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Abstract: A large variety of side channel analyses performed on embedded devices involve the
linear correlation coefficient as wrong-key distinguisher. This coefficient is actually a sound
statistical tool to quantify linear dependencies between univariate variables. At CHES 2008,
Gierlichs et al. proposed to use the mutual information measure as an alternative to the
correlation coefficient since it detects any kind of statistical dependency. Substituting it for the
correlation coefficient may indeed be considered as a natural extension of the existing attacks.
Nevertheless, the first published applications have raised several open issues. In this paper, we
conduct a theoretical analysis of MIA in the Gaussian leakage model to explore the reasons why
and when it is a sound key recovery attack. Also, we generalise MIA to higher-orders
(i.e., against masked implementations). Secondly, we address the main practical issue of MIA:
the mutual information estimation which itself relies on the estimation of statistical distributions.
We describe three classical estimation methods and we apply them in the context of MIA.
Eventually, we present various attack simulations and practical attack experiments that allow us
to check the efficiency of MIA in practice and to compare it to classical correlation-based attacks.
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Introduction

Since their introduction in the ‘90s, several kinds of
SCA have been proposed which essentially differ in the

Side channel analysis (SCA) is a cryptanalytic technique
that consists in analysing the physical leakage produced
during the execution of a cryptographic algorithm
embedded on a physical device. This side channel leakage is
indeed statistically dependent on the intermediate variables
of the computation which enables key recovery attacks.
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involved distinguisher. A first family is composed of SCA
based on linear correlation distinguishers. When such an
attack is performed, the adversary implicitly assumes that
there is a linear dependence between its predictions and the
leakage measurements. Actually, the attack effectiveness
depends on the accuracy of this assumption. The most
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well-known examples of such attacks are the differential
power analysis (DPA) (Kocher et al., 1999) that is
based on a Boolean correlation and the correlation power
analysis (CPA) (Brier et al., 2004) that involves Pearson’s
correlation coefficient. The second important family of SCA
is composed of the so-called femplate attacks (TA)
(Chari et al., 2002). They involve maximum-likelihood
distinguishers and can succeed when the DPA or CPA do
not. However, TA can only be performed if the attacker
owns a profile of the leakage according to the values of
some intermediate variables, which is a strong limitation.

In Gierlichs et al. (2008) have introduced a new kind of
SCA called mutual information analysis (MIA). It is an
interesting alternative to the aforementioned attacks since
some assumptions about the adversary can be relaxed. In
particular, since it involves the mutual information as
distinguisher, it does not require a linear dependency
between the leakage and the predicted data (as for CPA) and
is actually able to exploit any kind of dependency.
Moreover, this gain in generality is obtained without
needing to profile the leakage as it is the case for TA.

Despite the advantages of MIA, the preliminary work of
Gierlichs et al. (2008) poses a number of open questions.
First of all, the MIA efficiency has not been clearly
established and it is not clear whether (and in which
contexts) it is better than the other attacks that assume the
same adversary capabilities (as e.g., CPA). This questioning
gives rise to a more fundamental issue which concerns with
the relationship between a good statistical dependency
estimator and a good key-distinguisher. The first attack
experiments presented in Gierlichs et al. (2008) suggest that
MIAs’ efficiency is strongly related to the attack context
(device, algorithmic target, noise, etc.). However, at this
time an in-depth analysis is missing to have a clear idea
about this relationship. Secondly, the estimation of the
mutual information, which itself requires the estimation of
statistical distributions, is a major practical issue that has not
been fully investigated in Gierlichs et al. (2008). This
problematic has been dealt with in statistics and applied
probability [see i.e., Aumonier (2007) for an overview].
Among the existing estimation methods, it is of crucial
interest to determine the one that optimises MIA. Only such
a study will indeed allow us to form an unbiased opinion
about its efficiency versus that of attacks involving linear
dependence-based distinguishers.

2 Preliminaries on probability and information
theory

We use the calligraphic letters, like X', to denote sets. The

corresponding large letter X is then used to denote a
random variable (r.v. for short) over X, while the

lowercase letter = — a particular element from X. For
every positive integer n, we denote by X a n-dimensional

r.v. (Xl,...,Xn)eX", while the lowercase letter x — a

particular element from X". To every discrete r.v. X, one

associates a probability mass function py defined by
px(X)=p[X=x]. If X is continuous, one associates it
with its probability density function (pdf for short), denoted
by gx : forevery x e X", we have

I .'Ifn
px[X) <3500 X, <1, ] = L;-.-I_ng (st )dty..d,.

The Gaussian distribution is an important family of
probability distributions, applicable in many fields. A r.v.
X having such a distribution is said to be Gaussian and its

pdf g, is defined for every x e X" by:

1 1 _
9z (X)= WGXP(—E(X—MTZ I(X—M))a (1

where p and X respectively denote the mean and the
covariance matrix of X. When X is unidimensional, its
covariance matrix is composed of a single element that is
the variance of X. It is usually denoted by o*, where o is
the standard deviation of X.

In this paper, we will study r.v. whose pdf is a finite
linear combination of Gaussian pdfs. Such a pdf, which is
called a Gaussian mixture, is denoted by g, and it is

defined for every x e X" by:

T
9 () =Y ag, 5 (%), ©)

t=1

where 92((at’“t’2t))1<t<T is a 37-dimensional vector

containing the so-called mixing probabilities a,’s (that
satisfy Ztat =1), as well as the means p, and the

covariance matrices X, of the 7 Gaussian pdfs in the

mixture.
The entropy H(X) of a discrete n-dimensional r.v. X

aims at measuring the amount of information provided by
an observation of X. It is defined by

H(X) = _Z e PX (x)log, (PX(X))'

The differential entropy extends the notion of entropy to
continuous n-dimensional r.v. It is defined by:

HOO =~ gx(0log, (9 (0)dx. 3

Note that contrary to the entropy, the differential entropy
can be negative.

If X is a n-dimensional Gaussian r.v. with covariance
matrix X, then its entropy satisfies:

H(X) :%log((%re)n b |). (4)

In the general case, there is no analytical expression for the
differential entropy of a r.v. X whose pdf mixes more than
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one Gaussian pdf. However, upper and lower bounds can be
derived. We recall hereafter the lower bound.

Proposition 2.1: (Carreira-Perpinan, 2000) Let Xe X"
be a Gaussian mixture whose pdf g, is defined by

9:((ai,ui,2-))i:1 ,,,, r Then, its differential entropy
satisfies:

1 e o

Elog[(Zwe)"lt_ll|Et| ‘ J < H(X). 5)

To quantify the amount of information that a second r.v. Y
reveals about X, the notion of mutual information is

usually involved. It is the value I(X;Y) defined by
I(X;Y)=H(X)-H(X|Y), where H(X|Y) is called the
conditional entropy of X knowing Y. If Y is discrete,
then H(X|Y) is defined by:

H(X|Y) = pyH(X|Y =y), (©6)
yey

Thanks to the mutual information (or to the conditional
entropy), we have a way to decide about the dependency of
two multivariate random variables: X and Y are
independent if I1(X;Y) equals 0 or equivalently if

H(X|Y) = H(X).

3 Brief overview of side channel attacks

Any intermediate variable which is a function f(X,k*) of

a plaintext X and a guessable secret key k™ is
sensitive and its manipulation can be targeted by an
SCA. For every key-candidate ke, we denote by f,

the function z+ f(z,k) and by L(k*) the leakage
variable that models the leakage produced by the
manipulation/computation of f.(X) by the device. The

leakage variable can be expressed as:
L(k" )= fu (X)+B, (M

where ¢ denotes a deterministic function and B denotes

an independent noise.

In (7), the definition of f only depends on the algorithm
that is implemented and it is known to the attacker (it can
i.e., be an S-box function). On the opposite, ¢ only
depends on the device and its exact definition is usually
unknown to the attacker who will estimate it according to
the device specifications and/or to a leakage profiling phase.
Actually, the SCAs essentially differ in the degree of
knowledge on ¢ and B that is required for the attack to
succeed.

In a DPA, the attacker only needs to know that the mean
of the r.v. o f.(X) depends on a given bit of f.(X).

Based on this assumption, each key candidate k is involved

to split the measurements into two sets and the candidates
are discriminated by computing differences of means
between those sets. This essentially amounts to process a
Boolean correlation (Prouft, 2005).

In a CPA, the attacker must know a function ¢ that is a

good linear approximation of ¢ (i.e., such that ¢ and ¢

are linearly correlated). Usually, he chooses the Hamming
weight function for ¢. Based on this assumption, key

candidates k& are discriminated by testing the linear
correlation between o f,(X) and L(k* ) This attack can

be more efficient than the single-bit DPA. However, its
success highly depends on the correctness of the linear
approximation of ¢ by ¢.

In a TA, the attacker must know a good approximation
of the pdf of the leakage L(k) for every possible key
k. Assuming a Gaussian noise, this amounts for the
attacker to have a good approximation of ¢ and of the
standard deviation of the noise B (or its covariance matrix
in a multivariate model). Wrong key hypotheses are
discriminated in a maximum likelihood attack (see Chari
et al., 2002). To pre-compute the pdfs of all the variables
L(k), the attacker needs to have an access to a copy of the
device under attack for which he can set (or at least know)
the secret key. This is a strong requirement which is rarely
fulfilled in practice.

As noticed in Gierlichs et al. (2008) and Aumonier
(2007), MIA attacks are an alternative to the approaches
above. They consist in estimating the mutual information

I(L(k* );@ o fi(X )) instead of the correlation coefficient or
the difference of means. In an MIA, the attacker is
potentially allowed to make weaker assumptions on ¢ than
in a CPA. Indeed, he does not need a good linear
approximation of ¢ but only a function ¢ s.t. the mutual
information I(p;) is non-negligible (which may happen
even if ¢ and ¢ are not linearly correlated). It i.e., allows
the attacker to choose the identity function for ¢ which is

of particular interest since no knowledge about the leakage
parameter is required.

The effectiveness of a key-recovery side channel attack
is usually characterised by its success rate, namely the
probability that the attack outputs the correct key as the
most likely key candidate. This notion can be extended to
higher-orders (Standaert et al., 2009): an attack is said to be
oth order successful if it classifies the correct key among
the o most likely key candidates. In the following, we shall
investigate the (oth order) success rate of MIA.

Notations: In what follows, the r.v. @of.(X) shall be
denoted by Z(k) and the set [@o fk]_l (2) shall be denoted
by Ej(z). For clarity reasons, we shall further denote by L

(resp. by Z) the r.v. L(k*) (resp. Z(k)) when there is no
ambiguity.
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For every function F' defined over K, let us denote by
argmax—o,F'(k) the set composed of the o key
candidates k such that F'(k) is among the o highest values

in {F(k);k € K}. An MIA succeeds at the oth order if the
estimations i(L;Z(k)) of I(L; Z(k)) satisfy:

k* e argmax—o 1(L; Z(k)). (8)
kel

We therefore deduce two necessary conditions for an MIA
to succeed at the oth order:

e Theoretical. The mutual information (I(L; A (k:))) ek

must satisfy:

k* e argmax—o I(L;Z(k)). )
kel

e Practical. The estimations of (I(L;Z (k)))kE . must be

good enough to satisfy (8) while (9) is satisfied.

When the attacker is assumed to make a perfect guess on the
deterministic function of the leakage (i.e., when he chooses

p=¢), then 1(L:Z(K*))21(L:2(H) holds for every

ke IC [which is a necessary but not sufficient condition
to (9)]. This has been argued in Moradi et al. (2009) by
pointing out the existence of the following Markov chain:

Z(k)y—>Z (k*) — L. In the general case, when ¢ may
differ from ¢, this Markov chain does not necessarily exist

and no general statement about (9) is possible. In order to go
deeper in the analysis, we conduct in the next section a
theoretical study of MIA in the Gaussian model. This will
allow us to characterise (with regards to f,¢,) to what

extent (9) may be satisfied. In a second time, we address
the practical issue of MIA: the mutual information
estimation. We describe in Section 5 several classical
estimation methods and we apply them in the context of
MIA. For 3-tuples (f,p,¢) s.t. (9) is satisfied, we

eventually investigate in Section 6 the success probability of
MIA according to the estimation method and according to
the noise variation. Those analyses will allow us to
characterise when an MIA is practically feasible (i.e., when
(8) is satisfied) and to compare its efficiency with that of
other SCA attacks.

4 Study of MIA in the Gaussian model

In this section, we focus on first-order MIA and, in a second
time, we extend our analysis to the higher-order case i.e.,
when the target implementation is protected by masking
(Chari et al., 1999). Our analyses are done under the three
following assumptions which are realistic in a SCA context
and make the formalisation easier.

Assumption 1: [Uniformity] The plaintext X has a uniform
distribution over F'.

Assumption 2: [Balancedness] For every kelC, the
(n,m)-function f, :z > f.(z) is s.t. #{x Ry = fk(I)}

equals 2" for every y e Fy".

Remark 4.1: This assumption states that the algorithmic
functions targeted by the SCA are balanced which is usually
the case in a cryptographic context.

Assumption 3: [Gaussian Noise] The noise B in the leakage
(see (7)) has a Gaussian distribution with zero mean and
standard deviation o.

Remark 4.2: This assumption is realistic and is therefore
often done in the literature (see i.e., Chari et al., 1999;
Prouff et al., 2009; Standaert et al., 2009). Practical attacks
and pdf estimations presented in Section 6 provide us with
an experimental validation of this assumption.

4.1 First-order MIA

The mutual information I(L;Z(k)) equals
H(L)-H(L| Z(k)).

Since H(L) does not depend on the key prediction,
I(L; Z(k)) reaches one of its o highest values when k
ranges over K if the conditional entropy H(L|Z(k))

reaches one of its o smallest values. One deduces that an
MIA is theoretically possible if the 3-tuple (f,p,¢) is s.t.:

k* eargmin-o H(L|Z(k)), (10)
kel

where argmin—o is defined analogously to arg max—o.

The starting point of our analysis is that studying the
MIA effectiveness is equivalent to investigating the
minimality of H(L|Z(k)) over K. As a consequence of

(6), we have
H(LIZM0)=D, | pray(H(L|Z(k) =7).

Since Z equals ¢o f,(X), the probabilities py ) (2) in this

sum can be easily computed by the attacker and the main
difficulty therefore essentially lies in the computation of the
H(L|Z(k) = z)s. From (3), one deduces:

H(LIZ#) == Y ps)] gum.(Dlog gy (Dt (1)
zelm(p) )

To reveal the relationship between H(L|Z(k)) and the

key-prediction k, the expression of the pdf g;,_, in (11)

needs to be developed. Since X has a uniform distribution

over Iy, for every (e L and every zelm(pof,) we

have:
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1
91)7=2 (E) =T A . 9ot (2).0 (Z)a (12)
' #E,(2) ;) wol

where we recall that E (z) denotes [¢o fk]_1 (2). The next
proposition directly follows.
Proposition 4.1: For every pair (k*,k)elcz and every

z € Z the pdf of the r.v. (L(k*)|Z(k) = z) is a Gaussian

mixture g, whose parameter 6 satisfies:

0= ((azat ’t’az ))telm('vf) ’

with

#{:E € By (2);p0 fix (z) = t}
#E,(2) .

a’z,t =

In Proposition 4.1, the key hypothesis k only plays a part in
the definition of the weights a,, of the Gaussian mixture.

In other terms, g ;). is always composed of the same

Gaussian pdfs and the key hypothesis & only impacts the
way how the Gaussian pdfs are mixed. To go further in the
study of the relationship between % and H(L|Z(k)=z),
let us introduce the following diagram where z is an
element of Im(p), where F',F' and T are image sets:

AN SN iy S AN AN

Based on the diagram above, we can make the two
following observations:

e Iftheset T isreduced to a singleton set {tl} (ie., if
¢o f,, is constant equal to ¢, on E| (z)), then all the
probabilities a,, s.t. t #¢ arenulland a,, equals 1.

In this case, one deduces from Proposition 4.1 that the
distribution of (L |Z(k) = z) is Gaussian and, due to

(4), its conditional entropy satisfies:
1 2
H(L|Z(k)=2)= E1og(27rea )

o If#T>1 (ie,if #pof. (E.(2))>1), then there
exist at least two probabilities a,, and a,, which

non-null and the distribution of (L |Z(k)=z) isa

Gaussian mixture (not Gaussian). Due to (5), its
entropy satisfies:

H(L| Z(k)=2)> %log(27reaz )

When ¢ is constant on F’ (e.g., when o =¢ or ¢ =1d),
the two observations above provide us with a discriminant
property. If k* =k, then we have F = F' and thus, T is a

singleton and H(L|Z(k)=z) equals %10g<27r602).

Otherwise, if k = k™, then fix o fi, is likely to behave as a
random function'. In this case, F is most of the time
different from F' and T is therefore likely to have more
than one element’. This implies that #go fr (B (2))is

strictly greater than 1 and thus, that H(L|Z(k)=z) is

greater than or equal to %log(Zweoz). Eventually, we get

the following proposition in which we exhibit a tight lower
bound for the differential entropy H(L | Z (k)).

Proposition 4.2: For every (k*,k:)elCz, the conditional

entropy of the r.v. (L (k* )|Z(k)) satisfies:

%10g(27‘(‘€0’2)§H(L(k'*)|Z(k))' (13)

If KCof« is constant on Ej(z) for every z e Z, then the
lower bound is tight.

Proof: Relation (13) is a straightforward consequence of (6)
and of Propositions 2.1 and 4.1. The tightness is a direct
consequence of (4) and Proposition 4.1.

Remark 4.3: Intuitively, the entropy is a measure of the
diversity or randomness of a random variable. It is therefore
reasonable to think that the more components in the
Gaussian mixture pdf of (L|Z(k)=z), the greater its
entropy. Relation (13) provides a first validation of this
intuition. The entropy is minimal when the pdf is a Gaussian
one (i.e., when the Gaussian mixture has only one
component). In our experiments (partially reported in
Section 6), we noticed that the entropy of a Gaussian
mixture whose components have the same variance,
increases with the number of components.

Corollary 1: If (o f; is injective, then H(L|Z(k)) equals
%10g(27r602 )

Proof: If Qo f, is injective, then E,(z) is a singleton and

@o [+ is thus constant on Ej (2).

If the functions ¢o f.’s are all injective, then Corollary 1

implies that MIA cannot succeed at any order. Indeed, in
this case the entropy H(L|Z(k)) stays unchanged when

ranges over K and thus, k* does not satisfy (10). As a
consequence, when the f,’s are injective (which is i.e., the
case when f. consists in a key addition followed by the
AES S-box), then the attacker has to choose ¢ to be

non-injective (e.g., the Hamming weight function). It must
be noticed that this is a necessary but not sufficient
condition since the function ¢ must also be s.t. 1(Q;¢) is

non-negligible (otherwise the MIA would clearly fail). In
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this case, the attacker must have a certain knowledge about
the leakage function ¢ in order to define an appropriate

function ¢ and hence, the MIA does no longer benefit from

one of its main advantages. This drawback can be overcome
by exclusively targeting intermediate variables s.t. the f.’s
are not injective. In AES, the attacker can i.e., target the
bitwise addition between two S-box outputs during the
MixColumns operation. When bits are assumed to leak
independently, another way suggested in Gierlichs et al.
(2008) is to target a restrictive number of the output
bits.

4.2  Generalisation to the higher-orders

In this section, we extend the analysis of MIA to
higher-orders i.e., we assume that the target implementation
is protected by masking. The sensitive variable f . (X) is

now masked with d—1 independent random variables
M,,...,M,_, which are uniformly distributed over Im(f).

The masked data f.(X)®M,®---®M, , and the
different masks M’s are processed at different times. The
leakage from f. (X)® M, ®---® M, is denoted by L,
and the leakages from the M’s are denoted by L,..., L.
Under Assumption 3, the L;’s satisfy:

. ol [ (DOBL! |+ B, ifj=0, "
! o, (M,)+B, if j #0,

where the B,’s are independent Gaussian noises with mean

0 and standard deviation o;, and where ¢,,p;, -, are

j°
d device dependent functions that are a priori unknown to
the attacker.

Notations: The leakage vector (Lg,---,L;_) is denoted by
L(k’*) (or simply L when there is no ambiguity) and the

vector of masks (M,,---,M, ) is denoted by M. We
further denote by ®,. (X, M) the vector

(‘Po (J;* (X)@@;,i:_llMt)54PI (Ml)a"‘s@d—l (Md—l))'

To simplify our analysis, we assume that the attacker knows
the manipulation times exactly and is therefore able to get a
sample for the r.v. L. Under this assumption and for the
same reasons as in the univariate case, an higher-order MIA
essentially consists in looking for the key candidate &
which minimises an estimation of the conditional entropy
H(L|Z(k)). This entropy is estimated as for the first-order

case (see (11)), but the pdfs gy ,)_., are multivariate. More

precisely, after denoting by X the matrix (COUI:BZ-,B]-:I)' B
i
we get:

1
) 0 Z 9o, (@m)s (O)-(15)

- #Ek (Z)(#Im(f))(k zeE(2)

melm(f)[lf1

In a similar way than in Section 4, the next proposition
directly follows.

Proposition 4.3: For every pair (k:*,k)elCz and every

z € Z the pdf of the r.v. (L(k’* )|Z(k) = z) is a Gaussian

mixture g, whose parameter 6 satisfies:

0= ((00ot2)),

with

Ez(C’ov[Bi,Bj])‘

i,] ’
and
#{(z,m);@ . (z,m) = t}
#E (2)(#Im(N))"™

We deduce from Propositions 2.1 and 4.3 the following
result.

Proposition 4.4: For every (k*,k) € K?, the entropy of the

r.v. (L(k*)|Z(k),M) satisfies:

%log((Zﬂe)d =) < m(L (k)

(Z(k:),M).) (16)

If . (,m) is constant on Ej(z) for every z eIm(¢) and

for every m e Im( f)d_l, then the bound is tight.

We cannot deduce from the proposition above a wrong-
key discriminator as we did in the univariate case. Indeed, to
compute the entropy in (16) the attacker must know the
mask values, which is not allowed in our context.
However, if the 3-tuple (f,®,p) satisfies the condition of

Proposition 4.4, then it can be checked that for every z the
number of components in the multivariate Gaussian mixture

pdf of (L|Z(k)=z) reaches its minimum for k=4k". As
discussed in Remark 4.3, this implies that the entropy
H(L|Z(k)) is likely to be minimum for k=k". The

simulations and experiments presented in Section 6 provides
us with an experimental validation of this fact.

Remark 4.4: As mentioned in Section 3, for the
first-order case and assuming @ =, the existence

of the Markov chain Z(k)—Z (k:* ) — L implies

I(L;Z(k* )) >1(L; Z(k)) for every k e K. We do not have

such a straightforward statement for the higher-order case



Theoretical and practical aspects of mutual information-based side channel analysis 127

where several functions ¢;,¢;,...,¢,; are involved in the
leakage (14). Nevertheless, using the identity function as ¢
yields the following Markov chain

2(k) = f(X) > Z(K*) = £ (X) > B (X,M) > L

which implies I(L;Z(k* )) > I(L;Z(k)) for every ke K.
This shows the soundness of using the identity function as
¢ when the f.’s are non-injective (otherwise the mutual

information is constant with respect to &k as argued for the
first-order case).

In the next sections, we assume that an MIA is
theoretically successful at the first-order. Namely, we

assume that we have %™ =argmin, H(L|Z(k)). At first,
we study the success probability of an MIA according to the
method used to estimate H(L|Z(k)) and the noise

variation. Secondly, we compare the efficiency of MIA with
the one of CPA in different contexts.

5 Conditional entropy estimation

Let L be a d-dimensional r.v. defined over £ (ie.,
L is composed of d different instantaneous leakage
measurements) and let k& be a key-candidate. We
assume that the attacker has a sample of N leakage-

message pairs (1;,7;) e £ x X corresponding to a key &,
and that he wants to compute H(L|Z(k)) to discriminate
key-candidates k. Due to (6), estimating H(L | Z(k)) from

the sample ((l 1:))& essentially amounts to estimate the

entropy H(L | Z(k)= z) for every ze€Z. For such a
purpose, a first step is to compute estimations gy ;()-, of
the pdfs gpy)-.. Then, depending on the estimation
method that has been applied, the entropies H(L | Z(k) = z)

are either directly computable (histogram method) or must
still be estimated (kernel and parametric methods). In the
following, we present three estimation methods and we
discuss their pertinency in our context.

5.1 Histogram method

The density estimation by histogram has been first applied
in the original paper of Gierlichs et al. (2008) to
experimentally validate the soundness of first-order MIA.
An experimental study has been conducted in the paper of
Moradi et al. (2009) but still in the context of first-order
attacks. In the following, we detail the histogram method in
the general case of multivariate density estimations.

5.1.1 Description

We choose d bin widths hy,...,h;_
coordinate of the leakage vectors) and we partition the

(one for each

leakage space £’ into regions (R, ), With equal volume

U:H hj. Let k be a key-candidate and let z be an
J

element of Z. We denote by S, the subsample
-1
(17',;% eleof,] (z))_ g(li)i

and by 7, ; the jth coordinate of ;. To estimate the pdf

9uz-.» We first compute the density vector D, whose

coordinates are defined by:

#S,NR,
#S

z

D,(a)= , (17)

where S, "R, denotes the sample of all the 1,’s in S, that
belong to R, .

The estimation §;,_, is then defined for every le ol
by gg7-. (1 :w, where i is the index of the region R,
that contains L Integrating the pdf estimation according to
formula (3) gives the following estimation for the

conditional entropy:

A(L| Z:z)z—ZDZ(oz)log(Dz(a)/v).

The optimal choice of the bin widths %;’s is an issue in

statistics theory. Several rules however exist that start from
the nature of the samples to deduce the #h;’s or,

equivalently, the number of bins (see i.e., Turlach, 1993;
Scott, 1992; Wand, 1997). For univariate density estimation,
Sturge’s rule (the number of bins is chosen equal to
1+log,(N)) and Scott’s rule are often preferred and
several works have studied their asymptotical soundness. In
(Scott, 1992), a generalisation of Scott’s rule, called normal
reference rule, is given for multivariate density estimation:
it consists in defining each bin width 7; s.t.

h; =3.49%,x N, 7, (18)

where (frj denotes the estimated standard deviation of the

sample (f i ) of size N e In our simulations, we chose to
2 1

apply the normal reference rule because of its simplicity.
However, other methods exist and the optimality of some of
them is even formally analysed. The interested reader may
turn to the paper of Birgé and Rozenholc (2006) where a
survey and a comparative simulation are provided.

5.1.2 Simulations

In order to illustrate the histogram method in the context of
an MIA attack, we generated 10,000 leakage measurements
in the Gaussian model (7) for ¢ being the Hamming weight

function, for f being the first DES S-box parameterised
with the key £* =11 and for o =0.1. Since the DES S-box
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is non-injective, we chose the identity function for ¢.
Figure 1 plots the estimations of the pdf g;,_; when k=11

and when £ =5.

As expected (Proposition 4.1 and Corollary 1), a
Gaussian pdf seems to be estimated when k£ =11 (good key
prediction), whereas a mixture of three Gaussian
distributions seems to be estimated when k=5 (wrong key
prediction). For the experimentation described in the

left-hand figure we obtained H(L(11)|Z(11)=1)=-1.31
(due to (4) we have H(L(11)| Z(11)=1)=—-1.27) and we
got ﬁ(L(l 1)| Z(5)=1)=-0.0345 for the one in the

right-hand side. Moreover, we validated that the estimated
conditional entropy is minimum for the good key
hypothesis.

Figure 1 Histogram estimation method in the first-order case (see online version for colours)
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In order to illustrate the histogram method in the context of
a 2nd-order MIA attack, we generated 10,000 pairs of
leakage measurements in the higher-order Gaussian model
(14) with d=2, with ¢, and ¢, being the Hamming
weight function, with f being the first DES S-box

parameterised with the key £* =11 and with oy =0,=0.1.

We chose the identity function for ¢. Figure 2 plots the
estimations of the pdf ¢;,,_, when k=11 and when £ =5.

As expected, the mixture of Gaussian distributions for
k=11 have less components than for k=5. For the
experimentation in the left-hand figure we obtained

A(LAD|ZA1)=1)=022 (and F(L(1)|Z(11)=0.14),
whereas we got 1.12 for I:I(L(l )| Z(5)=1) (and 1.15 for
ﬁ(L(l 1)|Z(5))). Here again, the estimated conditional

entropy was minimum for the good key hypothesis.

5.2 Kernel density method

The density estimation by kernel method has been studied in
the context of MIA attacks in Prouff and Rivain (2009)
and Veyrat-Charvillon and Standaert (2009). The analysis
conducted by Veyrat-Charvillon and Standaert (2009)
focuses on univariate data and compares the efficiency of
several first-order MIA for different kernel functions. In the
following, we detail the kernel method in the general case of
multivariate data (i.e., in the context of higher-order MIA).

5.2.1 Description

Although the histogram method can be made to be
asymptotically consistent, other methods can be used that
converge at faster rates. For instance, rather than grouping
observations together in bins, the so-called kernel density
estimator (or Parzen window method) can be thought to
place small ‘bumps’ at each observation, determined by the
kernel function (see i.e., Silverman, 1986). The estimator
consists of a ‘sum of bumps’ and is clearly smoother as a
result than the histogram method.

The (multivariate) kernel density estimator gy, of the

function g,_. based on the sample S, is defined for every

le £ by:

1 1-1,
07—, () =—m— K L, 19
9rjz=- (D) #Sthdlz (hj 19)

iesz

where h is the kernel bandwidth (also called windows
width) and where K is a (multivariate) kernel function

defined from R? to R and satisfying:
J' K(x)x =1,
R

As explained in Silverman (1986), K is usually chosen as a
radially symmetric unimodal pdf. A classical choice is the
standard (multivariate) normal density function

xeR? > K(x)=(2m) %2 exp(—%xTx)

or the (multivariate) Epanechnikov function defined for
every X e R¢ by K(x)=1/ 2cgl(d+2)(1— xTx) if x'x<1
and by K(x)=0 otherwise, with ¢; being the volume of

the unit d-dimensional sphere (¢, =2,¢; =, etc.).

Remark 5.1: The use of a single smoothing parameter A in
(19) implies that the version of the kernel placed on each
data point is scaled equally in all directions. In certain
circumstances, when the distributions of the different
leakage points in L are very different, it may be more
appropriate to use a vector of smoothing parameter (i.e., one
h; for each coordinate of L) or even a matrix of shrinking

coefficients (Silverman, 1986; Wasserman, 2005). In our
context, using such generalisations is not of great interest.
Indeed, as recalled in Section 4.2, the leakage coordinates
are often assumed to be of same nature (thus, the
bandwidths must be equal) and to be pairwisely independent
(so the shrinking matrix is diagonal).

As recalled in Beirlant et al. (1997), the following
Parzen-windows entropy estimation of H(L|Z =2z) is

sound when the sample size is large enough:

H(L|Z=2)= —% 2 log(ﬁL\Z:z (17,)),

Z1,e8,

where §;;_, (1) satisfies (19). In our attack simulations,

we chose the kernel function to be the Epanechnikov one.
Our choice was motivated not only by the fact that this
kernel function has a simple form, but also by the fact that
its efficiency is asymptotically optimal among all the
kernels (Gray and Moore, 2003). We also assumed that all
the coordinates of the leakage vector have the same standard
deviation o and to select the common kernel bandwidth A,
we followed two different rules depending on the dimension
d of L. For univariate L (i.e., d=1) we followed the

normal scale rule (Silverman, 1986): namely, we chose &

st. h=1.06xox N* where N is the sample size and  is
the sample estimator of o. For multivariate L (i.e., d >1)

we chose the optimal bandwidth selection that minimises
the mean integrated square error (see i.e., Scott, 1992;
Wasserman, 2005): namely, we chose & s.t.

4 1/(d+4)
h=6x| —— . (20)
(d+2)N

5.2.2 Simulations

In order to illustrate the effectiveness of the kernel method,
we applied it for the same simulated traces used for our 1st
and 2nd-order histogram experiments (Figure 1 and
Figure 2). We present our results in Figure 3(a) to
Figure 3(b) for the first-order and in Figure 3(c) to
Figure 3(d) for the second-order.
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Figure 3 Kernel estimation method, (a) 1st-order for k=11 As expected, the pdf estimated in Figure 3(a) when k=11
(b) Ist-order for k=5 (c) 2nd-order for k=11 seems to be a Gaussian one, whereas the pdf estimated
(d) 2nd-order for £ =5 (see online version for colours) when k=35 seem to be a mixture of three Gaussian

distributions. Moreover, the estimations are smoother than

i
o] = in the case of the histogram method and there are no

/ \ noticeable differences between the estimation with Gaussian
/ kernel and the estimation with the Epanechnikov one. For
/ \ the experimentation described in the left-hand figure we

2t / obtained H(L(11)| Z(11)=1)=-0.88 and we got 0.54 for
H(L(11)| Z(5) =1) (right-hand side).

/ As expected, in Figure 3(c) the mixtures of Gaussian
osr . distributions for k=11 have less components than for
I N P "N k=5. For the experimentation in the left-hand figure we

obtained H(L(11)|Z(11))=0.17, whereas we got 0.52 for
H(L(11)|Z(5)). Moreover, we validated that the

08r
conditional entropy H(L(11)|Z(k)) is minimum for
ull b=k =11
06F
el 5.3 Parametric estimation
04F
In the following, we present a third pdf estimation method
that takes full advantage of the Gaussian noise assumption.
As shown in Section 6, this approach yields to a first-order
MIA which is more efficient than those based on the

histogram and kernel methods.

L L L L L )
4s o 0s 1 14 2 25

(b)
5.3.1 Description
25 |
Under the Gaussian noise assumption, the analysis of
2 Section 4 shows that gy, is a Gaussian mixture gy. An
15 alternative to the methods presented above is therefore to
, compute an estimation 0 of the parameter 6 so that we get
' duj7-. = 9; and thus:
ol IA{(L|Z:z):—J‘l . g;(Dlog, g;(Ddl. (21)
4 a .
Ly e K First-order case
47T o i
© According to (12), gp,_, is a Gaussian mixture whose
C
parameter 0 satisfies:
25 1
e:[ ,pof(x,k*),azj . (22)
2 #E(2) eBy(2)
™ ' ‘ Since we have @of(m,k*):E[MX:x], for every «,
1.

the expectation @o f (:v,k*) can be estimated by:

0 . 1
~ = I..
4 m, #{Z,CL’L:SC} Z i

02, =1

And since we have o = Var[B] = E{(L—gp of(X,k* ))2},

the variance o can be estimated by:
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On the whole, this provides us with the following estimation
6 of :

é:[ ! ,mx,&zj :
# Ek (Z) zel (2)

Higher-order case

For higher-order MIA, (15) can be rewritten:

1
99 = Y9z> (23)
#E,(2) ze%‘zz)

where g, denotes the Gaussian mixture pdf of the r.v.

(L| X =z) whose parameter satisfies:

1
91. = W,q)k* (:v,m),Z

melm(f ){H

The mean values . (z,m)=E[L|X =2,M=m] cannot

be directly estimated as in the first-order case since the
values m; taken by the masks for the different leakage

observations 1, are not assumed to be known. To deal with

this issue, a solution is to involve Gaussian mixture
estimation methods such as the expectation maximisation
algorithm (Bishop, 2007). By applying it on the sample
(12, =x), we get an estimation 0, of 0, for every

z € X. Then, the overall estimation 6 directly results from
the él following (23), and the conditional entropy can be
estimated according to (21).

5.3.2 Simulations

As for the previous estimation methods, we applied
the parametric estimation to the same simulated traces.

The resulting estimated pdfs (gL(ll)IZ(ll):l)ke{ﬂ]}

plotted in Figure 4(a) to Figure 4(b) for the first-order and in
Figure 4(c) to Figure 4(d) for the second-order.

The results are similar to those of the previous
estimation methods. For the first-order case, we distinguish
a mixture of three Gaussian distributions for the wrong key
hypothesis while a single Gaussian pdf is observed for the
correct one. For the second-order case, the Gaussian
mixture obtained for the wrong key hypothesis contains
more components than the one for the correct key
hypothesis. Once again, the estimated entropy is lower for
the correct key hypothesis than for the wrong one. For
instance, the entropies of the plotted pdfs equal —0.94
(correct hyp.) and 0.13 (wrong hyp.) for the first-order case
and 0.24 (correct hyp.) and 0.60 (wrong hyp.) for the
second-order case.

Parametric estimation method, (a) 1st-order for k=11
(b) 1st-order for k=35 (c) 2nd-order for £ =11
(d) 2nd-order for k£ =5 (see online version for colours)
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Table 1 Attack on the first DES S-box — number of measurements required to achieve a success rate of 90% according to the noise
standard deviation o

Attack\o 0.5 1 2 5 10 15 20 50 100

CPA, ¢=1d 30 30 100 1,000 3,000 7,000 15,000 70,000 260,000
MIAy (hist.), o =1d 80 160 600 4,000 20,000 50,000 95,000 850,000 105+
MIAg (kernel), ¢ =1d 70 140 500 3,000 15,000 35,000 60,000 500,000 105+
MIAp (param.), ¢ =1d 60 100 300 2,000 5,000 15,000 20,000 150,000 500,000

CPA, ¢ =HW 30 30 70 400 2,000 4,000 7,000 45,000 170,000
MIAy (hist.), ¢ =HW 40 70 300 1,500 7,000 20,000 40,000 320,000 105+
MIA (kernel), ¢ = HW 30 60 190 1,500 5,500 15,000 25,000 190,000 900,000
MIAp (param.), ¢ = HW 70 70 150 1,000 3,000 7,000 15,000 65,000 300,000

6 Experimental results
6.1 First-order attack simulations

To compare the efficiency of MIA with respect to the
estimation method, we simulated leakage measurements in
the Gaussian model (7) with ¢ being the Hamming weight

function and f being the first DES S-box (we therefore

have n=6 and m=4). For various noise standard

deviations o and for the estimation methods described in
previous sections, we estimated the number of messages
required to have an attack first-order success rate
greater than or equal to 90% (this success rate being
computed for 1,000 attacks). Moreover, we included
first-order CPA in our tests to determine whether and
when an MIA is more efficient than a CPA.> Each
attack was performed with ¢ being the identity function in

order to test the context in which the attacker has no
knowledge about the leakage model. Moreover, each attack
was also performed with ¢ being the Hamming weight

function in order to test the context where the attacker has a
good knowledge of the leakage model. The results are
given in Table 1 where MIAy, MIAg and MIA; respectively
stand for the histogram, the kernel and the parametric
MIA.

It can be checked in Table 1 that CPA is always better
than MIA when ¢ = HW. This is not an astonishing result

in our model, since the deterministic part of the leakage
corresponds to the Hamming weight of the target variable.
More surprisingly, this stays true when ¢ is chosen to be

the identity function. This can be explained by the strong
linear dependency between the identity function and the
Hamming weight function over IF24 ={0,...,15}. Eventually,
both results suggest that CPA is more suitable than MIA
for attacking a device leaking first-order information in
a model close to the Hamming weight model with
Gaussian noise. When looking at the different MIAs,
we can notice that MIAp becomes much more efficient than
MIA; and MIAg when the noise standard deviation
increases.

6.2 Second-order attack simulations

In a CPA, the attacker computes Pearson’s correlation
coefficients which is a function of two univariate samples.
Thus, when CPA is applied against dth-order masking (see
(14)) a multivariate function must be defined to combine the
different leakage signals (corresponding to the masked data
and the masks) (Prouff et al., 2009). This signal processing
induces an information loss which strongly impacts the
higher-order CPA efficiency when the noise increases.
Because an higher-order MIA can operate on multivariate
samples, it does not suffer from the aforementioned
drawback. We could therefore expect MIA to become more
efficient than CPA when it is performed against masking.
To compare higher-order CPA and higher-order MIA, we
simulated power consumption measurements such as in (14)
with d=2, with ¢, =¢, =HW, with o0, =0,=0 and
with f being the first DES S-box. For various noise
standard deviations o and for the estimation methods
described in previous sections, we estimated the number of
measurements required to have an attack success rate
greater than or equal to 90% (this success rate being
computed over 100 attacks). Table 2 reports the results that
we obtained® for second-order CPA (20-CPA) and for
second-order MIA with histogram estimation method
(20-MIAp) and with kernel estimation method (20-MIAg).
We performed second-order CPA with Hamming weight
prediction function and for two different combining
functions: the absolute difference and the normalised
product (Prouff et al., 2009). For MIA, we tried both
Hamming weight and identity prediction functions.
Moreover, for MIA with histogram estimation, we tried two
rules for the choice of the bin-width: Scott’s rule (see
Section 5.1) and the rule proposed in Gierlichs et al. (2008).

Remark 6.1: We experimented that second-order MIA with
parametric estimations using the expectation maximisation
algorithm is inefficient. In fact, estimating a Gaussian
mixture using the EM algorithm requires a great number of
samples, especially when the number of components in the
mixture is not small. In our context, the number of
components equals the number of possible mask values’,
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that is 16 when attacking a DES S-box. To lower the
number of components, one could focus on a restricted
number of bits (considering the remaining ones as an
algorithmic noise). Such an approach has been followed by
Lemke-Rust and Paar (2007) in the context of higher-order
profiled attacks. Another approach could be to look for
other estimation methods dedicated to Gaussian mixtures
and, possibly, to adapt them for masked implementations.
We let such investigations for future research.

Table 2 Second-order attack on DES S-box — number of
measurements required to achieve a success rate of
90% according to the noise standard deviation o
Attack\o 0.5 1 2 5 7 10
20-CPA 300 800 5,000 200,000 105+ 10%+
(¢ =HW, abs.
difference)
20-CPA 300 400 3,000 70,000 300,000 10°+
(¢=HW,
norm. product)
20-MIAy 1,200 7,000 75,000 10+ 10+ 10%
(p=1d,
Scott’s rule)
20-MIAy 1,800 7,000 40,000 1,000,000 10°+ 10%
(¢p=1d, rule

in Gierlichs
et al. (2008)
20-MIAg
(p=1d)
20-MIAy
($=HW,
Scott’s rule)
20-MIAy 350 1,300 9,000
(p=HW, rule

in Gierlichs

et al. (2008)

20-MIAg 300 1,300 9,000 n.a. n.a. n.a.
(¢ =HW)

600 2,500 25,000 600,000 10+ 10%

600 2,700 34,000  10%+ 10+ 10%

350,000  10%+ 10%+

Table 2 shows that, contrary to what we could have
expected, second-order CPA is always better than
second-order MIA. As for the first-order case, we deduce
that CPA is more suitable to attack masked implementations
that leak the Hamming weight of the processed data with
Gaussian noise. However, we also note that the efficiency of
MIA is strongly impacted by the estimation methods and the
related parameters (e.g., the choice of the bin-width for
histograms). Determining the estimation method/parameters
that optimise (or at least improve) the attack efficiency is
hence a relevant open issue. Results reported in Table 2 also
show that in the considered context, kernels perform better
than histograms and that a Hamming weight prediction is
better than an identity prediction. These observations are
quite natural since, on the one hand, kernels are known to
give tighter pdf estimations than histograms and, on the
other hand, a Hamming weight prediction enables better
discrimination of the wrong key guesses than an identity

prediction in the presence of a Hamming weight leakage
function.® Another observation is that, the bin-width
selection rule proposed in Gierlichs et al. (2008) for
histogram-based MIA leads to a more efficient attack than
Scott’s rule. More generally, we experimented that
increasing the bin-width improve the attack efficiency until
reaching a small number of bins. The analysis of the
underlying reasons for this phenomenon and the study of the
bin-width choice optimising the MIA efficiency are open
issues that deserve more investigations.

6.3 Practical attacks

To experimentally validate our theoretical analysis and the
simulations reported in Section 5, Section 6.1 and
Section 6.2, we experimented MIA with real-life leakage
traces measured for different kinds of implementations. We
first performed univariate MIA attacks against hardware and
software implementations of the AES S-box. Then, we
applied second-order MIA attacks against a masked
software implementation of the first DES S-box. In both
contexts, we also performed a CPA attack to compare its
efficiency with that of MIA.

6.3.1 First-order attacks

We performed the attacks against two AES S-box
implementations that use a lookup-table (ie., f;
corresponds to the AES S-box). The first one is a hardware
implementation on the chip SecMat V3/2 (see Guilley et al.,
2008) for details about the chip and the circuit layout). The
corresponding power consumption measurements are
plotted in Figure 5(a) over the time. It can be noticed that
they are not very noisy. The second one is a software
implementation running on a smart card with 8-bit
architecture. As it can be seen in Figure 6(a), the signal is
much more noisy in this case.

For both set of traces, we performed CPA and MIA
attacks with the histogram estimation method and the
parametric estimation method (see Section 5). For all of
these attacks the prediction function ¢ was chosen to
be the Hamming weight function (since ¢ef, must be
non-injective — see Corollary 1 —). The obtained correlation
and mutual information curves are plotted in Figure 5(b) to
Figure 5(d) and Figure 6(b) to Figure 6(d) over the time. For
each attack the curve corresponding to the correct (resp.
wrong) key hypothesis is drawn in black (resp. grey).

In both cases, the attacks succeed with a few number of
traces. It can be noticed that MIA with a parametric
estimation is more discriminating than MIA with the
histogram estimation. This confirms the simulations
performed in Section 6.1. However, even when the
parametric estimation method is involved, CPA is always
more discriminating than MIA. Those results suggest that
the power consumption of the attacked devices has in fact a
high linear dependency with the Hamming weight of the
manipulated data. This implies in particular that the
Hamming weight model is sound in this context and that
looking for non-linear dependencies is not useful.
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Figure 5 Practical attacks on a hardware AES implementation,
(a) power consumption traces (b) CPA with 256 traces

(c) histogram-based MIA with 1,024 traces

(d) parametric MIA with 1,024 traces (see online

version for colours)
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Figure 6 Practical attacks on a software AES implementation,
(a) power consumption traces (b) CPA with 2,000
traces (c) histogram-based MIA with 2,000 traces
(d) parametric MIA with 2,000 traces (see online
version for colours)
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Figure 7 Pdf estimations on power measurements, (a) histogram
estimation (k=%") (b) histogram estimation (k # k™)
(c) parametric estimation (k=%*) (d) parametric
estimation (k # k™) (see online version for colours)
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To corroborate the soundness of the analysis given in
Section 4 and Section5, we plotted in Figure 7 the

estimation of the pdf gp(o)zm)=1 when k=0=k" and

k=5=k* for the hardware implementation. We could
verify that actually the conditional pdfs that are estimated

look like Gaussian mixture pdfs (a Gaussian pdf when E*
is correctly guessed and a mixture of two pdfs when it is
not).

6.3.2 Second-order attacks

We performed second-order MIA attacks against a DES
S-box implementation that uses a lookup-table and is
protected by first-order masking. Namely, the targeted
variable f. (X) corresponds to the DES S-box output and

the leakage measurement consists in two points L, and I,
satisfying (14) for d=2. The power consumption traces
have been measured for a software implementation running
on a smart card with 8-bit architecture. They are plotted in
Figure 8(a). The traces are composed of 3,000 points and
we identified that the masked value f.(X)®M is

manipulated at time ¢, =81,789 whereas the mask M is
manipulated at time ¢ =83,238. We also performed a

second-order CPA attack involving the normalised product
combining with ¢ = HW. For the MIA attacks, we choose

to define the prediction function ¢ either as the identity

function or as the Hamming weight function. For the
histogram-based MIA, we used the Scott’s rule for the
bin-width. For the kernel-based MIA, we applied the normal
scale rule recalled in (20) to select the kernels bandwidth.

Our attacks results for ¢ being the identity function are
plotted in Figure 8(c) to Figure 8(d). For each key-
candidate, the mutual information/correlation values are
plotted over the number of leakage measurements. The
curve corresponding to the correct (resp. wrong) key
hypothesis is drawn in black (resp. grey). In Figure 9, we
plotted for each attack the rank of the good key hypothesis
according to the number of traces exploited by the attack.
The dot-line corresponds to the second-order CPA attack.
Black curves refer to 20-MIA attacks whereas grey curves
refer to 20-MIAy attacks. In both cases, plain-lines
correspond to attacks with ¢ =Id and dashed-lines
correspond to ¢ = HW.

As we can see from Figure 9, the obtained
results validate our simulations. In particular, we see
that second-order CPA is clearly more efficient than
second-order MIA and that kernel-based MIA is better than
histogram-based MIA. We further observe that compared to
our simulations where the Hamming weight prediction leads
to better efficiency than the identity prediction, both
predictions lead to similar results for our practical attacks.
This suggests that the power consumption of the attacked
device does not fully depend on the Hamming weight of the
processed data but rather on some leakage function between
Hamming weight and identity (e.g., each bit of the data has
a different weight in the power consumption).
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Figure 8 Practical second-order attacks on a software DES
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implementation, (a) power consumption traces
(b) 20-CPA, ¢ =HW (c) 20-MIAH, ¢ =1d

(d) 20-MIAK, ¢ =1d (see online version for colours)
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Figure 9 Rank of the good key hypothesis according to the
attack type (see online version for colours)
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7 Concluding remarks

This paper extends the works published in Gierlichs et al.
(2008) and Aumonier (2007) to expose the theoretical
foundations behind MIA and to generalise it to
higher-orders. In the first-order context, we have shown that
MIA is less efficient than CPA when the deterministic part
of the leakage is a linear function of the prediction made by
the attacker. This implies that CPA should be preferred to
MIA when the targeted device leaks a linear function of the
Hamming weight of the manipulated data. This paper also
argues that the efficiency of MIA attacks (of first or
higher-order) greatly depends on the way how some (joint)
pdfs are estimated. In particular, we introduced a parametric
estimation method that renders the first-order MIA
efficiency close to that of CPA when noise increases.

It is interesting to notice that once good estimations of
the joint pdfs are got, other statistical tools than the
mutual information can be used for key-guess
discrimination. This is to our mind an avenue for further
research on this topic. A first attempt towards this
direction has been reported by Veyrat-Charvillon and
Standaert (2009) who studied the Kullback-Leibler
divergence, the Jensen-Shannon divergence and the
Kolmogorov-Smirnov divergence. The first two divergence
measures rely on Shannon entropy (as the mutual
information), whereas the third divergence measure relies
on the Kolmogorov complexity. The attack experiments
reported in Veyrat-Charvillon and Standaert (2009) shows
that this approach does not enable to break the first DES
S-box of the DPA contest (Guilley et al., 2008) in a more
efficient way than MIA does. However, since the
measurements proposed in the DPA-contest are almost
noise-free, more investigations are still required to have a
clear idea about the efficiency of the approach in the general
case.

When masking is wused to protect the target
implementation, an extension of MIA to higher-orders has
been proposed in this paper. In the same line of research,
Gierlichs et al. proposed an alternative approach using the
multivariate mutual information (Gierlichs et al., 2010). For
further research one could also involve the absolute
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mutual information from Kolmogorov complexity. Another
perspective is the investigation of Gaussian mixture
estimation methods dedicated to masked implementations
leakage. A first step in this direction is the work by
Lemke-Rust and Paar (2007) who applied the EM algorithm
in such a context. Otherwise, the question of optimal choice
for the bin-width in the histogram estimation method is also
a relevant open issue. We think that these questions
definitely require more investigations.
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Notes

1 This property, sometimes called wrong key assumption, is
often assumed to be true in a cryptographic context, due to the

specific properties of the primitive f.
2 Asdetailed later, this is only true if ¢ o f, is non-injective.

3 Attacks have been performed for measurements numbers
ranging over 50 different values from 30 to 10°.



138 E. Prouff and M. Rivain

4  The results given in the conference version of the paper of 5 It may be less in a particular leakage model (e.g., hamming
Prouff and Rivain (2009) for second-order MIA simulations weight model) but the attacker does not a priori have such
are erroneous. Table 2 provides the corrected results. information.



