− |J1| and J1 ∩ J2 = ∅. We now show that the output shares determined by
the indexes in J = J1 ∪ J2 can be perfectly simulated from I1 and I2:

38

• each output share ei + fi such that i ∈ J1 ⊆ J can be perfectly simulated from ei and
fi. Precisely, ei can be perfectly simulated with ai (since i ∈ I1) and n − 1 uniformly
random variables. And each fi can be perfectly simulated with bi (since i ∈ I2) and n−1
uniformly random variables.
• for each output share ei + fi such that i ∈ J2 so i /∈ I1, i /∈ I2, we show that we can

still perfectly simulate ei and fi. By construction of the set J1, all the variables observed
through the set W are included in the set of variables observed through ej and fj for
j ∈ J1, and since |J1| = |I1| ≤ |W| ≤ t ≤ n − 2 and |J2| = n − 1 − |J1|, then each of
the wires ei and fi for which ei + fi is indexed in J2 has at least one random value that
does not appear in any other observation from W or wires ei and fi for which ei + fi is
indexed in J1. So ei can be assigned to a fresh random value, and fi can be assigned to
a fresh random value. Thus ei + fi is also assigned to a random value. This produces a
perfect simulation of all output wires indexed in J2.

Having a perfect simulation of J1 and J2, we conclude that we can perfectly simulate J along
with W from the sets I1 and I2 with |I1| = |I2| ≤ |W|. So for every set of leaking wires W
of size at most t, there exists a set of n− 1 output wires J which can be perfectly simulated
along with W from sets of input shares I1 and I2 of sizes at most |W| = min(|W|, t).

2. we now assume that t+ 1 ≤ |W| < 2(t+ 1). Without loss of generality, let us consider that
|Wr

1 ∪Wa
1 | < t+1 (the proof is similar in the opposite scenario). We consider the set of input

shares of b I2 = [n] which trivially simulates all of the wires inWr
2 ∪Wa

2 and all of the inputs
fi of the output wires ei + fi. We construct the set I1 for input shares of a similarly to the
earlier construction (when |W| < t + 1), while only considering the sets Wr

1 and Wa
1 . The

corresponding set I1 will produce a perfect simulation of Wr
1 ∪Wa

1 . So I1 and I2 perfectly
simulate the set W. Now we choose the set J from two subsets J1 and J2 such that J1 = I1
and J2 as any set such that J2 = n− 1−|J1| and J1 ∩J2 = ∅. We now show that the output
shares determined by the indexes in J = J1 ∪ J2 can be perfectly simulated from I1 and I2:

• each output share ei + fi such that i ∈ J1 ⊆ J can be perfectly simulated from ei and
fi. Precisely, ei can be perfectly simulated with ai (since i ∈ I1) and n − 1 uniformly
random variables. And each fi can be perfectly simulated with bi (since I2 = [n]) and
n− 1 uniformly random variables.
• for each output share ei + fi such that i ∈ J2 so i /∈ I1, the input wire fi can be

perfectly simulated with bi (since I2 = [n]) and n − 1 uniformly random variables.
In addition, by construction of the set J1, all the variables observed through the set
Wr

1 ∪Wa
1 are included in the set of variables observed through ej for j ∈ J1, and since

|J1| = |I1| ≤ |W| ≤ t ≤ n− 2 and |J2| = n− 1− |J1|, then each of the wires ei for which
ei + fi is indexed in J2 has at least one random value that does not appear in any other
observation from Wr

1 ∪ Wa
1 or wires ei for which ei + fi is indexed in J1. So ei can be

assigned to a fresh random value. Thus ei+fi is perfectly simulated from ei and fi. This
produces a perfect simulation of all output wires indexed in J2.

Having a perfect simulation of J1 and J2, we conclude that we can perfectly simulate J
along with W from the sets I1 and I2 with |I1| ≤ t so |I1| ≤ min(t, |W|) = t (recall that
|W| ≥ t+ 1) and |I2| = n, which is only a failure on one of the inputs b.

From the proof of both properties 1 and 2 for TRPE2, we thus have that Gadd instantiated with
ISW refresh achieves the amplification order d2 ≥ t+ 1 for TRPE2. In addition, we know from
the proof of Lemma 1 and as explained in section 4.1 that d2 ≤ t+ 1. Hence d2 = t+ 1.

39

We finally proved both amplification orders d1 and d2 for TRPE1 and TRPE2 respectively for Gadd

displayed in Algorithm 2 and instantiated with the n-share ISW refresh gadget, which concludes
the proof. �

H Proof of Lemma 12

Proof. We start by proving the first property of the lemma. Since the n-share ISW multiplication
gadget is (n− 1)-SNI [5], then we know from Lemma 6 that

d1 ≥
min(t+ 1, n− t)

2
.

In addition, we know from the proof of Lemma 2 that

d1 ≤
t+ 1

2
.

It remains to show that d1 ≤ (n − t)/2. In this purpose, we exhibit a simulation failure on both
inputs by carefully choosing n − t leaking variables, with t output variables. Consider the set of
indexes of output shares J = {1, . . . , t}, which corresponds to the first t output shares c1, . . . , ct.
Next, we construct the set of leaking wires W of size n− t. First, observe that the partial sums of
the output shares are of the form

ci,j =

{
ai · bi + ri,1 + · · ·+ ri,j if j < i
ai · bi + ri,1 + · · ·+ ri,i−1 + ri,i+1 + · · ·+ ri,j otherwise.

Then, let W = {ct+1,t, . . . , cn,t}. We can prove that the constructed set W along with the set of
output shares J = {1, . . . , t} cannot be perfectly simulated with at most t input shares. For this,
we consider a variable s = c1 + · · ·+ ct + ct+1,t + . . .+ cn,t, the sum of the t output shares indexed
in J , and the leaking variables from W. Each of the output shares {ci}1≤i≤t is the sum of

– one product of input shares ai · bi
– n− 1 random values,
– at most n− 1 pairs of input shares products: (ai · bj , aj · bi) with i 6= j.

Each of the leaking variables {ci,t}t+1≤i≤n is the sum of

– one product of input shares ai · bi,
– t random values,
– at most t pairs of input shares products: (ai · bj , aj · bi) with i 6= j.

In addition, each random value appears exactly twice in the set of expressions of the variables
{ci}1≤i≤t∪{ci,t}t+1≤i≤n, so all the random values are eliminated from the expression of the variable
s, which is the sum of all of these variables. Hence, s = a1 ·b1+ . . .+an ·bn+C where C is a variable
containing other products of input shares of the form ai · bj and aj · bi with i 6= j. Thus, simulating
the variable s requires the knowledge of the full inputs a and b. Since s is constructed from the set
of leaking wiresW and the output shares indexed in J , thenW and J cannot be perfectly simulated
without the knowledge of the full inputs a and b. Hence, the set W of size n− t represents a failure
tuple on both inputs, and so the function f1 for RPE1 cannot be of amplification order higher than
(n− t)/2. Thus, d1 ≤ (n− t)/2.

40

From the three inequalities d1 ≥
min(t+ 1, n− t)

2
, d1 ≤ (t+ 1)/2 and d1 ≤ (n− t)/2, we conclude

that

d1 =
min(t+ 1, n− t)

2
.

Next, we demonstrate the second part of the lemma. Let W be a set of leaking wires such that
|W| ≤ t. We aim to prove that there exists a set J of n− 1 output wires such that W and J can be
perfectly simulated with sets of input shares I1 on a and I2 on b such that |I1| ≤ t, |I2| ≤ t. First,
observe that the leaking wires in W are of the following forms :

1. input shares ai, bi, product of shares ai · bi.
2. partial sum ci,j =

{
ai · bi + ri,1 + · · ·+ ri,j if j < i
ai · bi + ri,1 + · · ·+ ri,i−1 + ri,i+1 + · · ·+ ri,j otherwise.

3. random variable rij for i < j, variable rji = ai · bj + rij + aj · bi for j > i.

4. product of shares ai · bj , or variable ai · bj + rij with i 6= j.

We build sets I1 and I2 from empty sets as follows. For every wire in W of the first or second form,
we add index i to I1 and I2. For every wire in W of the third or fourth form, if i ∈ I1, we add j to
I1, otherwise we add i to I1, and if i ∈ I2, we add j to I2, otherwise we add i to I2. Since W is of
size at most t, then |I1| ≤ t and |I2| ≤ t. Following the t-SNI property proof from [5], we can show
that W is perfectly simulated using shares of indexes in I1 and I2. We now build the set J of n− 1
indexes of output shares from two subsets J1 and J2. We define J1 = {i | ci,j is observed in W}.
Next, we define J2 as any set such that |J2| = n− 1− |J1| and J1 ∩ J2 = ∅. Now, we show that the
output shares determined by the indexes in J = J1 ∪ J2 can be perfectly simulated from I1 and I2:

– First consider the output wires indexed in J1, which have a partial sum observed. For each such
variable ci, the biggest partial sum which is observed is already simulated. For the remaining
rij in ci, if i < j, then rij is assigned to a fresh random value. Otherwise, if rji enters in the
computation of any other internal observation, then i, j ∈ I1 and i, j ∈ I2, and so rji can be
perfectly simulated from the input shares. If not, then rji is replaced by the random value rij .
So all output wires indexed in J1 are perfectly simulated from I1 and I2.

– Now consider the output wires indexed in J2. None of the ci indexed in J2 has a partial sum
observed. Meanwhile, each ci indexed in J2 is composed of n − 1 random values, and at most
one of them can enter in the expression of each other output wire cj . Since by construction of
J1, all the variables observed through the set W are included in the set of variables observed
through J1, and since |J1| ≤ |W| ≤ t ≤ n− 2 and |J2| = n− 1− |J1|, then each output wire ci
indexed in J2 has at least one random value that does not appear in any other observation from
W or J1, so ci can be assigned to a fresh random value. This produces a perfect simulation of
all output wires indexed in J2.

We conclude that the set J of n − 1 wires is perfectly simulated along with W from the con-
structed sets I1 and I2 of sizes |I1| ≤ |W| ≤ t and |I2| ≤ |W| ≤ t. So there is no failure set of
observations of size at most t for RPE2 on any of the inputs. Hence d2 ≥ (t + 1)/2. In addition,
we know from the proof of Lemma 2 and as explained in section 4.1 that d2 ≤ (t + 1)/2. Hence,
d2 = (t+ 1)/2, which concludes the proof for RPE2. �

41

I Proof of Lemma 13

Recall the procedure of the gadget. We consider that we have an n-share (t, f ′)-TRPE refresh
gadget Grefresh achieving the amplification order d ≥ min(t + 1, n − t). First, the gadget Gmult

performs n executions of the gadget Grefresh on the input sharing (b1, . . . , bn) to produce:

(b
(1)
1 , . . . , b(1)n) ← Grefresh(b1, . . . , bn)

. . .

(b
(n)
1 , . . . , b(n)n) ← Grefresh(b1, . . . , bn)

then, the gadget constructs the matrix of the cross product of input shares using the refreshed
input shares of b:

M =




a1 · b(1)1 a1 · b(1)2 · · · a1 · b(1)n
a2 · b(2)1 a2 · b(2)2 · · · a2 · b(2)n

...
...

. . .
...

an · b(n)1 an · b(n)2 · · · an · b(n)n



.

Then, it picks n2 random values which define the following matrix:

R =




r1,1 r1,2 · · · r1,n
r2,1 r2,2 · · · r2,n

...
...

. . .
...

rn,1 rn,2 · · · rn,n


 .

It then performs an element-wise addition between the matrices M and R:

P = M +R =




p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
...

. . .
...

pn,1 pn,2 · · · pn,n


 .

At this point, the gadget randomized each product of input shares from the matrix M with a single
random value from R. In order to generate the correct output, the gadget adds all the columns of
P into a single column V of n elements, and adds all the columns of the transpose matrix RT into
a single column X of n elements:

V =




p1,1 + · · ·+ p1,n
p2,1 + · · ·+ p2,n

...
pn,1 + · · ·+ pn,n


 , X =




r1,1 + · · ·+ rn,1
r1,2 + · · ·+ rn,2

...
r1,n + · · ·+ rn,n




The n-share output is finally defined as (c1, . . . , cn)T = V +X such that

c1 = V1 +X1

. . .

cn = Vn +Xn.

42

(a1, . . . , an)

Ia

Ib(b1, . . . , bn)

I
(1)
b

W (1) Grefresh

J
(1)
b

(b
(1)
1 , . . . , b

(1)
n)

. . .

. . .

I
(n)
b

W (n)Grefresh

J
(n)
b

(b
(n)
1 , . . . , b

(n)
n)

W ′Gsubmult

J

(c1, . . . , cn)

Fig. 3: Gmult gadget from Section 5.5.

Figure 3 represents the Gmult gadget from a high-level, composed of several blocks. First, a
refresh gadget Grefresh is executed n independent times on the input sharing of b to produce n fresh
copies b(1), . . . , b(n). Then, the gadget Gsubmult takes as input (a1, . . . , an) and the outputs of the
refreshing gadgets b(1), . . . , b(n) to produce the output of Gmult.

In the following proofs, we will denote W to be any set of probes on the global gadget Gmult,
then W can be split as W = W ′ ∪W (1) ∪ . . .∪W (n) where W (i) is the set of probes on the internal
wires of the execution of Grefresh for the fresh sharing b(i) of b, and W ′ is the set of probes on the
internal wires of Gsubmult. We will also denote J to be any set of output wires of Gmult (which are

the output wires of Gsubmult), and J
(i)
b (resp. I

(i)
b) any set of output wires (resp. input wires) of the

execution of Grefresh for the fresh sharing b(i) of b. Observe that any probe on the output wires of
Grefresh for any sharing b(i) can be obtained through internal probes in W ′ on Gsubmult, so in the

beginning we always consider that J
(i)
b = ∅ for all i ∈ [n].

Observe that any probe in the set W ′ on the internal wires of Gsubmult is of one of the following
forms:

(a) ai, b
(i)
j , ai · b

(i)
j , ri,j , pi,j = ai · b(i)j + ri,j ,

(b) Vi,j partial sum of the first j terms of Vi. Observe that Vi,n = Vi,
(c) Xi,j partial sum of the first j terms of Xi. Observe that Xi,n = Xi.

Also observe that each random value ri,j only appears in the expression of the wires ri,j , pi,j , Vi,j ,
or Xj,i (so also ci = Vi +Xi and cj = Vj +Xj), and does not appear anywhere else in the wires.

We will first start by proving some simple claim.

Claim 1 Let J be a set of output shares of Gmult and W = W ′ ∪W (1) ∪ . . . ∪W (n) be a set of
leaking wires as described above such that |J |+ |W ′| ≤ n− 1 (we only consider the set W ′ of probes
on the internal wires to Gsubmult). Then, for any i ∈ J such that Vi,j /∈ W for any j ∈ [n], the
output wire ci can be perfectly simulated by generating a uniform random value without knowing
any of the input shares.

Proof. Let i ∈ J such that Vi,j /∈ W ′ for any j ∈ [n]. Then we know that the expression of Vi in

ci = Vi +Xi contains n− 1 random values since Vi = pi,1 + . . .+ pi,n and each pi,j = ai · b(i)j + ri,j

43

(without counting the random ri,i because it is cancelled out in ci as it appears in Vi and Xi and
ci = Vi +Xi). Observe that each random value ri,k in Vi appears in exactly one other output share
ck = Vk+Xk that comes from the expression of Xk = r1,k+. . .+ri,k+. . .+rn,k. In other terms, each
output share ck has exactly one random value in common with Vi in ci. Then, by probing |J | output
shares in J including ci, there are at least n−|J | remaining random values in Vi that do not appear
in any other expression of the output shares. In addition, observe that any probed variable in W ′

can have in its expression at most one random value in common with Vi (because each random
value ri,j appears exactly once in each of the wires pi,j , ri,j or Xj). Then, since |W ′| ≤ n− |J | − 1
(because |J |+ |W ′| ≤ n− 1), there is at least n− |J | − (n− |J | − 1) = 1 remaining random value
ri,` where ` ∈ [n] in Vi, that does not appear in any other expression of the probed values in W ′ or
J . So ci = Vi +Xi can be perfectly simulated by generating the uniform random value ri,`, which
concludes the proof.

In the following, we will separately prove the TRPE1 then the TRPE2 property on Gmult via
Lemmas 14 and 17 to demonstrate Lemma 13.

I.1 Proof for TRPE1 property

Lemma 14. The multiplication gadget Gmult is (t, f1)-TRPE1 of amplification order d = min(t+
1, n− t)

Proof. We proceed in two steps through the following two lemmas 15 and 16, considering the leaking
wires in two distinct ranges.

Lemma 15. Let J be a set of at most t output shares of Gmult. Let W be a set of leaking wires as
described above such that |W | ≤ d− 1 ≤ t. Then W and J can be perfectly simulated from at most
min(t, |W |) = |W | shares of each of the inputs a and b.

Proof. Let J be the set of t output shares ofGmult (i.e ofGsubmult), and letW = W ′∪W (1)∪. . .∪W (n)

with |W | ≤ d− 1 ≤ t be the set of probes on the global gadget Gmult and decomposed as explained
earlier. We organize the proof in two steps:

1. We first identify the set of input shares Ia and the sets J
(i)
b for i ∈ [n] which are necessary to

perfectly simulate J and W ′ in Gsubmult.

2. Then, we show that we can perfectly simulate the sets J
(i)
b and W (i) for i ∈ [n] using the

simulator of the gadget Grefresh. This will determine the sets I
(i)
b necessary for each of the n

simulations of Grefresh, and thus determine the set Ib of input shares on b as Ib = I
(1)
b ∪ . . .∪I

(n)
b .

Using Ib, we will be able to perfectly simulate J
(i)
b and W (i) for i ∈ [n]. Then using Ia and J

(i)
b for

i ∈ [n], we will be able to perfectly simulate W ′ and J . This will lead to a perfect simulation of all
probes W and output shares in J on the global gadget Gmult.

We first start by constructing the set of input shares indices Ia and the sets J
(k)
b for k ∈ [n]

depending on the probes in the set W ′ as follows3:

(a) For probes of form (a), we add index i to Ia, and index j to J
(k)
b for k ∈ [n].

3 We consider that all J
(k)
b are empty at first since all the output shares of Grefresh can be probed directly in W ′.

44

(b) For probes of form (b), we add index i to Ia and to J
(k)
b for k ∈ [n].

(c) For probes of form (c), we add index i to J
(k)
b for k ∈ [n].

Observe that since |W | ≤ d − 1, then in particular |W ′| ≤ d − 1 ≤ t, then |Ia| ≤ |W ′| ≤ |W | ≤
min(t, |W |) so we have no failure on the input a. We also have |J (k)

b | ≤ |W ′| ≤ t.
Simulation of W ′: probes of the form (a) can be perfectly simulated from the corresponding

input shares in Ia and J
(k)
b , and by generating uniformly random values ri,j when necessary. Probes

of the form (c) are also perfectly simulated by simply generating uniformly random values, since

Xi,j = r1,i + . . . + rj,i. As for probes of the form (b), we know that i ∈ Ia and i ∈ J (i)
b , then we

look at each of the terms pi,j′ for j′ ∈ [j] in Vi,j = pi,1 + . . . pi,j . In particular, if j ≥ i, the term

pi,i is in the partial sum Vi,j and is perfectly simulated using the input shares ai and b
(i)
i and by

generating the random value ri,i. Next, for each pi,j′ such that j′ 6= i, if j′ ∈ J (i)
b , then pi,j′ can be

perfectly simulated from the corresponding input shares and by generating uniformly at random

ri,j′ . Otherwise, if j′ /∈ J (i)
b , then that means that the wires pi,j′ , ri,j′ and Xj′ are not probed in W ′

because otherwise j′ would have been added to all J
(k)
b for k ∈ [n]. Since the random value ri,j′

only appears in the expression of the wires pi,j′ , ri,j′ and Xj′ (besides Vi,j which is already probed),
and of the output wire cj′ = Vj′ +Xj‘, we need to consider two cases:

– j′ /∈ J : in this case, the random value ri,j′ can be used to mask the expression of pi,j′ in the

partial sum Vi,j , perfectly simulating it without the need to the share b
(i)
j′ .

– j′ ∈ J : cj′ = Vj′ + Xj′ , and ri,j′ is the one of the summed terms in the expression of Xj′ . We

know that Vj′,k /∈W ′ for any k ∈ [n] since otherwise j′ would have been added to J
(i)
b . Since in

addition we have |J | + |W | ≤ t + d − 1 ≤ t + n − t − 1 ≤ n − 1, by claim 1, the output share
c′j can be masked by some random value rj′,`. Thus, Xj′ is masked and ri,j′ does not appear
anymore in cj′ . So ri,j′ can be used to mask the expression of pi,j′ in the partial sum Vi,j . This
brings us to a perfect simulation of pi,j′ simply by generating at random ri,j′ .

By perfectly simulating each of the terms pi,j′ for j′ ∈ [j] in the probed wire Vi,j independently,
we can perfectly simulate their sum and thus perfectly simulate Vi,j . This brings us to a perfect
simulation of the set W ′.

Simulation of J : Let i ∈ J .

– if Vi,j /∈ W ′ for any j ∈ [n], then by claim 1, ci is perfectly simulated by simply generating a
uniform random value ri,` for some ` ∈ [n].

– if Vi,j ∈W ′ for at least one j ∈ [n], then let Vi,j′ be the largest of the probed partial sums. All of
the partial sums including Vi,j′ are perfectly simulated as described earlier. Then, let us consider
ci+Vi,j′ = pi,j′+1+ . . .+pi,n+Xi. The wire Xi can be perfectly simulated by generating uniform
random values. As for each of the terms pi,j′+1, . . . , pi,n, they can each be perfectly simulated
in the exact same way each of the terms in Vi,j′ are simulated independently.

In the particular case where j′ ≤ i then the term pi,i = ai · b(i)i + ri,i appears in the expression
of ci +Vi,j′ , and in this case, the random value ri,i is cancelled out in the expression of ci +Vi,j′

since it appears in both pi,i and Xi, and ci + Vi,j′ = pi,j′+1 + . . . + pi,i + . . . + pi,n + Xi. So to

simulate the term pi,i in ci+Vi,j′ we need both input shares ai and b
(i)
i . This is already the case

by construction because we assume that Vi,j′ ∈W ′.
Thus, by perfectly simulating Vi,j′ and ci +Vi,j′ , the output share ci is also perfectly simulated.

45

Also, since |J (k)
b | ≤ |W ′| ≤ t and |W (k)| ≤ d − 1, and since Grefresh is (t, f ′)-TRPE achieving

the amplification order d, then we can perfectly simulate sets J
(k)
b and W (k) from the set of input

shares I
(k)
b such that |I(k)b | ≤ |W (k)| ≤ t for k ∈ [n]. Thus, we can let Ib = I

(1)
b ∪ . . . ∪ I(n)b and

we have |Ib| ≤ |W (1)| + . . . + |W (n)| ≤ |W | ≤ min(|W |, t), so we have no failure on the input b

either. Until now, we have shown that we can simulate all sets W (k) and J
(k)
b from Ib of size at

most min(|W |, t). It remains to show that we can also perfectly simulate the sets W ′ and J from

Ia and J
(k)
b for k ∈ [n].

We have shown that we can perfectly simulate any set of t output shares J and any set of
probes W of size at most d− 1, with at most min(|W |, t) shares of each of the inputs a and b. This
concludes the proof of Lemma 15. �

Remark 2. We can observe that for this lemma to apply on Gmult, we do not need the pre-processing

phase of the refresh on input b. In fact, we can see that during the construction of the sets J
(k)
b , we

add each index to all of the sets for all k ∈ [n]. However, executing n refreshings on the input b is
necessary to prove the next result, specifically when we consider W such that d ≤ |W | ≤ 2d− 1.

To get back to the proof of Lemma 14, we also need the following result.

Lemma 16. Let J be a set of at most t output shares of Gmult. Let W be a set of leaking wires
as described above such that d ≤ |W | ≤ 2d− 1. Then W and J can be perfectly simulated from the
sets of input shares Ia and Ib such that |Ia| ≤ min(|W |, t) or |Ib| ≤ min(|W |, t). In other terms, we
have a simulation failure on at most one of the inputs a or b.

Proof. Recall that the set W can be split into subsets W = W ′ ∪W (1) ∪ . . . ∪W (n) as described
above. We can consider two cases.

Case 1: |W′| ≤ d− 1. This case is similar to the case of Lemma 15, so we can construct the set Ia
in the same way as in the proof of Lemma 15, and we can eventually consider Ib = [n]. We know
that |Ia| ≤ |W ′| ≤ d − 1 ≤ t, so there is no failure on the input a. And all probes in W ′ can be
simulated like in the proof of Lemma 15 with Ia and trivially with Ib = [n]. Also, all probes in
W (1) ∪ . . . ∪W (n) can be trivially simulated since we have access to the full input b. As for output
shares in J , whenever i ∈ J ∩ Ia, then ci = Vi +Xi is easily simulated using Ib = [n]. If i ∈ J but
i /∈ Ia, then Vi,j /∈ W ′ for any j ∈ [n] and since |J | + |W ′| ≤ t + d − 1 ≤ t + n − t − 1 ≤ n − 1,
ci is perfectly simulated by a single random value thanks to claim 1. Thus, W and J are perfectly
simulated with at most |W ′| ≤ min(|W |, t) shares of a and eventually n shares of b.

Case 2: |W′| ≥ d (and thus |W (1) ∪ . . . ∪W (n)| ≤ d − 1). In this case, we will construct the sets

Ia and J
(k)
b from empty sets, in a way that we will have a simulation failure on at most one of the

inputs a or b, and we will be able to perfectly simulate W ′ and output shares in J using Ia and

J
(k)
b . We will also show how to perfectly simulate all J

(k)
b and W (k) using a set of input shares Ib.

First, we construct the sets Ia and J
(k)
b depending on the probes in W ′ as follows:

(a) For probes of form (a), we add index i to Ia, and index j only to J
(i)
b .

(b) For probes of form (b), we add index i to Ia and only to J
(i)
b .

(c) For probes of form (c), we add index i to J
(k)
b for all k ∈ [n].

46

In the rest of the proof, we will show that if we have a failure on one of the inputs, we can still
perfectly simulate W and J without a failure on the other input. In this purpose, we will consider
two cases: in the first case (2.1), we will have a failure on input a (i.e., more than min(t, |W |) shares
of a are added to Ia) and in the second case (2.2), we won’t have a failure on input a, and so we
will eventually have a failure on input b.

Case 2.1: Simulation failure on input a. Notice that by construction we always have |Ia| ≤ |W ′| ≤
|W |. Thus, a simulation failure on input a for TRPE1 means that the set Ia is of size |Ia| ≥ t+1 ≥ d.

We will first start by showing that the sets W (k) and J
(k)
b can be perfectly simulated using the

simulator of Grefresh without a failure on the input b. Next, we will show that W ′ and output shares

in J can be perfectly simulated using Ia and J
(k)
b .

Since we only add shares indices to Ia when we have probes of the form (a) or (b), this means
that we have at least t+ 1 probes of these two forms with t+ 1 different values for the index i. In
addition, since we have at least t+ 1 probes (a) or (b) with distinct values for the index i, then this

also means that each of the sets J
(i)
b built from these probes has at most one share of b(i) added

to it by construction. In other terms, when we only consider probes of the form (a) and (b) with

distinct i, we have |J (k)
b | ≤ 1 for each k ∈ [n].

Now let us consider the remaining probes in W which are either in W ′ of the form (c), in W ′ of
the form (a)/(b) for which i ∈ Ia or in W (1) ∪ . . . ∪W (n). Since |Ia| ≥ t+ 1 ≥ d, then there are at
most d−1 of these remaining probes. Without loss of generality, we consider that there are exactly
d − 1 instead of at most d − 1 probes. Let m be the number of probes in W (1) ∪ . . . ∪W (n) and
d− 1−m the remaining in W ′ of the form (c) or of the form (a)/(b) for which i ∈ Ia.

Since each wire in W ′ of the form (c) or of the form (a)/(b) for which i ∈ Ia results in adding at

most one more share index to each J
(k)
b for k ∈ [n], then we have |J (k)

b | ≤ 1 + (d− 1−m) = d−m.
And |W (1) ∪ . . . ∪W (n)| ≤ m, in particular |W (k)| ≤ m for any k ∈ [n].

– if m = 0, then W (k) = ∅ for any k ∈ [n], and |J (k)
b | ≤ d ≤ min(t+ 1, n− t) ≤ bn+ 1

2
c ≤ n− 1,

so by the TRPE property of Grefresh for any t ≤ n − 1, all of the J
(k)
b sets can be perfectly

simulated with no knowledge of the input shares of b since W (k) = ∅, so I
(k)
b = ∅. Hence,

Ib = I
(1)
b ∪ . . . ∪ I

(n)
b = ∅ and we have no simulation failure on the input b.

– if m > 0, then |J (k)
b | ≤ d− 1 ≤ t and |W (1) ∪ . . . ∪W (n)| ≤ d− 1, in particular |W (k)| ≤ d− 1

for each k ∈ [n]. Thus, by the (t, f)-TRPE property of the refresh gadget Grefresh achieving the
amplification order d for any t ≤ n − 1, we can perfectly simulate both sets for each k ∈ [n]

with I
(k)
b such that |I(k)b | ≤ |W (k)|. Thus, we can let Ib = I

(1)
b ∪ . . . ∪ I(n)b so we can have

|Ib| ≤ |W (1) ∪ . . . ∪W (n)| ≤ d − 1 ≤ t, and we can perfectly simulate W (1) ∪ . . . ∪W (n) along

with J
(1)
b ∪ . . . ∪ J

(n)
b from the set Ib without a simulation failure on input b.

So far we proved that if we have |Ia| ≥ t+1, then we must have |Ib| ≤ |W (1)∪. . .∪W (n)| ≤ d−1 ≤ t,
and W (1) ∪ . . . ∪W (n) can be perfectly simulated along with J

(1)
b ∪ . . . ∪ J

(n)
b from the set Ib. Next

we need to prove that we can perfectly simulate W ′ and J from these sets Ia and J
(1)
b ∪ . . . ∪ J

(n)
b .

Case 2.1.1: Ia = [n]. This only occurs by construction in the case where |W | = 2d− 1 = n so when

d = dmax = bn+ 1

2
c for t = dn− 1

2
e. In this case, since |W | ≤ 2d − 1 ≤ (n + 1) − 1 ≤ n, then

all probes in W are all in W ′ of the form (a) or (b) with n distinct values for the index i and so

47

|J (i)
b | ≤ 1 for all i ∈ [n]. In other words, for each i ∈ [n] there is exactly one probe in W ′ of the

form (a) or (b) and no probe of the form (c) i.e Xi,j nor probes in W (1) ∪ . . .∪W (n). We will prove
that all the probes in W and in J can be perfectly simulated from these constructed sets Ia and

J
(i)
b for i ∈ [n]. For this, for each i ∈ [n] we consider three cases:

– Vi,j /∈ W ′ for any j ∈ [n], then we know that there exists a probe of the form (a) in W ′ with

index i, in other terms, ai ∈W ′, or ∃! j ∈ [n] such that b
(i)
j or ai ·b(i)j or ri,j or pi,j = ai ·b(i)j +ri,j

is probed in W ′. The corresponding probe is perfectly simulated by construction of the sets Ia
and J

(i)
b .

If we also have i ∈ J , then we know that we only have one probe of the form (a) for the
considered index i in W ′ and no probe of the form (b) or any probe of the form (c). And since

there are t output shares probed in J , then there are at least n− t− 1 > 1 (since t = dn− 1

2
e)

remaining random values which only appear in the expression of ci, and any of them can be
used to perfectly simulate ci without the knowledge of the input shares (i.e., to mask ci).

– Vi,n ∈ W ′ then Vi,n contains in its expression n random values ri,1, . . . , ri,n. Since there are no
probes of the form (a) for the index i, and no probes of the form (c), then each of these random
values appears at most once in each of the expressions of the probed outputs cj in J . With t

probed output shares, there are n− t > 1 (since t = dn− 1

2
e) remaining random values which

only appear in the expression of Vi,n and any of them can be used to perfectly simulate Vi,n,
i.e., mask Vi,n.

If in addition we have i ∈ J , then the output share ci is perfectly simulated by simulating Vi,n
and simulating ci+Vi,n = Xi which is perfectly simulated by generating uniform random values.

– Vi,j ∈ W ′ for some j ∈ [n] such that 1 < j < n (j > 1 because otherwise it would be the wire
pi,1 which is probed). Thus, Vi,j is the sum of at least two wires pi,j1 and pi,j2 .

• If i /∈ J , then ci is not probed and Vi,j is the sum of at most n − 1 terms of the form

pi,1 = ai · b(i)1 + ri,1, . . . pi,j = ai · b(i)j + ri,j . We have that i ∈ Ia by construction and j ∈ J (i)
b .

In fact we can reconstruct J
(i)
b into J

(i)
b = {1, . . . , j} such that |J (i)

b | ≤ n − 1 and since
W (i) = ∅, then by the (t, f)-TRPE1 property of Grefresh for any t ≤ n− 1, we still have no

failure on the input b and we still have |I(i)b | ≤ |W (i)| = 0. In addition, we can perfectly
simulate this way all of the summed terms in Vi,j by using the corresponding input shares
and thus we can perfectly simulate Vi,j . Since we have no probes of the form (a) for this

same index i, then reconstructing J
(i)
b does not affect the simulation of the probes.

• If i ∈ J , then we consider Vi,j and ci + Vi,j . Since we have no probes of the form (a) for
the index i, then as proven before, with t probed output shares, there are at least n− t > 1
remaining random values which only appear in the expression of Vi,j or ci + Vi,j . Any of
these random values can be used to mask the expression of Vi,j or ci + Vi,j . In the case

where the expression of Vi,j is masked, then we can reconstruct as before the set J
(i)
b with

at most n−1 output shares of b(i) in order to perfectly simulate all the terms pi,k in ci+Vi,j
including the shares of b(i) and thus perfectly simulate ci+Vi,j (the rest of the terms are just
random values to be generated uniformly at random). In the other case where the expression

of ci + Vi,j is masked, we can also reconstruct the set J
(i)
b with at most n− 1 output shares

of b(i) in order to perfectly simulate all the summed terms in Vi,j . In either case, by perfectly
simulating one term (Vi,j or ci + Vi,j) masked by a random value, and perfectly simulating

48

the remaining one with i ∈ Ia and the reconstructed set J
(i)
b , we can perfectly simulate both

Vi,j and ci + Vi,j and hence also perfectly simulate the output share ci.

So we proved that we can perfectly simulate the sets W ′ and J from the constructed set Ia and

from sets J
(i)
b such that |J (i)

b | ≤ n − 1 for all i ∈ [n]. Furthermore, from the TRPE property of
Grefresh for any t ≤ n− 1 and the fact that W (i) = ∅ for all i ∈ [n], we have no simulation failure on
the input b. This concludes the simulation of W and output shares in J for the case where Ia = [n].

Case 2.1.2: Ia ⊂ [n] with |Ia| ≤ n− 1. In this case, we have at least one index k ∈ [n] \ Ia for which
there are no probes in W ′ of the form (a) or (b). In other terms, no partial sum of Vk is probed, no

product of shares ak · b(k)j or pk,j is probed, and no random value rk,j is probed since otherwise we
would have k ∈ Ia by construction.

On another hand, since |Ia| ≥ t + 1, there are at most d − 1 ≤ n − t − 1 remaining probes of
the form (c) in W ′, and since we have t output shares in the set J , there exists at least one wire
X` such that ` /∈ J and for which there is no partial sum X`,j probed in W ′.

These two wires X` and Vk for `, k ∈ [n] will be very important for the simulation of the sets
W ′ and J . In particular, we need the two following claims.

Claim 2 Let i ∈ J . Suppose that i /∈ Ia. Then the expression of ci = Vi +Xi can be masked by the
random value ri,`, in other terms ci ← ri,`.

Proof. This claim can be proved easily, since we suppose that i /∈ Ia so the random value ri,` and
pi,` are not probed in W ′. In addition, since ` /∈ J and X`,j /∈ W ′ for all j ∈ [n], then the random
value ri,` does not appear in any other probed wire expression except in ci, then ci can be masked
by the random value ri,`. �

Claim 3 Let i ∈ J . Suppose that Xi,j /∈ W ′ for any j ∈ [n]. Suppose that i ∈ Ia. Then the
expression of ci = Vi +Xi can be masked by the random value rk,i, in other terms ci ← rk,i.

Proof. Since we suppose that k /∈ Ia, then the random value rk,i or pk,i or Vk,j for all j ∈ [n] are
not probed in W ′. Then, if k /∈ J , then the random value rk,i does not appear in the expression
of any other probed wire in W ′ or J and ci can be masked by the random value rk,i. Otherwise, if
k ∈ J , then by Claim 2, ck = Vk +Xk can be masked by rk,` and so ci can also be masked by rk,i
since i 6= ` (because i ∈ J and ` /∈ J). �

From these two claims, we are now ready to show that W ′ and J can be perfectly simulated

with the sets Ia and J
(1)
b ∪ . . . ∪ J (n)

b as constructed earlier with respect to the probes in the set

W ′. Recall that all probes in W (1) ∪ . . .∪W (n) and J
(1)
b ∪ . . .∪ Jb(n) are perfectly simulated using

Ib and the simulator of Grefresh.

Simulation of W ′. Probes of the form (a) and (c) are trivially simulated by construction of the sets
of input shares and by generating uniformly at random the necessary random values. Let us now
check the probes of the form (b). Let Vi,j = pi,1 + . . . + pi,j be such a probe. Let us consider each
of the terms pi,j′ for j′ ∈ [j]. if j′ = i, then by construction pi,i is perfectly simulated using ai and

b
(i)
i and by generating the random value ri,i if needed. Otherwise, let j′ 6= i. If j′ ∈ J (i)

b then the

simulation of pi,j′ is straightforward. Otherwise if j′ /∈ J (i)
b , then we know that none of the wires

49

ri,j′ or pi,j′ or Xj′,s for all s ∈ [n] are probed in W ′. Thus, ri,j′ can be eventually used to mask the

expression of pi,j′ without the need of the share b
(i)
j′ for the simulation. Meanwhile, we still need to

check if j′ ∈ J , since Xj′ appears in the expression of cj′ = Vj′ +Xj′ . Then we consider two cases:

– If j′ /∈ Ia, then by claim 2, cj′ can be masked by the random value rj′,` and so ri,j′ does not
appear in the expression of Xj′ in cj′ anymore, and ri,j′ can be used to mask pi,j′ .

– Otherwise, if j′ ∈ Ia, then by claim 3, cj′ can be masked by the random value rk,j′ and so ri,j′

does not appear in the expression of Xj′ in cj′ anymore, and ri,j′ can be used to mask pi,j′ (since
i /∈ k).

Thus, each term pi,j′ in Vi,j can be perfectly simulated and thus Vi,j = pi,1 + . . . + pi,j can be
perfectly simulated. This concludes the simulation of the set W ′.

Simulation of J . Let i ∈ J . If i /∈ Ia, then by claim 2, ci is perfectly simulated by generating
the random value ri,`. Otherwise, let i ∈ Ia. If Xi,j /∈ W for any j ∈ [n], then by claim 3, ci
is perfectly simulated by generating the random value rk,i. Otherwise, we can show that we can
perfectly simulate each term in ci = Vi + Xi. In particular, each term in Xi can be simulated
by generating the underlying random value uniformly. For each term in the sum Vi, we know in

particular that ai · b(i)i is perfectly simulated since Xi,j ∈ W ′ for at least one j ∈ [n] so i ∈ J (i)
b by

construction. For the other terms in Vi, they can be perfectly simulated in the exact same way as
we simulated the probes Vi,j of the form (b) in the set W ′. So ci is perfectly simulated by summing
all the perfectly simulated terms. This concludes the simulation proof for the set J .

Up until now, we have concluded that if we have a constructed set Ia of size at least t + 1,
then we can perfectly simulate the sets W and J without having a simulation failure on the input
b. In the rest of the proof, we will consider that |Ia| ≤ t (along with |Ia| ≤ |W | by construction
meaning that we have no failure on input a), and we will prove that we can perfectly simulate W
and J with at most a simulation failure on b. Recall that we are also considering that |W ′| ≥ d and
|W (1) ∪ . . . ∪W (n)| ≤ d− 1.

Case 2.2: |Ia| ≤ t. This means that the number of probes of the form (a) or (b) in W ′ with distinct
values for the index i is at most t.

First, let us consider that |Ia| ≥ d (this is the case where d = n − t ≤ t + 1). Then, as proved
earlier, and with t additional output shares in J of the form ci = Vi +Xi, there are at least one X`

remaining such that ` /∈ J and X`,j /∈ W for all j ∈ [n]. In this case, we can set Ib = [n] and Ia as
constructed with respect to the probes in W ′. It is clear that all probes in W (1) ∪ . . . ∪W (n) and

J
(1)
b ∪ . . .∪J

(n)
b are trivially simulated using Ib = [n]. In addition, all probes in W ′ are also perfectly

simulated by construction of the set Ia and using Ib = [n] and generating the necessary random
values. This means that we can perfectly simulate all of the set of probes W = W ′∪W (1)∪. . .∪W (n).
As for the set of output shares indexed in J . Let i ∈ J . If i ∈ Ia, then ci is perfectly simulated using
the share ai and Ib = [n], and by generating the necessary random values. Otherwise, if i /∈ Ia,
then in the same way as in claim 2, ci can be masked by the random value ri,` (because ` /∈ J
and X`,j /∈ W for all j ∈ [n]), so ai is not needed for the simulation of ci. This proves that we can
perfectly simulate the output shares in J with Ia and Ib = [n].

In the rest, we suppose that |Ia| ≤ d− 1 ≤ n− t− 1, i.e., the number of probes of the form (a)
or (b) in W ′ with distinct values for the index i is at most d− 1 ≤ n− t− 1. In this case, and with t

50

additional output shares, we have at least one index k such that k /∈ J and for which there are no
probes in W ′ of the form (a) or (b). In other terms, no partial sum of Vk is probed, no product of

shares ak · b(k)j or pk,j is probed, and no random value rk,j is probed. Now we reason on the number
of probes of the form (c) in W ′:

– We first consider the special case where the number of Xi,j probed (of form (c) in W ′) for
distinct values of i is equal to n. In other terms, we have probes X1,j1 , . . . , Xn,jn for certain
values j1, . . . , jn. Since the set of probes W satisfies |W | ≤ n (because 2d − 1 ≤ n), then this
means that there are no remaining probes in the set W except for the n probes of the form
(c) in W ′. This is an easy case since we can let Ib = [n] and Ia = J (always without a failure
on a since in the case where |W | = n, we have d = t + 1 = n − t so |Ia| = |J | ≤ min(t, |W |)
where t ≤ |W |). This allows us to trivially simulate all output wires indexed in J , and since the
remaining wires in W are just sums of random values, we can simulate them by generating the
corresponding random values.

– Next, we consider that there is at least one index ` such that X`,j /∈W for all j ∈ [n] (in other
terms, the number of probes of the form Xi,j for distinct values of i is at most n − 1). Notice
that this case is slightly different than the case of claims 2 and 3, since ` can be in the set J .
In this case, we can let Ib = [n] so that we can perfectly simulate all wires in W (1) ∪ . . .∪W (n)

and J
(1)
b ∪ . . . ∪ J

(n)
b using Ib = [n], and we can perfectly simulate all wires in W ′ using Ia by

construction and Ib = [n] and generating the necessary random values. Next, we need to prove
that we can perfectly simulate all output shares in J . Let i ∈ J . If i ∈ Ia, then ci is perfectly
simulated using ai and Ib = [n] and generating the necessary random values. Next, if i /∈ Ia,
then if ` /∈ J , we can use claim 2 to prove that we can replace the expression of ci = Vi + Xi

by the random value ri,l and so the share ai is not needed for the simulation of ci (even if Xi,j

for a certain j is probed, the expression of Vi is still masked by ri,l and ai is not needed to
simulate Xi which is a sum of random values). Meanwhile, if ` ∈ J , then we cannot directly
use the random value ri,` to mask the expression of ci. But since X`,j /∈ W for all j ∈ [n], and
since rk,` /∈W because k /∈ Ia by assumption, then c` can be masked by the random value rk,`,
i.e c` = V` + X` ← rk,`. Since i ∈ J and k /∈ J , then i 6= k and the random value ri,` does
not appear anymore in X` in the expression of c`. Since i /∈ Ia then ri,` can be used to mask
the expression of the output share ci indexed in J and so the share ai is not needed for the
simulation of ci. This proves that we can perfectly simulate all shares in J with the constructed
sets Ia and Ib = [n].

We managed to show that whenever the construction of the set Ia gives |Ia| ≤ t, then we can
perfectly simulate the sets W and J with at most a failure on input b and while still having |Ia| ≤ t
and |Ia| ≤ |W |.

By considering both cases |Ia| ≥ t+ 1 and |Ia| ≤ t, we covered all the cases for the simulation,
and we proved that we can always perfectly simulate the set of probes W along with the set of
output shares J while having a failure on at most one of the inputs. This concludes the proof of
Lemma 16. �

I.2 Proof for TRPE2 property

Lemma 17. The above multiplication gadget is (t, f2)-TRPE2 of amplification order d ≥ min(t+
1, n− t)

51

Proof. To prove the lemma, we proceed in two steps through the following two lemmas 18 and 19.

Lemma 18. Let W be a set of leaking wires as described above such that |W | < min(t+ 1, n− t).
Then there exists a set J of n−1 output shares, such that W and J can be perfectly simulated from
at most min(|W |, t) = |W | shares of each of the inputs a and b.

Proof. We will construct the set of input shares indices Ia and the sets of output shares J
(k)
b for

k ∈ [n] depending on the probes in the set W ′ (recall that W = W ′ ∪W (1) ∪ . . .∪W (n)) as follows

(we consider that all J
(k)
b are empty at first since all the output shares of Grefresh can be probed

directly in W ′):

(a) For probes of form (a), we add index i to Ia, and index j to J
(k)
b for k ∈ [n].

(b) For probes of form (b), we add index i to Ia and to J
(k)
b for k ∈ [n].

(c) For probes of form (c), we add index i to J
(k)
b for k ∈ [n].

Observe that since |W | < min(t + 1, n − t), then in particular |W ′| ≤ min(t + 1, n − t) − 1 ≤ t,

then |Ia| ≤ |W ′| ≤ |W | ≤ t so we have no failure on the input a. Also, since |J (k)
b | ≤ |W ′| ≤ t and

|W (k)| < min(t+1, n−t), then by the (t, f ′)-TRPE1 property of Grefresh, we will be able to simulate

sets J
(k)
b and W (k) from the set of input shares I

(k)
b such that |I(k)b | ≤ |W (k)| ≤ t for k ∈ [n]. Thus,

we can let Ib = I
(1)
b ∪ . . . ∪ I

(n)
b and we have |Ib| ≤ |W (1) ∪ . . . ∪ |W (n)| ≤ |W | ≤ t, so we have no

failure on the input b either. Until now, we have shown that we can simulate all sets W (k) and J
(k)
b

from Ib of size at most min(|W |, t) = |W |. It remains to show that we can also perfectly simulate

the set W ′ and a well chosen set J of n − 1 output shares, from Ia and J
(k)
b for k ∈ [n]. We will

choose the set J from two subsets J = J1 ∪ J2, where J1 = {i | i ∈ J (k)
b for any k ∈ [n]}, and

J2 ⊂ [n] is any set such that J1 ∩ J2 = ∅ and |J1 ∪ J2| = n− 1. Let ` ∈ [n] be the index such that

` /∈ J . Since |W | ≤ min(t+ 1, n− t)− 1 ≤ n− 1, then by construction of the sets J
(k)
b , we have that

|J (1)
b ∪ . . .∪ J

(n)
b | ≤ n− 1, then for the index `, we have that ` /∈ J (k)

b for all k ∈ [n], then X`,j /∈W
for any j ∈ [n] by construction of the sets J

(k)
b . The value of X` will be useful to use the following

claim.

Claim 4 Let i ∈ J . Suppose that Vi,j /∈W for all j ∈ [n]. Then the expression of ci = Vi +Xi can
be masked by the random value ri,`, in other terms ci ← ri,`.

Proof. The proof of this claim is quite straightforward since we suppose that Vi,j /∈ W for all
j ∈ [n], so none of the partial sums Vi,j has been probed. Then Vi in ci contains n − 1 random
values. In particular, we know that ri,` and pi,` only appear in the expression of the probed output

ci, because if they were probed in W then we would have ` ∈ J (i)
b by construction, but we suppose

that ` /∈ J (k)
b for all k ∈ [n]. In addition, since X`,j /∈ W for all j ∈ [n] (because otherwise then by

construction ` ∈ J (k)
b which does not hold), then ri,` does not appear in any other expression of the

probed wires in W , so we can simply use it to perfectly simulate ci. �

We can now show that the sets W ′ and J can be perfectly simulated from the constructed sets Ia
and J

(k)
b .

52

Simulation of W ′. Probes of the form (a) can be perfectly simulated from the corresponding input

shares in Ia and J
(k)
b , and by generating uniformly random values ri,j when necessary. Probes

of the form (c) are also perfectly simulated by simply generating uniformly random values, since
Xi,j = r1,i + . . . + rj,i. As for probes of the form (b), we know that i ∈ Ia, then we look at each

of the terms pi,j′ for j′ ∈ [j] in Vi,j = pi,1 + . . . pi,j . For each pi,j′ , if j′ ∈ J
(i)
b , then pi,j′ can be

perfectly simulated from the corresponding input shares and by generating uniformly at random

ri,j′ . Otherwise, if j′ /∈ J (i)
b , then that means that the wires pi,j′ , ri,j′ and Xj′ are not probed in W ′.

That means that we can potentially replace pi,j′ by a random value ri,j′ since ri,j′ does not appear
in any other expression of the variables probed in W ′. Meanwhile, we also need to check the case
where j′ ∈ J , since cj′ = Vj′ + Xj′ , and ri,j′ is the one of the summed terms in the expression of
Xj′ :

– If j′ /∈ J , then we can replace pi,j′ by a random value ri,j′ since ri,j′ does not appear in any
other expression of the variables probed in W ′ and is not probed either through cj′ .

– If j′ ∈ J , then we also know that Vj′ /∈ W ′ (because otherwise we would have by construction

j′ ∈ J (k)
b for k ∈ [n] which does not hold), then we know from claim 4 that cj′ can be masked

by the random value rj′,`, which masks Vj′ + Xj′ . Since ` 6= j′ (because ` /∈ J while j′ ∈ J),
then ri,j′ does not appear anymore in any other wire expression of the probed variables in W
or J except in the term pi,j′ of Vi,j , so ri,j′ can be used to mask the expression of pi,j′ .

By perfectly simulating each term pi,j′ in Vi,j , we can perfectly simulate Vi,j . Thus, we can perfectly
simulate all wires in W ′.

Simulation of J . Let i ∈ J . Let us first consider the case where Vi,j /∈ W ′ for any j ∈ [n], then by
claim 4, the output share ci can be masked by the random variable ri,`, so ci is perfectly simulated
by generating a fresh random value. Otherwise, if Vi,j ∈ W ′ for a certain j ∈ [n], then we know
that the value of Vi,j is perfectly simulated as proven above. Now, let us check each term pi,j′ for
j′ ∈ [j + 1, n]. Actually, we can also perfectly simulate each of these terms like the terms pi,j′ for

j′ ∈ [j]. Plus, the term pi,i is perfectly simulated by construction of the sets Ia and J
(i)
b (because

Vi,j ∈ W ′). In addition, all terms in Xi in ci = Vi +Xi can be perfectly simulated by generating a
fresh random value. Thus, ci can be perfectly simulated by summing all of the perfectly simulated
terms in it. This brings us to a perfect simulation of all output shares in J . We have shown that
we can perfectly simulate any set of probes W of size at most min(t + 1, n − t) − 1 with a chosen
set J of n− 1 output shares, with at most min(|W |, t) = |W | shares of each of the inputs a and b.
This concludes the proof of Lemma 18. �

Remark 3. We can observe that for this lemma to apply on Gmult, we don’t need the pre-processing

phase of the refresh on input b. In fact, you can see that during the construction of the sets J
(k)
b ,

we add each index to all of the sets for all k ∈ [n]. However, executing n refreshings on the input
b will be necessary for the proof of the next result, specifically when we consider W such that
min(t+ 1, n− t) ≤ |W | < 2 ·min(t+ 1, n− t).

To get back to the proof of Lemma 17, we also need the following result.

Lemma 19. Let W be a set of leaking wires as described above such that min(t+ 1, n− t) ≤ |W | <
2·min(t+1, n−t). Then there exists a set J of n−1 output shares such that W and J can be perfectly
simulated from sets of input shares Ia and Ib such that |Ia| ≤ min(|W |, t) or |Ib| ≤ min(|W |, t). In
other terms, we have a simulation failure on at most one of the inputs a or b.

53

Proof. Recall that the set W can be split into subsets W = W ′ ∪W (1) ∪ . . . ∪W (n) as described
above. We consider two cases.

Case 1: |W ′| < min(t+ 1, n− t). This case is similar to the case of Lemma 18, so we can construct
the set Ia in the same way as in the proof of Lemma 18, and we can eventually consider Ib = [n].
We know that |Ia| ≤ |W ′| ≤ min(t+ 1, n− t)− 1 ≤ t, so there is no failure on the input a. And all
probes in W ′ can be simulated like in the proof of Lemma 18 with Ia and trivially with Ib = [n].
Also, all probes in W (1)∪ . . .∪W (n) can be trivially simulated since we have access to the full input
b. In addition, we choose the set J of size n− 1 in the same way as in Lemma 18. Whenever i ∈ J
and Vi,j ∈ W ′ for some j ∈ [n], then ci = Vi + Xi is easily simulated using Ib = [n] and the share
ai. If i ∈ J but Vi,j /∈ W ′ for all j ∈ [n], then as in the proof of Lemma 18, ci in this case can be
masked by the random value ri,` (because |W ′| < min(t + 1, n − t)) and so simulating ci amounts
to generating uniformly at random the corresponding random value. Thus, W and J are perfectly
simulated with at most min(|W |, t) shares of a and eventually the full input b.

Case 2: |W ′| ≥ min(t+ 1, n− t) (and thus |W (1) ∪ . . .∪W (n)| < min(t+ 1, n− t)). In this case, we

will construct the sets Ia and J
(k)
b from empty sets, in a way that we will have a simulation failure

on at most one of the inputs a or b. We construct the mentioned sets depending on the probes in
W ′ as follows:

(a) For probes of form (a), we add index i to Ia, and index j only to J
(i)
b .

(b) For probes of form (b), we add index i to Ia and only to J
(i)
b .

(c) For probes of form (c), we add index i to J
(k)
b for all k ∈ [n].

In the rest of the lemma, we will prove that if we have a failure on one of the inputs, we can still
perfectly simulate W and a chosen set J of n−1 output shares without a failure on the other input.
For this, we will consider two cases, the first where we have a failure on input a, the second where
we don’t have a failure on input a, and so we can eventually have a failure on input b.

Case 2.1: simulation failure on input a, i.e. Ia > t. This means that the set Ia is of size |Ia| ≥
t+ 1 ≥ min(t+ 1, n− t) (this is because by construction |Ia| ≤ |W |, so to have |Ia| > min(|W |, t),
we must have |Ia| > t). We will first start by showing that the sets W (k) and J

(k)
b can be perfectly

simulated using the simulator of Grefresh without a failure on the input b. Next, we will show that

W ′ and a well chosen set of n− 1 output shares in J can be perfectly simulated using Ia and J
(k)
b .

Since we only add shares indices to Ia, when we have probes of the form (a) or (b), this means
that we have at least t+ 1 probes of these two forms with t+ 1 different values for the index i. In
addition, since we have at least t + 1 probes (a) or (b) with distinct values for the index i, then

this also means that each of the sets J
(i)
b has at most one share of b(i) added to it. In other terms,

|J (k)
b | ≤ 1 for each k ∈ [n] (from the probes (a) and (b) with distinct indices i).

Now let us consider the remaining probes in W which are either in W ′ of the form (c) or in
W (1) ∪ . . . ∪W (n) or of the forms (a) or (b) with i ∈ Ia. Since |Ia| ≥ t + 1 ≥ min(t + 1, n − t),
then there are at most min(t+ 1, n− t)− 1 of these remaining probes. Without loss of generality,
we consider that there are exactly min(t + 1, n − t) − 1 instead of at most min(t + 1, n − t) − 1
probes. Let m be the number of probes in W (1) ∪ . . . ∪W (n) and d− 1−m the remaining probes
in W ′ of the form (c) or (a)/(b) with i ∈ Ia. Since each wire in W ′ of the form (c) or (a)/(b)

with i ∈ Ia results in adding at most one more share index to each J
(k)
b for k ∈ [n], then we have

54

|J (k)
b | ≤ 1 + (min(t + 1, n − t) − 1 −m) = d −min(t + 1, n − t). And |W (1) ∪ . . . ∪W (n)| ≤ m, in

particular |W (k)| ≤ m for any k ∈ [n].

– if m = 0, then W (k) = ∅ for any k ∈ [n], and |J (k)
b | ≤ min(t + 1, n − t) ≤ bn+ 1

2
c ≤ n − 1,

so by the TRPE property of Grefresh for any t ≤ n − 1, all of the J
(k)
b sets can be perfectly

simulated with no knowledge of the input shares of b since W (k) = ∅, so I
(k)
b = ∅. Hence,

Ib = I
(1)
b ∪ . . . ∪ I

(n)
b = ∅ and we have no simulation failure on the input b.

– if m > 0, then |J (k)
b | ≤ min(t+ 1, n− t)− 1 ≤ t and |W (1) ∪ . . . ∪W (n)| < min(t+ 1, n− t), in

particular |W (k)| ≤ min(t+ 1, n− t)− 1 for each k ∈ [n]. Thus, by the (t, f)-TRPE property of
the refresh gadget Grefresh achieving the amplification order d, we can perfectly simulate both

sets for each k ∈ [n] with I
(k)
b such that |I(k)b | ≤ |W (k)|. Thus, we can let Ib = I

(1)
b ∪ . . .∪ I

(n)
b so

we can have |Ib| ≤ |W (1) ∪ . . .∪W (n)| ≤ min(t+ 1, n− t)− 1 ≤ t, and we can perfectly simulate

W (1) ∪ . . . ∪W (n) along with J
(1)
b ∪ . . . ∪ J (n)

b from the set Ib without a simulation failure on
input b.

So far we proved that if we have |Ia| > t, then we must have |Ib| ≤ t, and W (1) ∪ . . . ∪W (n) can

be perfectly simulated along with J
(1)
b ∪ . . . ∪ J (n)

b from the set Ib. Next we need to prove that
we can perfectly simulate W ′ and a chosen set J of n − 1 output shares, from these sets Ia and

J
(1)
b ∪ . . . ∪ J

(n)
b . We consider two sub-cases.

Case 2.1.1: Ia = [n]. In this case, since |W | ≥ n (from Ia) and |W | < 2 min(t + 1, n− t) ≤ n + 1,
then |W | = n and all probes in W are all in W ′ of the form (a) or (b) with n distinct values for
the index i. We neither have probes in W (1) ∪ . . . ∪W (n) nor in W ′ of the form (c). Thus, we can

reconstruct each |J (k)
b | of size at most n− 1 without having a failure on the input b (since Grefresh

is (t′, f ′)-TRPE for any t′ ≤ n − 1 achieving d′ = min(t′ + 1, n − t′) and all W (k) are empty). We
consider two cases:

– Suppose that for each i ∈ [n], we have at least one probe in W ′ of the form rk,i or pk,i for some
k ∈ [n], note this probe qk,i ∈ {rk,i, pk,i}. Since also Ia = [n], this means that we have probes
qk1,1, . . . , qkn,n, such that k1 6= . . . 6= kn. Because |W ′| = n, then all probes in W ′ are of the
form (a) (specifically qk,i), and we have no probes of the form Vi,j for any i, j ∈ [n]. In this case,

the simulation of the probes in W ′ is straightforward by construction of the sets Ia and J
(k)
b .

As for the set J , we let J ⊂ [n] such that |J | = n − 1 (any set of n − 1 shares works), and let
` ∈ [n] such that ` /∈ J . Observe that out of all the random values ri,` in X` in the expression
of c` = V` +X`, only the random value rk`,` appears in the expression of the probe qk`,` in the
set W ′, and all other random values ri,` for i 6= k` do not appear in any other probed variable
in W ′ (since W ′ = {qk1,1, . . . , qk`,`, . . . , qkn,n}, such that k1 6= . . . 6= kn). Then, for each i ∈ J
such that i 6= k`, the expression of ci = Vi + Xi can be masked by the random value ri,`, so
simulating ci amounts to generating a fresh random value ri,`. Now let’s check i = k` ∈ J . Since
qk`,` is probed, then we cannot mask the expression of ck` using rk`,`. However, for each i ∈ J
with i 6= k`, we have that ci is masked by ri,`. Since ci = Vi +Xi, and the random value rk`,i is
one of the terms in Xi, then rk`,i does not appear anymore in the expression of ci. And since
W ′ = {qk1,1, . . . , qk`,`, . . . , qkn,n}, such that k1 6= . . . 6= kn and qk`,` ∈ W ′, then qk`,i /∈ W ′ and
rk`,i only appears in the expression of ck` , so ck` can be masked by the random value rk`,i. Thus,

we proved that we can perfectly simulate the sets W ′ and J using the sets Ia and J
(k)
b .

55

– Next, we suppose that there exists ` ∈ [n] such that we have no probes in W ′ of the form
qk,` ∈ {rk,`, pk,`}. In this case, we choose J = [n] \ {`}. Next, we show that we can perfectly
simulate all probes in W ′ and output shares in J for each i ∈ Ia = [n]. For this, first let
i ∈ [n] \ {`} (notice that we automatically have i ∈ J):

• if for the considered i, the probe in W ′ is of the form (a) i.e ai, b
(i)
j , ai ·b

(i)
j , pi,j = ai ·b(i)j +ri,j ,

then the simulation of this probe is trivial by construction of the sets Ia and J
(i)
b . In addition,

we know that ri,` and pi,` are not probed in W ′ by assumption, and since X`,j /∈W ′ for all
j ∈ [n], then the random value ri,` only appears in the expression of ci = Vi+Xi (specifically
in Vi), and so can be used to mask ci. So simulating ci amounts to generating a fresh random
value.
• if for the considered i, the probe in W ′ is of the form (b), i.e Vi,j ∈ W ′ for a certain j ∈ [n]

(there is a unique probe of this form), then:
∗ either j < `, and so the random value ri,` can be used as before to mask the expression

of ci+Vi,j , and since in this case Vi,j contains less than n−1 terms pi,j′ , then we can add

all the necessary shares of b(i) to J
(i)
b without having a failure on b (recall that W (i) = ∅).

So we can perfectly simulate Vi,j and ci + Vi,j , and hence also simulate ci.
∗ or j ≥ `, and so the random value ri,` can be used in this case to mask the expression of
Vi,j so simulating Vi,j amounts to generating a fresh random value, and since Vi,j is the
sum of at least two terms of the form pi,j′ , then ci + Vi,j can be simulated with at most
n − 1 shares of b(i), so there is no simulation failure on input b(i). So we can perfectly
simulate Vi,j and ci + Vi,j , and hence also simulate ci.

Next we consider the case of the probe V`,j :
• either j < `, and so in this case V`,j contains less than n − 1 terms p`,j′ , then we can add

all the necessary shares of b(`) to J
(`)
b without having a failure on b (recall that W (`) = ∅).

So we can perfectly simulate V`,j using the input share a`, the input shares of b(`) and by
generating necessary random values.
• or j ≥ `, and so the random value r`,` can be used in this case to mask the expression of
V`,j so simulating V`,j amounts to generating a fresh random value.

Thus, also in this case, we can perfectly simulate W ′ and a chosen set of n − 1 output shares
without a failure on input b, using Ia = [n].

This concludes the simulation for the special case where Ia = [n].

Case 2.1.2: Ia ⊂ [n] such that |Ia| ≤ n − 1. Let k such that k /∈ Ia. Recall that |Ia| ≥ t + 1 ≥
min(t+1, n−t) and |W | < 2 ·min(t+1, n−t), then there are at most min(t+1, n−t)−1 ≤ t ≤ n−1
probes remaining either in W (1) ∪ . . . ∪W (n), of the form (c) in W ′, or of the form (a)/(b) with
i ∈ Ia. Thus, there exists at least one index ` ∈ [n] such that X`,j /∈W ′ for all j ∈ [n]. In this case,
we choose J = [n] \ {`}. Next, we will prove that we can perfectly simulate the sets W ′ and J from

the constructed sets Ia and J
(k)
b , using the following claims.

Claim 5 Let i ∈ J . Suppose that i /∈ Ia. Then the expression of ci = Vi +Xi can be masked by the
random value ri,`, in other terms ci ← ri,`.

Proof. This claim can be proved easily, since we suppose that i /∈ Ia so the random value ri,` and
pi,` are not probed in W ′. In addition, since ` /∈ J and X`,j /∈ W for all j ∈ [n], then the random
value ri,` does not appear in any other probed wire expression except in ci, then ci can be masked
by the random value ri,`. �

56

Claim 6 Let i ∈ J . Suppose that Xi,j /∈W for any j ∈ [n]. Suppose that i ∈ Ia. Then the expression
of ci = Vi +Xi can be masked by the random value rk,i, in other terms ci ← rk,i.

Proof. Since we suppose that k /∈ Ia, then the random value rk,i or pk,i or Vk,j for all j ∈ [n] are
not probed in W . Then, if k /∈ J , then the random value rk,i does not appear in the expression
of any other probed wire in W or J and ci can be masked by the random value rk,i (Recall that
ci = Vi + Xi and Xi = r1,i + . . . + rn,i). Otherwise, if k ∈ J , then by Claim 5, ck = Vk + Xk can
be masked by rk,` and so ci can also be masked by rk,i since i 6= ` (because i ∈ J and ` /∈ J) and
i 6= k (because i ∈ Ia and k /∈ Ia). �

Probes of the forms (a) or (c) in W ′ are trivially simulated using the constructed sets of input
shares, and generating the necessary random values. Let us now check the probes of the form (b).
Let Vi,j = pi,1 + . . . + pi,j be such a probe. Let us consider each of the terms pi,j′ for j′ ∈ [j]. if

j′ = i, then by construction pi,i is perfectly simulated using ai and b
(i)
i and by generating the random

value ri,i if needed. Otherwise, let j′ 6= i. If j′ ∈ J (i)
b then the simulation of pi,j′ is straightforward.

Otherwise if j′ /∈ J (i)
b , then we know that none of the wires ri,j′ or pi,j′ or Xj′,s for all s ∈ [n] are

probed in W ′. Thus, ri,j′ can be eventually used to mask the expression of pi,j′ without the need

of the share b
(i)
j′ for the simulation. Meanwhile, we still need to check if j′ ∈ J , since ri,j′ appears

in Xj′ in the expression of cj′ = Vj′ +Xj′ .

– If j′ ∈ J and j′ /∈ Ia, then by claim 5, cj′ can be masked by the random value rj′,` and so ri,j′

does not appear in the expression of Xj′ in cj′ anymore, and ri,j′ can be used to mask pi,j′ .

– Otherwise, if j′ ∈ J ∩ Ia, then by claim 6 cj′ can be masked by the random value rk,j′ and so
ri,j′ does not appear in the expression of Xj′ in cj′ anymore, and ri,j′ can be used to mask pi,j′

(since i /∈ k).

Thus, each term pi,j′ in Vi,j can be perfectly simulated and thus Vi,j = pi,1 + . . . + pi,j can be
perfectly simulated. This concludes the simulation of the set W ′.

We now focus on the simulation of J . Let i ∈ J . If i /∈ Ia, then by claim 5, ci is perfectly
simulated by generating the random value ri,`. Otherwise, let i ∈ Ia. If Xi,j /∈ W for any j ∈ [n],
then by claim 6, ci is perfectly simulated by generating the random value rk,i. Otherwise, we can
show that we can perfectly simulate each term in ci = Vi+Xi. In particular, each term in Xi can be
simulated by generating the underlying random value uniformly. For Vi, we know in particular that

ai · b(i)i is perfectly simulated since Xi,j ∈W ′ for at least one j ∈ [n] so i ∈ J (i)
b by construction. For

the other terms in Vi, they can be perfectly simulated in the exact same way as we simulated the
probes Vi,j of the form (b) in the set W ′. So ci is perfectly simulated by summing all the perfectly
simulated terms. This concludes the simulation proof for the set J .

Up until now, we have concluded that if we have a constructed set Ia of size at least t+ 1, then
we can perfectly simulate the sets W and a chosen set J of n − 1 output shares, without having
a simulation failure on the input b. In the rest of the proof, we will consider that |Ia| ≤ t, and we
will prove that we can perfectly simulate W and J with at most a simulation failure on b. Recall
that we are also considering that |W ′| ≥ d and |W(1) ∪ . . . ∪W(n)| ≤ d− 1.

Case 2.2: |Ia| ≤ t. This means that the number of probes of the form (a) or (b) in W ′ with distinct
values for the index i is at most t.

57

First, let us check the special case where the number of probes of the form (c) inW ′ with different
values for the index i is equal to n (notice that this cannot occur when we have |Ia| ≥ t+ 1). Since
|W | ≤ 2 ·min(t+ 1, n− t)− 1 ≤ n, then we have W = {X1,j1 , . . . , Xn,jn} for certain j1, . . . , jn ∈ [n].

So we can let J
(k)
b = [n] for all k ∈ [n] and Ib = [n], and by construction Ia = ∅. In this case, we

choose J = [n − 1]. The simulation of the set W is straightforward since all wires of the form (c)
are just sums of random values. Then, let us consider the output shares in J .

– If for at least one ` ∈ J , we have X`,n ∈W , we can mask the expression of X`,n by the random
value rn,` (because there are no probes of the form (a) or (b) in W and n /∈ J , so rn,` only
appears in the expression of X`,n). Recall that X`,n = r1,` + . . .+ rn,`, so rn,` masks all random
values rj,` for j ∈ [n−1]. Each of the random values rj,` for j ∈ [n−1]\{`} can be used to mask
the corresponding output share cj for j ∈ J because there are no probes of the form (a) or (b)
in W and X`,n is already masked by rn,`, so rj,` only appears in the expression of cj = Vj +Xj ,
so cj ← rj,`. As for the output c`, we can let Ia = {`} and we can perfectly simulate c` using a`

and Ib = [n]. Since |W | = n, so min(t+ 1, n− t) > n

2
≥ 1, so we have no failure on the input a,

and we can perfectly simulate the chosen set J and the set of probes W .
– Now we consider that for all W = {X1,j1 , . . . , Xn,jn}, we have j1 < n, . . . , jn < n. In this case,

the set W is also trivially simulated by generating random values, and we let J = [n − 1].
Since, n /∈ J and there are no probes of the form (a) or (b) in W , then the random values
rn,i for i ∈ [n − 1] only appear in the expression of the output share ci = Vi + Xi each. And
since all probes of the form Xi,j are such that j < n, then we can let rn,i be used to mask the
expression of ci + Xi,j because rn,i does not appear in Xi,j for j < n, i.e ci + Xi,j ← rn,i. By
perfectly simulating the masked expression of ci +Xi,j and the sum of random values Xi,j , we
can perfectly simulate ci. Thus, simulating all output shares in J amounts to generating random
values uniformly. So we can perfectly simulate sets W and J from Ia = ∅ and Ib = [n].

Next, we suppose that the number of probes of the form (c) in W ′ with different values for the
index i is strictly smaller than n. So, there is at least one index ` such that X`,j /∈W ′ for all j ∈ [n].
We let J = [n] \ {`}. We also let Ib = [n] and we keep the set Ia as constructed according to the
probes in the set W ′. Observe that all probes in W ′ are perfectly simulated by easily using the set
Ia and Ib = [n]. As for the output shares in J , observe that for each i ∈ J such that i /∈ Ia, we can
use claim 5 to mask the expression of ci by ri,`, and so the share ai is not needed for the simulation
of ci. Otherwise, if i ∈ J ∩ Ia, then ci is perfectly simulated using ai and Ib = [n].

This proves that whenever i /∈ Ia, the output share ci can be simulated without the need of the
share ai. Since we suppose that |Ia| ≤ t, then we conclude that we can perfectly simulate W and a
chosen set of n− 1 output shares J with at most a simulation failure on input b.

By considering both cases |Ia| ≥ t+ 1 and |Ia| ≤ t, we covered all the cases for the simulation,
and we proved that we can always perfectly simulate the set of probes W along with a chosen set
of n − 1 output shares J while having a failure on at most one of the inputs. This concludes the
proof of Lemma 19. �

From Lemmas 18 and 19, we conclude that Gmult is (t, f2)-TRPE2 of amplification order d ≥
min(t+ 1, n− t). This concludes the proof of Lemma 17. �

58

Abstract
We live in a world in which cryptography has become ubiquitous. Devices around
us are constantly processing cryptographic computations to ensure the confidentiality
and the authenticity of our communications. Over the last forty years, the scientific
community and the industry have converged towards the paradigm of provable security
for cryptographic algorithms and protocols: they should come with a security proof
formally stating their security under well-studied computational hardness assumptions.
Such a proof is usually stated in the black-box model in which the adversary is assumed
to have an input-output access to the cryptographic mechanism.

Unfortunately, this black-box model was shown insufficient in the late 1990’s with the
discovery of side-channel attacks. These attacks exploit the physical leakage of a crypto-
graphic implementation (e.g. its execution time, power consumption, or electromagnetic
emanation) to practically break it, although the underlying mechanism might achieve
strong black-box security. While a lot of progress was made over the last decades to
design practical countermeasures against side-channel attacks, achieving provable security
for cryptographic implementations under this threat is still largely a work in progress.

This thesis presents some contributions toward the provable security of cryptographic
implementations in the presence of side-channel leakage. Our approach relies on masking
whose principle is to apply secret sharing at the computation level. Our results have
contributed to the formalization of masking security, the construction of efficient masking
schemes, the formalization of practically-relevant side-channel leakage models, and the
construction of masking schemes achieving provable security under these models.

	Introduction
	Introduction
	Preliminaries
	Basic notions and notations
	Arithmetic circuits
	Sharing and gadgets
	Circuit compilers
	Simulation-based security notions

	Provable security for masked implementations
	Masking schemes in the probing security paradigm
	Introduction
	Masking
	Principle
	Higher-order masking
	Soundness of masking
	Masking schemes

	Ishai-Sahai-Wagner (ISW) construction
	The ISW circuit compiler
	Probing security

	Efficient ISW-based masking schemes
	Generalization to arithmetic circuits
	Tighter proof for the ISW multiplication gadget
	Refresh gadgets and the composition issue

	Efficient application to block ciphers
	Masking block ciphers
	Application to AES
	Efficient decomposition of any s-boxes

	Conclusion and related works

	The noisy leakage model
	Introduction
	Motivation
	Noisy leakage definition
	Intuition
	Formal definition
	Discussion

	Some security bounds
	Relation to mutual information
	Noisy leakage of a shared variable
	Noisy leakage of a repeated variable

	From probing to noisy leakage security
	Conclusion and related works

	Secure masking composition
	Secure composition in the region probing model
	Introduction
	Composition through input-output separation
	Input-output separation
	Composition intuition
	Composition theorem
	Comparison with previous composition approaches

	An input-output separative refresh gadget
	BCPZ refresh gadget
	Proposed variant
	Input-output separation

	Conclusion and related works

	Secure composition in the random probing model
	Introduction
	Background notions
	Simulation with abort
	Simulation failure probability

	Random probing composability
	Formal definition
	Composition security
	Relation with strong non-interference

	Conclusion and related works

	Achieving noisy leakage security
	Noisy leakage security in quasilinear complexity
	Introduction
	A quasilinear-complexity masking scheme
	Encoding
	Multiplication gadget
	Overall circuit compiler
	Field extension and FFT algorithm

	Region probing security
	Security reduction
	Probing security of the FFT on large fields

	Conclusion and related works

	Noisy leakage security through random probing expansion
	Introduction
	Random probing expandability framework
	Expanding compiler
	Random probing expandability
	Expansion security

	Asymptotic analysis
	Amplification order
	Eigen-complexity
	Complexity of the expanding compiler
	Bounding the amplification order

	Generic constructions of RPE gadgets
	Generic copy and addition gadgets
	Multiplication gadget with maximal amplification order

	Efficient instantiation with small RPE gadgets
	Three-share gadgets
	Five-share gadgets

	Conclusion and related works

	Conclusion
	Conclusion
	Bibliography

	Appended publications
	Provably Secure Higher-Order Masking of AES
	Higher-Order Masking Schemes for S-boxes
	Masking against Side Channel Attacks: a Formal Security Proof
	How to Securely Compute with Noisy Leakage in Quasilinear Complexity
	Probing Security through Input-OutputSeparation & Revisited Quasilinear Masking
	Random Probing Security: Verification, Composition, Expansion & New Constructions
	On the Power of Expansion: More Efficient Constructions in the RP Model

