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Abstract In 2007, Meloni introduced a new type of

arithmetic on elliptic curves when adding projective

points sharing the same Z-coordinate.

This paper presents further co-Z addition formulæ

(and register allocations) for various point additions

on Weierstraß elliptic curves. It explains how the use

of conjugate point addition and other implementation

tricks allow one to develop efficient scalar multiplica-

tion algorithms making use of co-Z arithmetic. Specifi-

cally, this paper describes efficient co-Z based versions

of Montgomery ladder, Joye’s double-add algorithm,

and certain signed-digit algorithms, as well as faster

(X,Y )-only variants for left-to-right versions. Further,

the proposed implementations are regular, thereby of-

fering a natural protection against a variety of imple-

mentation attacks.
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1 Introduction

Elliptic curve cryptography (ECC), introduced inde-

pendently by Koblitz [22] and Miller [29] in the mid-

eighties, shows an increasing impact in our everyday

lives where the use of memory-constrained devices such

as smart cards and other embedded systems is ubiqui-

tous. Its main advantage resides in a smaller key size.

The efficiency of ECC is dominated by an operation

called scalar multiplication, denoted as kPPP where PPP ∈
E(Fq) is a rational point on an elliptic curve E/Fq and k

acts as a secret scalar. This means adding a point PPP on

elliptic curve E, k times. In constrained environments,

scalar multiplication is usually implemented through

binary methods, which take on input the binary rep-

resentation of scalar k.

There are many techniques proposed in the litera-

ture aiming at improving the efficiency of ECC. They

rely on explicit addition formulæ, alternative curve pa-

rameterizations, extended point representations, or non-

standard scalar representations. See e.g. [2,5] for a sur-

vey of some techniques.

In this paper, we focus on scalar multiplication al-

gorithms based on co-Z arithmetic. Co-Z arithmetic

was introduced by Meloni in [28] as a means to ef-

ficiently add two projective points sharing the same

Z-coordinate. The original co-Z addition formula of [28]

greatly improves on the general point addition. The

drawback is that this fast formula is by construction

restricted to Euclidean addition chains (i.e., addition

chains without doubling). The efficiency being depen-
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dent on the length of the chain, Meloni suggests to

represent scalar k in the computation of kPPP with the

so-called Zeckendorf’s representation and proposes a

“Fibonacci-and-add” method. The resulting algorithm

is efficient but still slower than its binary counterparts.

Subsequent papers were published that show how to ef-

ficiently apply co-Z arithmetic to binary ladders from

a conjugate co-Z addition formula [16,33]. Co-Z left-

to-right binary algorithms making use of X- and Y -

coordinates only were also proposed, leading to addi-

tional speed-ups [33,32]. This paper surveys these scalar

multiplication algorithms and discusses their perfor-

mance for various settings. Specifically, we describe effi-

cient co-Z based versions of Montgomery ladder, Joye’s

double-add algorithm, and zeroless signed-digit algo-

rithms. All these algorithms are highly regular, which

make them naturally protected against SPA-type at-

tacks [23] and safe-error attacks [34,35]. Moreover, they

can be combined with other known countermeasures to

protect them against further classes of attacks.

This paper only deals with general elliptic curves.

We note that elliptic curves with special forms exist (in-

cluding Montgomery curves, Edwards curves, Hessian

curves, . . . ) which have performance advantages over

general elliptic curves (see [3]). However, many appli-

cations require the compliance with arbitrarily chosen

elliptic curves, which motivates the investigation of effi-

cient scalar multiplication algorithms for general, form-

free elliptic curves.

2 Preliminaries

Let Fq be a finite field of characteristic 6= 2, 3. Consider

an elliptic curve E over Fq given by the Weierstraß

equation y2 = x3 + ax + b, where a, b ∈ Fq and with

discriminant ∆ := −16(4a3 + 27b2) 6= 0. This section

explains how to get efficient arithmetic on elliptic curves

over Fq.

Point addition formulæ are based on different oper-

ations over Fq (multiplication, inversion, addition, and

subtraction), which have different computational costs.

In this paper, we denote by I, M, and S the cost of a field

inversion, of a field multiplication, and of a field squar-

ing, respectively. Typically, when q is a large prime,

it is often assumed that (i) I ≈ 100M, (ii) S = 0.8M,

and (iii) the cost of field additions can be neglected.

These assumptions are derived from the usual software

implementations for field operations. When the latter

are based on a hardware co-processor — as it is often

the case in embedded systems — their costs become

architecture-reliant. In general, a field inversion always

costs a few dozens of multiplications, the cost of a field

squaring is of the same order as that of a field multipli-

cation (possibly a bit cheaper), and the cost of a field

addition is clearly lower (although not always negligi-

ble).

Throughout the paper, the computational cost will

be expressed as the number of I, M, and S. The various

presented algorithms will be optimized so as to mini-

mize the number of these operations. Moreover, when-

ever possible, a M will be traded against a S, usually

at the expense of additional field additions. Of course,

when field additions are costly or when field squarings

are not faster than field multiplications, our algorithms

can be adapted so as to get the best efficiency.

2.1 Jacobian coordinates

In order to avoid the computation of inverses in Fq, it

is advantageous to make use of Jacobian coordinates.

A finite point (x, y) is then represented by a triplet

(X : Y : Z) such that x = X/Z2 and y = Y/Z3. The

curve equation becomes

E/Fq : Y 2 = X3 + aXZ4 + bZ6 .

The point at infinity, OOO, is the only point with a Z-

coordinate equal to 0. It is represented by OOO = (1 :

1 : 0). Note that, for any nonzero λ ∈ Fq, the triplets

(λ2X : λ3Y : λZ) represent the same point.

It is well known that the set of points on an elliptic

curve form a group under the chord-and-tangent law.

The neutral element is the point at infinity OOO. We have

PPP +OOO = OOO + PPP = PPP for any point PPP on E. Let now

PPP = (X1 : Y1 : Z1) and QQQ = (X2 : Y2 : Z2) be two

points on E, with PPP ,QQQ 6= OOO. The inverse of PPP is −PPP =

(X1 : −Y1 : Z1). If PPP = −QQQ then PPP+QQQ = OOO. If PPP 6= ±QQQ
then their sum PPP +QQQ is given by (X3 : Y3 : Z3) where

X3 = R2 +G− 2V, Y3 = R(V −X3)− 2K1G,

Z3 = ((Z1 + Z2)2 − I1 − I2)H,

with R = 2(K1 − K2), G = FH, V = U1F , K1 =

Y1J2, K2 = Y2J1, F = (2H)2, H = U1 − U2, U1 =

X1I2, U2 = X2I1, J1 = I1Z1, J2 = I2Z2, I1 = Z1
2 and

I2 = Z2
2 [10].1 We see that that the addition of two

(different) points requires 11M + 5S.

The double of PPP = (X1 : Y1 : Z1) (i.e., when PPP = QQQ)

is given by (X(2PPP ) : Y(2PPP ) : Z(2PPP )) where

X(2PPP ) = M2 − 2S, Y(2PPP ) = M(S −X(2PPP ))− 8L,

Z(2PPP ) = (Y1 + Z1)2 − E −N,
1 Actually, with common-subexpression elimination, the

formulæ reported by Cohen et al. in [10] requires 12M + 4S.
The above formulæ in 11M + 5S are essentially the same: A
multiplication is traded against a squaring in the expression
of Z3 by computing Z1 ·Z2 as (Z1 +Z2)2−Z1

2−Z2
2. See [3,

24].
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with M = 3B + aN2, S = 2((X1 +E)2 −B − L), L =

E2, B = X1
2, E = Y1

2 and N = Z1
2 [3]. Hence, the

double of a point can be obtained with 1M + 8S + 1c,
where c denotes the cost of a multiplication by curve

parameter a.

An interesting case is when curve parameter a is

a = −3 [9], in which case point doubling costs 3M+ 5S.

In the general case, point doubling can be sped up by

representing points (Xi : Yi : Zi) with an additional co-

ordinate, namely Ti = aZi
4. This extended representa-

tion is referred to as modified Jacobian coordinates [10].

The cost of point doubling drops to 3M+ 5S at the ex-

pense of a slower point addition.

Detailed formulæ are offered in [3]; see also [18] for

memory usage.

2.2 Co-Z point addition

In [28], Meloni considers the case of adding two (differ-

ent) points having the same Z-coordinate. When points

PPP and QQQ share the same Z-coordinate, say PPP = (X1 :

Y1 : Z) and QQQ = (X2 : Y2 : Z), then their sum PPP +QQQ =

(X3 : Y3 : Z3) can be evaluated faster as

X3 = D −W1 −W2, Y3 = (Y1 − Y2)(W1 −X3)−A1,

Z3 = Z(X1 −X2),

with A1 = Y1(W1 − W2), W1 = X1C, W2 = X2C,

C = (X1 −X2)2 and D = (Y1 − Y2)2. This operation is

referred to as ZADD operation. The key observation in

Meloni’s addition is that the computation ofRRR = PPP+QQQ

yields for free an equivalent representation for input

point PPP with its Z-coordinate equal to that of output
point RRR, namely

(X1(X1 −X2)2 : Y1(X1 −X2)3 : Z3) =

(W1 : A1 : Z3) ∼ PPP .

The corresponding operation is denoted ZADDU

(i.e., ZADD with update) and is presented in Alg. 1.

It is readily seen that it requires 5M + 2S. Moreover, as

detailed in Alg. 19 (Appendix C), only 6 field registers

are required.

3 Binary Scalar Multiplication Algorithms

This section discusses known scalar multiplication al-

gorithms. Given a point PPP in E(Fq) and a scalar k ∈ N,

the scalar multiplication is the operation consisting in

calculating QQQ = kPPP — that is, PPP + · · ·+PPP (k times).

We focus on binary methods, taking on input the

binary representation of scalar k, k = (kn−1, . . . , k0)2

Algorithm 1 Co-Z addition with update (ZADDU)

Require: PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z)
Ensure: (RRR,PPP )← ZADDU(PPP ,QQQ) whereRRR← PPP+QQQ = (X3 :

Y3 : Z3) and PPP ← (λ2X1 : λ3Y1 : Z3) with Z3 = λZ for
some λ 6= 0

1: function ZADDU(PPP ,QQQ)
2: C ← (X1 −X2)2

3: W1 ← X1C; W2 ← X2C
4: D ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
5: X3 ← D −W1 −W2

6: Y3 ← (Y1 − Y2)(W1 −X3)−A1

7: Z3 ← Z(X1 −X2)
8: X1 ←W1; Y1 ← A1; Z1 ← Z3

. RRR = (X3 : Y3 : Z3), PPP = (X1 : Y1 : Z1)
9: end function

with ki ∈ {0, 1}, 0 6 i 6 n − 1. The correspond-

ing algorithms present the advantage of demanding low

memory requirements and are therefore well suited for

memory-constrained devices like smart cards.

3.1 Left-to-right methods

A classical method for evaluating QQQ = kPPP exploits

the obvious relation that kPPP = 2(bk/2cPPP ) if k is even

and kPPP = 2(bk/2cPPP ) + PPP if k is odd. Iterating the

process then yields a scalar multiplication algorithm,

left-to-right scanning scalar k. The resulting algorithm,

also known as double-and-add algorithm, is depicted in

Alg. 2. It requires two (point) registers, R0R0R0 and R1R1R1.

Register R0R0R0 acts as an accumulator and register R1R1R1 is

used to store the value of input point PPP .

Algorithm 2 Left-to-right binary method

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = n− 1 down to 0 do
3: R0R0R0 ← 2R0R0R0

4: if (ki = 1) then R0R0R0 ← R0R0R0 +R1R1R1

5: end for
6: return R0R0R0

Although efficient (in both memory and computa-

tion), the left-to-right binary method may be subject

to SPA-type attacks [23]. From a power trace, an ad-

versary able to distinguish between point doublings and

point additions can recover the value of scalar k. A sim-

ple countermeasure is to insert a dummy point addition

when scalar bit ki is 0. Using an additional (point)

register, say R−1R−1R−1, Line 4 in Alg. 2 can be replaced

with R−kiR−kiR−ki ← R−kiR−kiR−ki + R1R1R1. The so-obtained algorithm,

called double-and-add-always algorithm [11], now ap-

pears as a regular succession of a point doubling fol-
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lowed by a point addition. Unfortunately, it now be-

comes subject to safe-error attacks [34,35]. By timely

inducing a fault at iteration i during the point addi-

tion R−kiR−kiR−ki ← R−kiR−kiR−ki + R1R1R1, an adversary can determine

whether the operation is dummy or not by checking

the correctness of the output, and so deduce the value

of scalar bit ki. If the output is correct then ki = 0

(dummy point addition); if not, ki = 1 (effective point

addition).

Algorithm 3 Montgomery ladder

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = n− 1 down to 0 do
3: b← ki; R1−bR1−bR1−b ← R1−bR1−bR1−b +RbRbRb
4: RbRbRb ← 2RbRbRb
5: end for
6: return R0R0R0

A scalar multiplication algorithm featuring a regu-

lar structure without dummy operation is the so-called

Montgomery ladder [30] (see also [21]). It is detailed

in Alg. 3. Each iteration is comprised of a point addi-

tion followed by a point doubling. Further, compared to

the double-and-add-always algorithm, it only requires

two (point) registers and all involved operations are

effective. Montgomery ladder provides thus a natural

protection against SPA-type attacks and safe-error at-

tacks. A useful property of Montgomery ladder is that

its main loop keeps invariant the difference between R1R1R1

and R0R0R0. Indeed, if we let RbRbRb
(new) = RbRbRb + R1−bR1−bR1−b and

R1−bR1−bR1−b
(new) = 2R1−bR1−bR1−b denote the registers after the up-

dating step, we observe that RbRbRb
(new) − R1−bR1−bR1−b

(new) =

(RbRbRb +R1−bR1−bR1−b)− 2R1−bR1−bR1−b = RbRbRb −R1−bR1−bR1−b. This allows one to

compute scalar multiplications on elliptic curves using

the x-coordinate only [30] (see also [7,12,19,27]).

3.2 Right-to-left methods

There exists a right-to-left variant of Algorithm 2. This

is another classical method for evaluating QQQ = kPPP . It

stems from the observation that, letting k =
∑n−1

i=0 ki 2i

the binary expansion of k, we have kPPP =
∑

ki=1 2iPPP . A

first (point) register R0R0R0 serves as an accumulator and

a second (point) register R1R1R1 is used to contain the suc-

cessive values of 2iPPP , 0 6 i 6 n−1. When ki = 1, R1R1R1 is

added to R0R0R0. Register R1R1R1 is then updated as R1R1R1 ← 2R1R1R1

so that at iteration i it contains 2iPPP . The detailed al-

gorithm is given hereafter.

It suffers from the same deficiency as the one of

the left-to-right variant (Alg. 2); namely, it is not pro-

tected against SPA-type attacks. Again, the insertion

Algorithm 4 Right-to-left binary method

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = 0 to n− 1 do
3: if (ki = 1) then R0R0R0 ← R0R0R0 +R1R1R1

4: R1R1R1 ← 2R1R1R1

5: end for
6: return R0R0R0

of a dummy point addition when ki = 0 can preclude

these attacks. Using an additional (point) register, say

R−1R−1R−1, Line 3 in Alg. 4 can be replaced with Rki−1Rki−1Rki−1 ←
Rki−1Rki−1Rki−1 +R1R1R1. But the resulting implementation is then

prone to safe-error attacks. The right way to implement

it is to effectively make use of both R0R0R0 andR−1R−1R−1 [20]. It is

easily seen that in Alg. 4 when using the dummy point

addition (i.e., when Line 3 is replaced with Rki−1Rki−1Rki−1 ←
Rki−1Rki−1Rki−1 + R1R1R1), register R−1R−1R−1 contains the “complemen-

tary” value of R0R0R0. Indeed, before entering iteration i,

we have R0R0R0 =
∑

kj=1 2jPPP and R−1R−1R−1 =
∑

kj=0 2jPPP , 0 6

j 6 i−1. As a result, we have R0R0R0 +R−1R−1R−1 =
∑i−1

j=0 2jPPP =

(2i − 1)PPP . Hence, initializing R−1R−1R−1 to PPP , the succes-

sive values of 2iPPP can be equivalently obtained from

R0R0R0+R−1R−1R−1. Summing up, the right-to-left binary method

becomes

1: R0R0R0 ← OOO; R−1R−1R−1 ← PPP ; R1R1R1 ← PPP

2: for i = 0 to n− 1 do

3: b← ki; Rb−1Rb−1Rb−1 ← Rb−1Rb−1Rb−1 +R1R1R1

4: R1R1R1 ← R0R0R0 +R−1R−1R−1
5: end for

6: return R0R0R0

Performing a point addition when ki = 0 in the previ-

ous algorithm requires one more (point) register. When

memory is scarce, an alternative is to rely on Joye’s

double-add algorithm [20]. As in Montgomery ladder, it

always repeats a same pattern of effective operations

and requires only two (point) registers. The algorithm

is given in Alg. 5. It corresponds to the above algorithm

where R−1R−1R−1 is renamed as R1R1R1. Observe that the for-loop

in the above algorithm can be rewritten into a single

step as Rb−1Rb−1Rb−1 ← Rb−1Rb−1Rb−1 + R1R1R1 = Rb−1Rb−1Rb−1 + (R0R0R0 + R−1R−1R−1) =

2Rb−1Rb−1Rb−1 +R−bR−bR−b.

3.3 Signed-digit methods

Noting that subtracting boils down to adding the ad-

ditive inverse, the binary methods (Algs. 2 and 4) eas-

ily extend to signed-digit representations, that is, when

scalar k is represented with digits in the set {−1, 0, 1}.
The resulting methods are well adapted to the ellip-

tic curve setting since the computation of an inverse is
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Algorithm 5 Joye’s double-add

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = 0 to n− 1 do
3: b← ki
4: R1−bR1−bR1−b ← 2R1−bR1−bR1−b +RbRbRb
5: end for
6: return R0R0R0

a cheap operation on elliptic curves. As a reminder, if

PPP = (X1 : Y1 : Z1) then −PPP = (X1 : −Y1 : Z1). Signed-

digit representations are not unique. Among them, we

note the non-adjacent form (NAF), which is often used

as it has an average density of non-zero digits of only

1/3 [31]. For our purposes, in order to prevent SPA-type

attacks, we rather consider what we call the zeroless

signed-digit expansion (ZSD). Given an odd integer k,

we express it with digits in {−1, 1} (i.e., without the

zero digit).

The ZSD expansion can be obtained “on-the-fly”

from the binary expansion. Let k =
∑n−1

i=0 ki 2i where

ki ∈ {0, 1} and k0 = 1 (i.e., k is assumed odd). We ob-

serve that for every w > 1, we have 1 = 2w −
∑w−1

j=0 2j .

It follows that any group of w bits 00 . . . 01 in the bi-

nary expansion of k can be equivalently replaced with

the group of w signed digits 11̄1̄ . . . 1̄ (where 1̄ = −1).

The ZSD expansion of an odd integer k, k =
∑n−1

i=0 κi 2i

with κi ∈ {−1, 1}, is therefore given by{
κn−1 = 1 ,

κi = (−1)1+ki+1 for n− 2 > i > 0 .

We so obtain the two following algorithms for eval-

uating the scalar multiplication QQQ = kPPP . Algorithm 6

processes scalar k from the left to the right while Algo-

rithm 7 processes it from the right to the left.

Algorithm 6 Left-to-right signed-digit method

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k1, k0)2 ∈ N with
k0 = 1

Output: QQQ = kPPP

1: R0R0R0 ← PPP ; R1R1R1 ← PPP
2: for i = n− 1 down to 1 do
3: κ← (−1)1+ki

4: R0R0R0 ← 2R0R0R0 + (κ)R1R1R1

5: end for
6: return R0R0R0

4 Basic Algorithms with Co-Z Formulæ

In [28], Meloni exploited the ZADD operation to pro-

pose scalar multiplications based on Euclidean addition

Algorithm 7 Right-to-left signed-digit method

Input: PPP ∈ E(Fq) and k = (kn−1, . . . , k1, k0)2 ∈ N with
k0 = 1

Output: QQQ = kPPP

1: R0R0R0 ← OOO; R1R1R1 ← PPP
2: for i = 1 to n− 1 do
3: κ← (−1)1+ki ; R0R0R0 ← R0R0R0 + (κ)R1R1R1

4: R1R1R1 ← 2R1R1R1

5: end for
6: R0R0R0 ← R0R0R0 +R1R1R1

7: return R0R0R0

chains and Zeckendorf’s representation. In this section,

we aim at making use of ZADD-like operations when

designing scalar multiplication algorithms based on the

classical binary representation. The crucial factor for

implementing such algorithms is to generate two points

with the same Z-coordinate at every bit execution of

scalar k.

To this end, we introduce a new operation referred

to as conjugate co-Z addition and denoted ZADDC (for

ZADD conjugate), using the efficient caching technique

described in [14,25]. This operation evaluates (X3 : Y3 :

Z3) = PPP +QQQ = RRR with PPP = (X1 : Y1 : Z) and QQQ =

(X2 : Y2 : Z), together with the value of PPP −QQQ = SSS

where SSS and RRR share the same Z-coordinate equal to

Z3. We have −QQQ = (X2 : −Y2 : Z). Hence, letting

(X3 : Y3 : Z3) = PPP −QQQ, it is easily verified that X3 =

(Y1+Y2)2−W1−W2 and Y3 = (Y1+Y2)(W1−X3)−A1,

where W1, W2 and A1 are computed during the course

of PPP +QQQ (cf. Alg. 1). The additional cost for getting

PPP−QQQ from PPP+QQQ is thus of only 1M+1S. The resulting

algorithm is presented in Alg. 8. The total cost for the

ZADDC operation is of 6M + 3S and requires 7 field

registers; see Alg. 20 (Appendix C).

Algorithm 8 Conjugate co-Z addition (ZADDC)

Require: PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z)
Ensure: (RRR,SSS)← ZADDC(PPP ,QQQ) where RRR← PPP +QQQ = (X3 :

Y3 : Z3) and SSS ← PPP −QQQ = (X3 : Y3 : Z3)

1: function ZADDC(PPP ,QQQ)
2: C ← (X1 −X2)2

3: W1 ← X1C; W2 ← X2C
4: D ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
5: X3 ← D −W1 −W2

6: Y3 ← (Y1 − Y2)(W1 −X3)−A1

7: Z3 ← Z(X1 −X2)
8: D ← (Y1 + Y2)2

9: X3 ← D −W1 −W2

10: Y3 ← (Y1 + Y2)(W1 −X3)−A1

. RRR = (X3 : Y3 : Z3), SSS = (X3 : Y3 : Z3)
11: end function

In the following, we describe several scalar multipli-

cation algorithms based on ZADDU and ZADDC op-
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erations. We further note Jac2aff the algorithm that

converts the Jacobian coordinates of a point into its

affine coordinates, the cost of which is 1I + 3M + 1S.

4.1 Left-to-right algorithms

The main loop of Montgomery ladder (Alg. 3) repeat-

edly evaluates the same two operations, namely

R1−bR1−bR1−b ← R1−bR1−bR1−b +RbRbRb; RbRbRb ← 2RbRbRb .

We explain hereafter how to efficiently carry out this

computation using co-Z arithmetic for elliptic curves.

First note that 2RbRbRb can equivalently be rewritten as

(RbRbRb +R1−bR1−bR1−b) + (RbRbRb −R1−bR1−bR1−b). So if TTT represents a tem-

porary (point) register, the main loop of Montgomery

ladder can be replaced with

TTT ← RbRbRb −R1−bR1−bR1−b
R1−bR1−bR1−b ← RbRbRb +R1−bR1−bR1−b; RbRbRb ← R1−bR1−bR1−b + TTT .

Suppose now that RbRbRb and R1−bR1−bR1−b share the same Z-

coordinate. Using Algorithm 8, we can compute (R1−bR1−bR1−b,

TTT ) ← ZADDC(RbRbRb,R1−bR1−bR1−b). This requires 6M + 3S. At

this stage, observe that R1−bR1−bR1−b and TTT have the same

Z-coordinate. Hence, we can directly apply Algorithm 1

to get (RbRbRb,R1−bR1−bR1−b) ← ZADDU(R1−bR1−bR1−b,TTT ). This requires

5M + 2S. Again, observe that RbRbRb and R1−bR1−bR1−b share the

same Z-coordinate at the end of the computation. The

process can consequently be iterated. The total cost per

bit amounts to 11M+5S but can be reduced to 9M + 7S
(see § 5.1) by trading two (field) multiplications against

two (field) squarings.

In the original Montgomery ladder, registersR0R0R0 and

R1R1R1 are respectively initialized with point at infinity OOO

and input point PPP . Since OOO is the only point with its

Z-coordinate equal to 0, assuming that kn−1 = 1, we

start the loop counter at i = n− 2 and initialize R0R0R0 to

PPP andR1R1R1 to 2PPP . It remains to ensure that the represen-

tations of PPP and 2PPP have the same Z-coordinate. This

is achieved thanks to the DBLU operation (see § 4.4).

Putting all together, we obtain the implementation

depicted in Alg. 9 for the Montgomery ladder. Remark

that register RbRbRb plays the role of temporary register TTT .

4.2 Right-to-left algorithms

As noticed in [20], Joye’s double-add algorithm (Alg. 5)

is to some extent the dual of the Montgomery ladder.

This appears more clearly by performing the double-

add operation of the main loop, R1−bR1−bR1−b ← 2R1−bR1−bR1−b +RbRbRb,

in two steps as

TTT ← R1−bR1−bR1−b +RbRbRb; R1−bR1−bR1−b ← TTT +R1−bR1−bR1−b

Algorithm 9 Montgomery ladder with co-Z addition

formulæ
Input: PPP = (xP , yP ) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N

with kn−1 = 1
Output: QQQ = kPPP

1: (R1R1R1,R0R0R0)← DBLU(PPP )
2: for i = n− 2 down to 0 do
3: b← ki
4: (R1−bR1−bR1−b,RbRbRb)← ZADDC(RbRbRb,R1−bR1−bR1−b)
5: (RbRbRb,R1−bR1−bR1−b)← ZADDU(R1−bR1−bR1−b,RbRbRb)
6: end for
7: return Jac2aff(R0R0R0)

using some temporary register TTT . If, at the beginning

of the computation, RbRbRb and R1−bR1−bR1−b have the same Z-

coordinate, two consecutive applications of the ZADDU

algorithm allows one to evaluate the above expression

with 2× (5M+2S). Moreover, one has to take care that

RbRbRb and R1−bR1−bR1−b have the same Z-coordinate at the end of

the computation in order to make the process iterative.

This can be done with an additional 3M.

But there is a more efficient way to get the equiva-

lent representation forRbRbRb. The value ofRbRbRb is unchanged

during the evaluation of

(TTT ,R1−bR1−bR1−b)← ZADDU(R1−bR1−bR1−b,RbRbRb)

(R1−bR1−bR1−b,TTT )← ZADDU(TTT ,R1−bR1−bR1−b)

and thus RbRbRb = TTT − R1−bR1−bR1−b — where R1−bR1−bR1−b is the initial

input value. The latter ZADDU operation can therefore

be replaced with a ZADDC operation; i.e.,

(R1−bR1−bR1−b,RbRbRb)← ZADDC(TTT ,R1−bR1−bR1−b)

to get the expected result. The advantage of doing so is

that RbRbRb and R1−bR1−bR1−b have the same Z-coordinate without

additional work. This yields a total cost per bit of 11M+

5S for the main loop.

It remains to ensure that registers R0R0R0 and R1R1R1 are

initialized with points sharing the same Z-coordinate.

For the Montgomery ladder, we assumed that kn−1 was

equal to 1. Here, we will assume that k0 is equal to 1 to

avoid to deal with the point at infinity. This condition

can be automatically satisfied using certain DPA-type

countermeasures (see § 6.1). Alternative strategies are

described in [20]. The value k0 = 1 leads to R0R0R0 ← PPP

andR1R1R1 ← PPP . The two registers have obviously the same

Z-coordinate but are not different. The trick is to start

the loop counter at i = 2 and to initialize R0R0R0 and R1R1R1

according the bit value of k1. If k1 = 0 we end up with

R0R0R0 ← PPP and R1R1R1 ← 3PPP , and conversely if k1 = 1 with

R0R0R0 ← 3PPP andR1R1R1 ← PPP . The TPLU operation (see § 4.4)

ensures that this is done so that the Z-coordinates are

the same.

The complete algorithm is depicted in Alg. 10. As

for our implementation of the Montgomery ladder (i.e.,
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Alg. 9), remark that temporary register TTT is played by

register RbRbRb.

Algorithm 10 Joye’s double-add algorithm with co-Z

addition formulæ
Input: PPP = (xP , yP ) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N

with k0 = 1
Output: QQQ = kPPP

1: b← k1; (R1−bR1−bR1−b,RbRbRb)← TPLU(PPP )
2: for i = 2 to n− 1 do
3: b← ki
4: (RbRbRb,R1−bR1−bR1−b)← ZADDU(R1−bR1−bR1−b,RbRbRb)
5: (R1−bR1−bR1−b,RbRbRb)← ZADDC(RbRbRb,R1−bR1−bR1−b)
6: end for
7: return Jac2aff(R0R0R0)

It is striking to see the resemblance (or duality) be-

tween Algorithm 9 and Algorithm 10: they involve the

same co-Z operations (but in reverse order) and scan

scalar k in reverse directions.

4.3 Signed-digit algorithms

A similar observation can be drawn for the signed-digit

algorithms and their unsigned counterparts. If we com-

pare Algorithm 6 with Algorithm 5, we see that they

scan scalar k in reverse directions and respectively re-

peat the operations R0R0R0 ← 2R0R0R0 +(κ)R1R1R1 (where κ = ±1)

and R1−bR1−bR1−b ← 2R1−bR1−bR1−b + RbRbRb. Except for the sign, this is

essentially the same operation. Likewise, Algorithm 7

and Algorithm 3 scan scalar k in reverse directions and

respectively repeat the operations R0R0R0 ← R0R0R0 + (κ)R1R1R1;

R1R1R1 ← 2R1R1R1 and R1−bR1−bR1−b ← R1−bR1−bR1−b +RbRbRb; RbRbRb ← 2R1−bR1−bR1−b. As

a consequence, by taking into account the sign, we ob-

tain analogously to the previous section two more co-Z

scalar multiplication algorithms. They are depicted in

Algs. 11 and 12.

Algorithm 11 Left-to-right signed-digit algorithm

with co-Z addition formulæ
Input: PPP = (xP , yP ) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈

N>3 with k0 = kn−1 = 1
Output: QQQ = kPPP

1: (R0R0R0,R1R1R1)← TPLU(PPP )
2: for i = n− 2 to 1 do
3: κ← (−1)1+ki

4: (R1R1R1,R0R0R0)← ZADDU(R0R0R0, (κ)R1R1R1)
5: (R0R0R0,R1R1R1)← ZADDC(R1R1R1,R0R0R0); R1R1R1 ← (κ)R1R1R1

6: end for
7: return Jac2aff(R0R0R0)

Algorithm 12 Right-to-left signed-digit algorithm

with co-Z addition formulæ
Input: PPP = (xP , yP ) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N

with k0 = 1
Output: QQQ = kPPP

1: κ← (−1)1+k1 ; (R1R1R1,R0R0R0)← DBLU(PPP ); R0R0R0 ← (κ)R0R0R0

2: for i = 2 to n− 1 do
3: κ← (−1)1+ki

4: (R0R0R0,R1R1R1)← ZADDC((κ)R1R1R1,R0R0R0)
5: (R1R1R1,R0R0R0)← ZADDU(R0R0R0,R1R1R1); R1R1R1 ← (κ)R1R1R1

6: end for
7: R0R0R0 ← ZADD(R0R0R0,R1R1R1)
8: return Jac2aff(R0R0R0)

4.4 Point doubling and tripling

Algorithms 9–12 require a point doubling or a point

tripling operation for their initialization. We describe

how this can be implemented.

Initial Point Doubling We have seen in Section 2 that

the double of point PPP = (X1 : Y1 : Z1) can be obtained

with 1M + 8S + 1c. By setting Z1 = 1, the cost drops

to 1M + 5S:

X(2PPP ) = M2 − 2S, Y(2PPP ) = M(S −X(2PPP ))− 8L,

Z(2PPP ) = 2Y1

with M = 3B + a, S = 2((X1 +E)2 −B −L), L = E2,

B = X1
2, and E = Y1

2. Since Z(2PPP ) = 2Y1, it follows

that

(S : 8L : Z(2PPP )) ∼ PPP with S = 4X1Y1
2 and L = Y1

4

is an equivalent representation for point PPP . Updating

pointPPP such that its Z-coordinate is equal to that of 2PPP

comes thus for free [28]. We let (2PPP , P̃̃P̃P ) ← DBLU(PPP )

denote the corresponding operation, where P̃̃P̃P ∼ PPP and

Z(P̃̃P̃P ) = Z(2PPP ). The cost of DBLU operation (doubling

with update) is 1M + 5S.

Initial Point Tripling The triple of PPP = (X1 : Y1 : 1)

can be evaluated as 3PPP = PPP + 2PPP using co-Z arith-

metic [26]. From (2PPP , P̃̃P̃P ) ← DBLU(PPP ), this can be

obtained as ZADDU(P̃̃P̃P , 2PPP ) with 5M + 2S and no ad-

ditional cost to update PPP for its Z-coordinate becom-

ing equal to that of 3PPP . The corresponding operation,

tripling with update, is denoted TPLU(PPP ) and its total

cost is of 6M + 7S.

Concerning the memory requirements, the two algo-

rithms, namely DBLU and TPLU, can be implemented

using at most 6 field registers (see Algs. 21 and 22, Ap-

pendix C).
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5 Enhanced Algorithms

5.1 Combined double-add operation

A point doubling-addition is the evaluation ofRRR = 2PPP+

QQQ. This can be done in two steps as TTT ← PPP+QQQ followed

byRRR← PPP +TTT . If PPP andQQQ have the same Z-coordinate,

this requires 10M + 4S by two consecutive applications

of the ZADDU function (Alg. 1).

Things are slightly more complex if we wish that

RRR and QQQ share the same Z-coordinate at the end of

the computation. But if we compare the original Joye’s

double-add algorithm (Alg. 5) and the corresponding

algorithm we got using co-Z arithmetic (Alg. 10), this

is actually what is achieved. We can compute (TTT ,PPP )←
ZADDU(PPP ,QQQ) followed by (RRR,QQQ) ← ZADDC(TTT ,PPP ).

We let (RRR,QQQ) ← ZDAU(PPP ,QQQ) denote the correspond-

ing operation (ZDAU stands for co-Z double-add with

update).

Algorithmically, we have:

1: C ′ ← (X1 −X2)2

2: W ′1 ← X1C
′; W ′2 ← X2C

′

3: D′ ← (Y1 − Y2)2; A′1 ← Y1(W ′1 −W ′2)

4: X ′3 ← D′ −W ′1 −W ′2; Y ′3 ← (Y1 − Y2)(W ′1 −
X ′3)−A′1; Z ′3 ← Z(X1 −X2)

5: X1 ←W ′1; Y1 ← A′1; Z1 ← Z ′3
6: C ← (X ′3 −X1)2

7: W1 ← X ′3C; W2 ← X1C

8: D ← (Y ′3 − Y1)2; A1 ← Y ′3(W1 −W2)

9: X3 ← D −W1 −W2; Y3 ← (Y ′3 − Y1)(W1 −
X3)−A1; Z3 ← Z ′3(X ′3 −X1)

10: D ← (Y ′3 + Y1)2

11: X2 ← D −W1 −W2; Y2 ← (Y ′3 + Y1)(W1 −
X2)−A1; Z2 ← Z3

A close inspection of the above algorithm shows that

two (field) multiplications can be traded against two

(field) squarings. Indeed, with the same notations, we

have:

2Y ′3 = (Y1 − Y2 +W ′1 −X ′3)2 −D′ − C − 2A′1 .

Also, we can skip the intermediate computation of Z ′3 =

Z(X1−X2) and obtain directly 2Z3 = 2Z(X1−X2)(X ′3−
X1) as

2Z3 = Z
(
(X1 −X2 +X ′3 −X1)2 − C ′ − C

)
.

These modifications (in Lines 4 and 9) require some

rescaling. For further optimization, some redundant or

unused variables are suppressed. The resulting algo-

rithm is detailed in Alg. 13. It clearly appears that the

ZDAU operation only requires 9M + 7S. Moreover, it

can be implemented using 8 field registers; see Alg. 23

(Appendix C).

Algorithm 13 Co-Z doubling-addition with update

(ZDAU)

Require: PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z)
Ensure: (RRR,QQQ)← ZDAU(PPP ,QQQ) where RRR← 2PPP +QQQ = (X3 :

Y3 : Z3) and QQQ ← (λ2X2 : λ3Y2 : Z3) with Z3 = λZ for
some λ 6= 0

1: function ZDAU(PPP ,QQQ)
2: C′ ← (X1 −X2)2

3: W ′1 ← X1C′; W ′2 ← X2C′

4: D′ ← (Y1 − Y2)2; A′1 ← Y1(W ′1 −W ′2)

5: X̂′3 ← D′ −W ′1 −W ′2
6: C ← (X̂′3 −W ′1)2

7: Y ′3 ← [(Y1 − Y2) + (W ′1 − X̂′3)]2 −D′ − C − 2A′1
8: W1 ← 4X̂′3C; W2 ← 4W ′1C
9: D ← (Y ′3 − 2A′1)2; A1 ← Y ′3 (W1 −W2)

10: X3 ← D−W1−W2; Y3 ← (Y ′3−2A′1)(W1−X3)−A1

11: Z3 ← Z
(
(X1 −X2 + X̂′3 −W ′1)2 − C′ − C

)
12: D ← (Y ′3 + 2A′1)2

13: X2 ← D−W1−W2; Y2 ← (Y ′3 +2A′1)(W1−X2)−A1

14: Z2 ← Z3

. RRR = (X3 : Y3;Z3), QQQ = (X2 : Y2 : Z2)
15: end function

The combined ZDAU operation immediately gives

rise to an alternative implementation of Joye’s double-

add algorithm (Alg. 5). Compared to our first imple-

mentation (Alg. 10), the cost per bit now amounts to

9M + 7S (instead of 11M+5S). The resulting algorithm

is presented in Alg. 14.

Algorithm 14 Joye’s double-add algorithm with co-Z

addition formulæ (II)

Input: PPP = (xP , yP ) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N
with k0 = 1

Output: QQQ = kPPP

1: b← k1; (R1−bR1−bR1−b,RbRbRb)← TPLU(PPP )
2: for i = 2 to n− 1 do
3: b← ki
4: (R1−bR1−bR1−b,RbRbRb)← ZDAU(R1−bR1−bR1−b,RbRbRb)
5: end for
6: return Jac2aff(R0R0R0)

The ZDAU operation also applies to the left-to-right

signed-digit algorithm (Alg. 6) but a faster variant is

presented hereafter (see § 5.2.2).

Similar savings can be obtained for our implemen-

tation of the Montgomery ladder (Alg. 9) and of the

right-to-left signed-digit algorithm (Alg. 12). However,

as the ZADDU and ZADDC operations appear in re-

verse order, it is more difficult to handle. It is easy to

trade 1M against 1S. In order to trade 2M against 2S,

a possible way is to keep track of the squared difference

of the X-coordinates; see Appendix B.
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5.2 (X,Y )-only operations

In [33], Venelli and Dassance astutely notice that the

ZADDU and ZADDC operations do not involve the

Z-coordinate of the input points for updating the X-

and Y -coordinates. From this observation, they sug-

gest to use the Montgomery ladder for the computation

of QQQ = kPPP with the X- and Y -coordinates only. The

Z-coordinate of output point QQQ is recovered at the end

of the computation. It was subsequently observed in [32]

that the same trick applies to the zeroless signed-digit

left-to-right algorithm.

In the sequel, the prime symbol (′) is used to de-

note operations that do not involve the Z-coordinate.

For instance, ZADDU′ denotes the operation obtained

by discarding the Z-coordinates in Alg. 1. This oper-

ation costs 4M + 2S and requires 5 field registers. On

the other hand, ZADDC′ operation costs 5M + 3S and

requires 6 field registers.2

5.2.1 Montgomery ladder

As aforementioned, the co-Z Montgomery ladder (see

Alg. 9) can be rewritten so as to only process X- and

Y -coordinates. Namely, registers R0R0R0 and R1R1R1 contains

only the X- and Y -coordinates of points and opera-

tions ZADDC and ZADDU in Alg. 9 can be replaced

with operations ZADDC′ and ZADDU′, respectively.

But we can do better by defining operation ZACAU′

as the combination of operation ZADDC′ followed by

operation ZADDU′. Using the same trick as in § 5.1,

we can trade 1M against 1S. This is achieved by adding

the squared difference of the X-coordinates as an in-

put to ZACAU′. A detailed implementation provided

in Alg. 18 (Appendix B) yields a cost of 8M + 6S and

requires 6 field registers; see Alg. 26 (Appendix C). As

a result, the cost per bit of Algorithm 15 amounts to

only 8M + 6S.

Then at the end of the loop, we need to recover the

final Z-coordinate in order to get the affine coordinates

of output point QQQ = kPPP . To this purpose, it can be

checked that the last iteration (i.e., i = 0) of the Mont-

gomery ladder, as depicted in Alg. 9, evaluates

(Rk0
Rk0Rk0

,R1−k0
R1−k0R1−k0

)← ZADDU(ZADDC(Rk0
Rk0Rk0

,R1−k0
R1−k0R1−k0

)) .

To avoid confusion, we use superscripts (in) and (out)

to denote the input and output values — we also use su-

perscript (tmp) to denote the intermediate values after

the ZADDC operation. With this notation, the previous

2 It clearly appears from Algs. 19 and 20 (in Appendix C)
that discarding the Z-coordinate enables to save 1M as well
as 1 field register.

line is equivalently rewritten as (Rk0
Rk0Rk0

(out),R1−k0
R1−k0R1−k0

(out)) =

ZADDU(ZADDC(Rk0
Rk0Rk0

(in),R1−k0
R1−k0R1−k0

(in))), or in two steps

as

(Rk0
Rk0Rk0

(out),R1−k0
R1−k0R1−k0

(out)) = ZADDU(R1−k0
R1−k0R1−k0

(tmp),Rk0
Rk0Rk0

(tmp))

with

(R1−k0
R1−k0R1−k0

(tmp),Rk0
Rk0Rk0

(tmp)) := ZADDC(Rk0
Rk0Rk0

(in),R1−k0
R1−k0R1−k0

(in)) .

Furthermore, as the Montgomery ladder keeps invariant

the value of R1R1R1−R0R0R0 = PPP , we have Rk0
Rk0Rk0

(tmp) = Rk0
Rk0Rk0

(in)−
R1−k0
R1−k0R1−k0

(in) = (−1)1−k0PPP and therefore

X(PPP ) Z(PPP ) Y(Rk0
Rk0Rk0

(tmp)) =

(−1)1−k0 X(Rk0
Rk0Rk0

(tmp)) Z(Rk0
Rk0Rk0

(tmp)) Y(PPP ) .

Hence, letting Z(QQQ) denote the Z-coordinate of QQQ =

R0R0R0
(out), it follows from the definition of ZADDU that

Z(QQQ) = Z(Rk0
Rk0Rk0

(out)) = Z(R1−k0
R1−k0R1−k0

(out))

= Z(Rk0
Rk0Rk0

(tmp))
(
X(R1−k0
R1−k0R1−k0

(tmp))−X(Rk0
Rk0Rk0

(tmp))
)

= Z(Rk0
Rk0Rk0

(tmp))(−1)1−k0 ∆
(tmp)
X

=
X(PPP ) Z(PPP ) Y(Rk0

Rk0Rk0
(tmp))

X(Rk0
Rk0Rk0

(tmp)) Y(PPP )
∆

(tmp)
X .

where ∆
(tmp)
X := X(R0R0R0

(tmp)) − X(R1R1R1
(tmp)). We there-

fore obtain an (X,Y )-only implementation of the Mont-

gomery ladder; see Alg. 15. Note that using this for-
mula, the affine coordinates of output point QQQ are re-

covered with a cost of 1I + 8M + 1S.

Algorithm 15 Montgomery ladder with (X,Y )-only

co-Z addition formulæ
Input: PPP = (xP , yP ) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈ N

with kn−1 = 1
Output: QQQ = kPPP

1: (R1R1R1,R0R0R0)← DBLU′(PPP )
2: C ← (X(R0R0R0)−X(R1R1R1))2

3: for i = n− 2 down to 1 do
4: b← ki
5: (RbRbRb,R1−bR1−bR1−b, C)← ZACAU′(RbRbRb,R1−bR1−bR1−b, C)
6: end for
7: b← k0; (R1−bR1−bR1−b,RbRbRb)← ZADDC′(RbRbRb,R1−bR1−bR1−b)
8: (xP , yP )← PPP
9: Z ← xP Y(RbRbRb)(X(R0R0R0)−X(R1R1R1)); λ← yP X(RbRbRb)

10: (RbRbRb,R1−bR1−bR1−b)← ZADDU′(R1−bR1−bR1−b,RbRbRb)

11: return
((
λ
Z

)2
X(R0R0R0),

(
λ
Z

)3
Y(R0R0R0)

)
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5.2.2 Signed-digit algorithm

(X,Y )-only co-Z operations can also be used with our

left-to-right signed-digit algorithm (Alg. 11). More pre-

cisely, we can perform a ZADDU′ followed by a ZADDC′

to obtain (X,Y )-only double-add operation with co-

Z update: ZDAU′. The total cost of this operation is

hence of 9M + 5S but can be reduced to 8M + 6S us-

ing a standard M/S trade-off. Moreover, ZDAU′ can be

implemented using only 6 field registers; see Alg. 24

(Appendix C).

A further optimization of Alg. 11 is possible. When

κ = (−1)1+ki is equal to −1 (i.e., when ki = 0), point in

R1R1R1 is inverted prior to ZADDU and ZADDC operations

and is then re-inverted thereafter. A better alternative

is to switch the sign ofR1R1R1 at the ith iteration if and only

if (−1)1+ki 6= (−1)1+ki+1 . Namely, we process R1R1R1 ←
(−1)bR1R1R1 where b = ki ⊕ ki+1.

At the end of the loop, R0R0R0 contains the X- and Y -

coordinates of kPPP and R1R1R1 contains those of (−1)1+k1PPP .

Consequently, we can recover the complete coordinates

of output point QQQ = kPPP since R0R0R0 and R1R1R1 share the

same Z-coordinate. After correcting the sign of R1R1R1 as

R1R1R1 ← (−1)1+k1R1R1R1, we get

PPP = (xP , yP ) ∼ (X(R1R1R1) : Y (R1R1R1) : Z)

where Z := Z(R1R1R1) = Z(R0R0R0) is the final common Z-

coordinate of R0R0R0 and R1R1R1. From xP = X(R1R1R1)/Z2 and

yP = Y(R1R1R1)/Z3, we immediately have

xP
yP

= Z · X(R1R1R1)

Y(R1R1R1)

and so the affine coordinates of QQQ = kPPP are recovered

as

kPPP =
(
λ2 X(R0R0R0), λ3 Y(R0R0R0)

)
with

λ = Z−1 =
yP X(R1R1R1)

xP Y(R1R1R1)
.

The cost for this final step is of 1I + 6M + 1S. The

complete algorithm is detailed in Alg. 16.

6 Discussion

6.1 Security considerations

When not properly implemented, scalar multiplication

algorithms may be vulnerable to implementation at-

tacks such as side-channel analysis (SCA). This kind

of attacks exploits the physical information leakage pro-

duced by a device during a cryptographic computation.

Algorithm 16 Left-to-right signed-digit algorithm

with (X,Y )-only co-Z addition formulæ

Input: PPP = (xP , yP ) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈
N>3 with k0 = kn−1 = 1

Output: QQQ = kPPP

1: (R0R0R0,R1R1R1)← TPLU′(PPP )
2: for i = n− 2 down to 1 do
3: b← ki ⊕ ki+1

4: R1R1R1 ← (−1)bR1R1R1

5: (R0R0R0,R1R1R1)← ZDAU′(R0R0R0,R1R1R1)
6: end for
7: R1R1R1 ← (−1)1+k1R1R1R1

8: (xP , yP )← PPP ; λ← yP X(R1R1R1)

xP Y(R1R1R1)

9: return
(
λ2 X(R0R0R0), λ3 Y(R0R0R0)

)

This includes the power consumption or the electro-

magnetic radiation [23,15,1]. Scalar multiplication im-

plementations are vulnerable to two main types of side-

channel attacks: simple power analysis (SPA) and dif-

ferential power analysis (DPA). The latter uses correla-

tions between the leakage and processed data and can

usually be efficiently defeated by the use of random-

ization techniques [2, Chapter 29]. On the other hand,

SPA-type attacks can recover the secret scalar from a

single leakage trace (even in the presence of data ran-

domization).

A classical protection against SPA-type attacks is

to render the scalar multiplication algorithm regular,

so that it repeats the same operation flow, regardless

of the processed scalar. Different techniques are pro-

posed in the litterature in order to obtain such regular

algorithms. A first option is to make addition and dou-

bling patterns indistinguishable. This can be achieved
by using unified formulæ for point addition and point

doubling [7] or by relying on side-channel atomicity

whose principle is to build point addition and point

doubling algorithms from the same atomic pattern of

field operations [8]. Another option is to render the

scalar multiplication algorithm itself regular, indepen-

dently of the field operation flows in each point opera-

tion. Namely, one designs a scalar multiplication with

a constant flow of point operations. This approach was

initiated by Coron in [11] with the double-and-add-

always algorithm (see § 3.1). Unfortunately, as it uses a

dummy operation, it becomes subject to another class

of attacks against implementations, the so-called safe-

error attacks [34,35], a special class of fault attacks [4,

6]. In contrast, the so-called highly regular algorithms,

such as the Montgomery ladder or Joye’s double-add,

are naturally protected against both SPA-type attacks

and safe-error attacks as every computed operation is

effective. We remark that X-only versions of the Mont-

gomery ladder ([7,12,19]) do not permit to check that
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the output point belongs to the original curve and so

may be subject to (classical) fault attacks, as was demon-

strated in [13].

The scalar multiplication algorithms proposed in

Section 4 are built from highly regular algorithms and

maintain the same regular pattern of instructions with-

out using dummy instructions. Algorithms 9 and 15 are

based on Montgomery ladder whereas Algorithms 10

and 14 are based on Joye’s double-add. Hence, our im-

plementations inherit the same security features. It is

also readily verified that our signed-digit algorithms

(Algorithms 11, 12 and 16) always evaluates the same

pattern of operations. Note that for the actual imple-

mentation of these algorithms to be regular, the condi-

tional point inversion must be implemented in a regu-

lar fashion (see Appendix A for such implementations).

Yet an additional advantage of all the proposed algo-

rithms is that they made easy to assess the correct-

ness of the computation by checking whether the out-

put point belongs to the curve, which thwarts the fault

attacks of [13].

6.2 Performance analysis

Table 1 summarizes the co-Z operation counts for the

different addition formulæ introduced throughout the

paper. The memory usage of most operations of Ta-

ble 1 is detailed in Appendix C. Note that for certain

(X,Y )-only co-Z algorithms, the memory count can be

easily deduced from their co-Z counterpart. However,

more complex (X,Y )-only operations like ZDAU′ and

ZACAU′ need dedicated implementations (cf. Algs. 24

and 26) for a better memory usage.

Table 2 compares several regular implementations

of scalar multiplication algorithms. The total cost is ex-

pressed for an n-bit scalar k. The total cost also includes

the conversion to get the output point in affine coordi-

nates. It turns out that the best performance is ob-

tained with the co-Z Joye’s double-add algorithm and

the co-Z signed-digit algorithm for right-to-left algo-

rithms and with the (X,Y )-only signed-digit algorithm

for left-to-right algorithms. Remarkably, this latter al-

gorithm as well as its unsigned counterpart outperforms

in both speed and memory theX-only Montgomery lad-

der for general elliptic curves. Moreover, as explained

in § 6.1, the presented co-Z implementations are pro-

tected against a variety of implementation attacks.

All in all, the two (X,Y )-only co-Z scalar multi-

plication algorithms can be considered as methods of

choice for efficient and secure implementation of ellip-

tic curve cryptography for general elliptic curves for

memory-constrained devices.
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Koç, C. Paar (eds.) Cryptographic Hardware and Embed-
ded Systems (CHES ’99), LNCS, vol. 1717, pp. 316–327.
Springer (1999)

28. Meloni, N.: New point addition formulæ for ECC appli-
cations. In: C. Carlet, B. Sunar (eds.) Arithmetic of Fi-
nite Fields (WAIFI 2007), LNCS, vol. 4547, pp. 189–201.
Springer (2007)

29. Miller, V.S.: Use of elliptic curves in cryptography.
In: H.C. Williams (ed.) Advances in Cryptology −
CRYPTO ’85, LNCS, vol. 218, pp. 417–426. Springer
(1985)

30. Montgomery, P.L.: Speeding up the Pollard and elliptic
curve methods of factorization. Mathematics of Compu-
tation 48(177), 243–264 (1987)

31. Morain, F., Olivos, J.: Speeding up the computations
on an elliptic curve using addition-subtraction chains.
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A Regular Conditional Point Inversion

In this section, we provide solutions to implement the opera-
tion PPP ← (−1)bPPP in a regular way for some PPP = (X : Y : Z)
and b ∈ {0, 1}. A first solution is to process the following
steps:

1: T0 ← Y
2: T1 ← −Y
3: Y ← Tb

This solution is very simple and efficient: it only costs one
field negation for computing −Y (other steps being processed
by pointer arithmetic of negligible cost). However, when b =
0, the negation of Y is a dummy operation which renders
the implementation subject to safe-error attacks. Indeed, by

injecting a fault in field register T1 and checking the correct-
ness, one could see whether T1 were used (which would imply
a faulty result) or not, and hence deduce the value of b. A
simple countermeasure to avoid such a weakness consists in
randomizing the buffer allocation, which leads to the follow-
ing solution:

1: r
$← {0, 1}

2: Tr ← Y
3: Tr⊕1 ← −Y
4: Y ← Tr⊕b

An alternative solution, with no dummy operations, runs
as follows:

1: T0 ← Y
2: T1 ← −Y
3: Y ← 2Tb + Tb⊕1

This solution nevertheless implies further field operations.

B ZACAU and ZACAU′ Operations

ZACAU is defined as the successive application of ZADDC
and ZADDU. Arithmetically, it takes a pair of co-Z points
(PPP ,QQQ) and computes the co-Z pair (2PPP ,PPP +QQQ). This oper-
ation serves as the building block for the co-Z Montgomery
ladder (Alg. 9) as well as of the co-Z right-to-left signed-
digit algorithm (Alg. 12). For completeness, we present the
latter algorithm hereafter. It immediately follows from Algo-
rithm 12 using the trick of § 5.2.2.

Algorithm 17 Right-to-left signed-digit algorithm

with co-Z addition formulæ (II)

Input: PPP = (xP , yP ) ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈
N>3 with k0 = kn−1 = 1

Output: QQQ = kPPP

1: κ← (−1)1+k1 ; R0R0R0 ← (κ)PPP (R1R1R1,R0R0R0)← DBLU(R0R0R0)
2: for i = 2 down to n− 1 do
3: b← ki ⊕ ki−1

4: R1R1R1 ← (−1)bR1R1R1

5: (R1R1R1,R0R0R0)← ZACAU(R1R1R1,R0R0R0)
6: end for
7: R0R0R0 ← ZADD(R0R0R0,R1R1R1)
8: return Jac2aff(R0R0R0)

In its basic form, ZACAU requires 10M + 6S using 7
field registers. The corresponding implementation is given in
Alg. 25. With one more field register, the cost can be reduced
to 9M + 7S using a M/S trade-off similar to the one used for
ZDAU (see § 5.1).

We address below in more detail the (X,Y )-only version
of ZACAU (i.e., ZACAU′), which is faster. For a point PPP =
(X1 : Y1 : Z) given in Jacobian coordinates, we let PPP ′ denote
the same point without the Z-coordinate; i.e., PPP ′ = (X1 :
Y1). The ZACAU′ operation takes on input the X- and Y -
coordinates of two points having the same Z-coordinate, PPP =
(X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z), and outputs the X- and
Y -coordinates of two points having the same Z-coordinate,
RRR = (X3 : Y3 : Z∗) and SSS = (X4 : Y4 : Z∗), such that

(RRR′,SSS′) = ((X3 : Y3), (X4 : Y4))
:= ZADDU′(ZADDC′(PPP ′,QQQ′))

with Z(RRR) = Z(SSS)
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where PPP ′ = (X1 : Y1) and Q′Q′Q′ = (X2 : Y2).
Moreover, in order to apply the S/M trade-off, we add a

variable C that keeps track of the value of (X1 −X2)2. This
variable is updated and returned as an output of function
ZACAU′. When used in the Montgomery ladder, note that
the value is independent of the next bit: if (X3 : Y3), (X4 : Y4)
denote the output points, since (X3 − X4)2 = (X4 − X3)2,
we can in all cases return C = (X3 −X4)2.

A detailed implementation of operation ZACAU′ is pre-
sented in Alg. 18. Note that some rescaling was applied.

Algorithm 18 (X,Y )-only co-Z conjugate-addition–

addition with update (ZACAU′)

Require: PPP ′ = (X1 : Y1) and QQQ′ = (X2 : Y2) for some PPP =
(X1 : Y1 : Z) andQQQ = (X2 : Y2 : Z), and C = (X1−X2)2

Ensure: (RRR′,SSS′, C) ← ZACAU′(PPP ′,QQQ′, C) where RRR′ ←
(X3 : Y3) and SSS′ ← (X4 : Y4) for some RRR = 2PPP =
(X3 : Y3 : Z3) and SSS = PPP +QQQ = (X4 : Y4 : Z4) such that
Z3 = Z4, and C ← (X3 −X4)2

1: function ZACAU′(PPP ′,QQQ′, C)
2: W1 ← X1C; W2 ← X2C
3: D ← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
4: X′1 ← D−W1−W2; Y ′1 ← (Y1−Y2)(W1−X′1)−A1

5: D ← (Y1 + Y2)2

6: X′2 ← D−W1−W2; Y ′2 ← (Y1 +Y2)(W1−X′2)−A1

7: C′ ← (X′1 −X′2)2

8: X4 ← X′1C
′; W ′2 ← X′2C

′

9: D′ ← (Y ′1 − Y ′2 )2; Y4 ← Y ′1 (X4 −W ′2)
10: X3 ← D′ −X4 −W ′2
11: C ← (X3 −X4)2;
12: Y3 ← (Y ′1 − Y ′2 +X4 −X3)2 −D′ − C − 2Y4

13: X3 ← 4X3; Y3 ← 4Y3; X4 ← 4X4

14: Y4 ← 8Y4; C ← 16C
. RRR′ = (X3 : Y3), SSS′ = (X4 : Y4), C

15: end function

C Memory Usage

We use the convention of [17]. The different field registers
are considered as temporary variables and are denoted by Ti,
1 6 i 6 8. Operations in place are permitted, which simply
means for that a temporary variable can be composed (i.e.,
multiplied, added or subtracted) with another one and the re-
sult written back in the first temporary variable. When deal-
ing with variables Ti, symbols +, −, ×, and (·)2 respectively
stand for addition, subtraction, multiplication and squaring
in the underlying field.
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Algorithm 19 Co-Z addition with update (register allocation)

Require: PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z)
Ensure: (RRR,PPP )← ZADDU(PPP ,QQQ) where RRR← PPP +QQQ = (X3 : Y3 : Z3) and PPP ← (λ2X1 : λ3Y1 : Z3) with Z3 = λZ1 for some

λ 6= 0

1: function ZADDU(PPP ,QQQ)
T1 = X1 , T2 = Y1 , T3 = Z , T4 = X2 , T5 = Y2

2:

1. T6 ← T1 − T4 {X1 −X2}
2. T3 ← T3 × T6 {Z3}
3. T6 ← T6

2 {C}
4. T1 ← T1 × T6 {W1}
5. T6 ← T6 × T4 {W2}
6. T5 ← T2 − T5 {Y1 − Y2}
7. T4 ← T5

2 {D}

8. T4 ← T4 − T1 {D −W1}
9. T4 ← T4 − T6 {X3}

10. T6 ← T1 − T6 {W1 −W2}
11. T2 ← T2 × T6 {A1}
12. T6 ← T1 − T4 {W1 −X3}
13. T5 ← T5 × T6 {Y3 + A1}
14. T5 ← T5 − T2 {Y3}

RRR = (T4 : T5 : T3) , PPP = (T1 : T2 : T3)
3: end function

Algorithm 20 Conjugate co-Z addition (register allocation)

Require: PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z)
Ensure: (RRR,SSS)← ZADDC(PPP ,QQQ) where RRR← PPP +QQQ = (X3 : Y3 : Z3) and SSS ← PPP −QQQ = (X3 : Y3 : Z3)

1: function ZADDC(PPP ,QQQ)
T1 = X1 , T2 = Y1 , T3 = Z , T4 = X2 , T5 = Y2

2:

1. T6 ← T1 − T4 {X1 −X2}
2. T3 ← T3 × T6 {Z3}
3. T6 ← T6

2 {C}
4. T7 ← T1 × T6 {W1}
5. T6 ← T6 × T4 {W2}
6. T1 ← T2 + T5 {Y1 + Y2}
7. T4 ← T1

2 {D}
8. T4 ← T4 − T7 {D −W1}
9. T4 ← T4 − T6 {X3}

10. T1 ← T2 − T5 {Y1 − Y2}
11. T1 ← T1

2 {D}
12. T1 ← T1 − T7 {D −W1}

13. T1 ← T1 − T6 {X3}
14. T6 ← T6 − T7 {W2 −W1}
15. T6 ← T6 × T2 {−A1}
16. T2 ← T2 − T5 {Y1 − Y2}
17. T5 ← 2T5 {2Y2}
18. T5 ← T2 + T5 {Y1 + Y2}
19. T7 ← T7 − T4 {W1 −X3}
20. T5 ← T5 × T7 {Y3 + A1}
21. T5 ← T5 + T6 {Y3}
22. T7 ← T4 + T7 {W1}
23. T7 ← T7 − T1 {W1 −X3}
24. T2 ← T2 × T7 {Y3 + A1}
25. T2 ← T2 + T6 {Y3}

RRR = (T1 : T2 : T3) , SSS = (T4 : T5 : T3)
3: end function

Algorithm 21 Co-Z doubling with update (register allocation)

Require: PPP = (X1 : Y1 : 1)
Ensure: (RRR,PPP )← DBLU(PPP ) where RRR← 2PPP = (X2 : Y2 : Z2) and PPP ← (λ2X1 : λ3Y1 : λ) with λ = Z2

1: function DBLU(PPP )
T0 = a , T1 = X1 , T2 = Y1

2:

1. T3 ← 2T2 {Z2}
2. T2 ← T2

2 {E}
3. T4 ← T1 + T2 {X1 + E}
4. T4 ← T4

2 {(X1 + E)2}
5. T5 ← T1

2 {B}
6. T4 ← T4 − T5 {(X1 + E)2 − B}
7. T2 ← T2

2 {L}
8. T4 ← T4 − T2 {(X1 + E)2 − B − L}
9. T1 ← 2T4 {S}

10. T0 ← T0 + T5 {a + B}
11. T5 ← 2T5 {2B}
12. T0 ← T0 + T5 {M}
13. T4 ← T0

2 {M2}
14. T5 ← 2T1 {2S}
15. T4 ← T4 − T5 {X2}
16. T2 ← 8T2 {8L}
17. T5 ← T1 − T4 {S −X2}
18. T5 ← T5 × T0 {M(S −X2)}
19. T5 ← T5 − T2 {Y2}

RRR = (T4 : T5 : T3) , PPP = (T1 : T2 : T3)
3: end function
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Algorithm 22 Co-Z tripling with update (register allocation)

Require: PPP = (X1 : Y1 : 1)
Ensure: (RRR,PPP )← TPLU(PPP ) where RRR← 3PPP = (X3 : Y3 : Z3) and PPP ← (λ2X1 : λ3Y1 : λ) with λ = Z3

1: function TPLU(PPP )
2: (RRR,PPP )← DBLU(PPP )
3: (RRR,PPP )← ZADDU(PPP ,RRR)
4: end function

Algorithm 23 Co-Z doubling-addition with update (register allocation)

Require: PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z)
Ensure: (RRR,QQQ) ← ZDAU(PPP ,QQQ) where RRR ← 2PPP +QQQ = (X3 : Y3 : Z3) and QQQ ← (λ2X2 : λ3Y2 : Z3) with Z3 = λZ for some

λ 6= 0

1: function ZDAU(PPP ,QQQ)
T1 = X1 , T2 = Y1 , T3 = Z , T4 = X2 , T5 = Y2

2:

1. T6 ← T1 − T4 {X1 −X2}
2. T7 ← T6

2 {C′}
3. T1 ← T1 × T7 {W ′1}
4. T4 ← T4 × T7 {W ′2}
5. T5 ← T2 − T5 {Y1 − Y2}
6. T8 ← T1 − T4 {W ′1 −W ′2}
7. T2 ← T2 × T8 {A′1}
8. T2 ← 2T2 {2A′1}
9. T8 ← T5

2 {D′}
10. T4 ← T8 − T4 {D′ −W ′2}
11. T4 ← T4 − T1 {X̂′3}
12. T4 ← T4 − T1 {X̂′3 −W ′1}
13. T6 ← T4 + T6 {X1 −X2 + X̂′3 −W ′1}
14. T6 ← T6

2 {(X1 −X2 + X̂′3 −W ′1)
2}

15. T6 ← T6 − T7 {(X1 −X2 + X̂′3 −W ′1)
2 − C′}

16. T5 ← T5 − T4 {Y1 − Y2 + W ′1 − X̂′3}
17. T5 ← T5

2 {(Y1 − Y2 + W ′1 − X̂′3)
2}

18. T5 ← T5 − T8 {Y ′3 + C + 2A′1}
19. T5 ← T5 − T2 {Y ′3 + C}
20. T7 ← T4

2 {C}
21. T5 ← T5 − T7 {Y ′3}

22. T8 ← 4T7 {4C}
23. T6 ← T6 − T7 {(X1 −X2 + X̂′3 −W ′1)

2 − C′ − C}
24. T3 ← T3 × T6 {Z3}
25. T6 ← T1 × T8 {W2}
26. T1 ← T1 + T4 {X̂′3}
27. T8 ← T8 × T1 {W1}
28. T7 ← T2 + T5 {Y ′3 + 2A′1}
29. T2 ← T5 − T2 {Y ′3 − 2A′1}
30. T1 ← T8 − T6 {W1 −W2}
31. T5 ← T5 × T1 {A1}
32. T6 ← T6 + T8 {W1 + W2}
33. T1 ← T2

2 {D}
34. T1 ← T1 − T6 {X3}
35. T4 ← T8 − T1 {W1 −X3}
36. T2 ← T2 × T4 {Y3 + A1}
37. T2 ← T2 − T5 {Y3}
38. T4 ← T7

2 {D}
39. T4 ← T4 − T6 {X2}
40. T8 ← T8 − T4 {W1 −X2}
41. T7 ← T7 × T8 {Y2 + A1}
42. T5 ← T7 − T5 {Y2}

RRR = (T1 : T2 : T3) , QQQ = (T4 : T5 : T3)
3: end function
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Algorithm 24 (X,Y )-only co-Z doubling-addition with update (register allocation)

Require: PPP ′ = (X1 : Y1) and QQQ′ = (X2 : Y2) for some PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z)
Ensure: (RRR′,QQQ′) ← ZDAU′(PPP ′,QQQ′) where RRR′ ← (X3 : Y3) and QQQ′ ← (λ2X2 : λ3Y2) for some RRR = 2PPP +QQQ = (X3 : Y3 : Z3)

and QQQ = (λ2X2 : λ3Y2 : Z3) with Z3 = λZ

1: function ZDAU′(PPP ′,QQQ′)
T1 = X1 , T2 = Y1 , T3 = X2 , T4 = Y2

2:

1. T5 ← T1 − T3 {X1 −X2}
2. T5 ← T5

2 {C′}
3. T1 ← T1 × T5 {W ′1}
4. T3 ← T3 × T5 {W ′2}
5. T4 ← T2 − T4 {Y1 − Y2}
6. T5 ← T1 − T3 {W ′1 −W ′2}
7. T2 ← T2 × T5 {A′1}
8. T2 ← 2T2 {2A′1}
9. T5 ← T4

2 {D′}
10. T3 ← T5 − T3 {D′ −W ′2}
11. T3 ← T3 − T1 {X̂′3}
12. T6 ← T1 − T3 {W ′1 − X̂′3}
13. T4 ← T4 + T6 {Y1 − Y2 + W ′1 − X̂′3}
14. T4 ← T4

2 {(Y1 − Y2 + W ′1 − X̂′3)
2}

15. T4 ← T4 − T5 {Y ′3 + C + 2A′1}
16. T4 ← T4 − T2 {Y ′3 + C}
17. T5 ← T6

2 {C}
18. T4 ← T4 − T5 {Y ′3}
19. T5 ← 4T5 {4C}
20. T6 ← T3 × T5 {W1}

21. T5 ← T5 × T1 {W2}
22. T3 ← T4 − T2 {Y ′3 − 2A′1}
23. T1 ← T3

2 {D}
24. T1 ← T1 − T6 {D −W1}
25. T1 ← T1 − T5 {X3}
26. T3 ← T2 + T4 {Y ′3 + 2A′1}
27. T3 ← T3

2 {D}
28. T3 ← T3 − T6 {D −W1}
29. T3 ← T3 − T5 {X2}
30. T5 ← T6 − T5 {W1 −W2}
31. T5 ← T5 × T4 {A1}
32. T4 ← T2 + T4 {Y ′3 + 2A′1}
33. T2 ← 2T2 {4A′1}
34. T2 ← T4 − T2 {Y ′3 − 2A′1}
35. T6 ← T6 − T1 {W1 −X3}
36. T2 ← T2 × T6 {Y3 + A1}
37. T2 ← T2 − T5 {Y3}
38. T6 ← T6 + T1 {W1}
39. T6 ← T6 − T3 {W1 −X2}
40. T4 ← T4 × T6 {Y2 + A1}
41. T4 ← T4 − T5 {Y2}

RRR = (T1 : T2) , QQQ = (T3 : T4)
3: end function

Algorithm 25 Co-Z conjugate-addition–addition with update (ZACAU) (register allocation)

Require: PPP = (X1 : Y1 : Z) and QQQ = (X2 : Y2 : Z) with Z(PPP ) = Z(QQQ), and C = (X1 −X2)2

Ensure: (RRR,SSS,C)← ZACAU(PPP ,QQQ,C) whereRRR← 2PPP = (X3 : Y3 : Z3) and SSS ← PPP+QQQ = (X4 : Y4 : Z3) with C ← (X3−X4)2

1: function ZACAU(PPP ,QQQ,C)
T1 = X1 , T2 = Y1 , T3 = Z , T4 = X2 , T5 = Y2 , T6 = C

2:

1. T7 ← T1 − T4 {X1 −X2}
2. T3 ← T3 × T7 {Z′}
3. T7 ← T4 × T6 {W2}
4. T6 ← T6 × T1 {W1}
5. T1 ← T2 + T5 {Y1 + Y2}
6. T4 ← T1

2 {D}
7. T4 ← T4 − T6 {D −W1}
8. T4 ← T4 − T7 {X′2}
9. T1 ← T2 − T5 {Y1 − Y2}

10. T1 ← T1
2 {D}

11. T1 ← T1 − T6 {D −W1}
12. T1 ← T1 − T7 {X′1}
13. T7 ← T7 − T6 {W2 −W1}
14. T7 ← T7 × T2 {−A1}
15. T2 ← T2 − T5 {Y1 − Y2}
16. T5 ← 2T5 {2Y2}
17. T5 ← T2 + T5 {Y1 + Y2}
18. T6 ← T6 − T4 {W1 −X′2}
19. T5 ← T5 × T6 {Y ′2 + A1}
20. T5 ← T5 + T7 {Y ′2}
21. T6 ← T4 + T6 {W1}
22. T6 ← T6 − T1 {W1 −X′1}
23. T2 ← T2 × T6 {Y ′1 + A1}
24. T2 ← T2 + T7 {Y ′1}
25. T6 ← T1 − T4 {X′1 −X′2}

26. T3 ← T3 × T6 {Z3}
27. T6 ← T6

2 {C′}
28. T7 ← T4 × T6 {W ′2}
29. T4 ← T1 × T6 {X4}
30. T6 ← T2 − T5 {Y ′1 − Y ′2}
31. T7 ← T4 − T7 {X4 −W ′2}
32. T5 ← T2 × T7 {Y4}
33. T2 ← T6

2 {D′}
34. T1 ← T2 + T7 {D′ + X4 −W ′2}
35. T1 ← T1 − T4 {D′ −W ′2}
36. T1 ← T1 − T4 {X3}
37. T7 ← T1 − T4 {X3 −X4}
38. T6 ← T6 − T7 {Y ′1 − Y ′2 + X4 −X3}
39. T6 ← T6

2 {(Y ′1 − Y ′2 + X4 −X3)
2}

40. T2 ← T6 − T2 {(Y ′1 − Y ′2 + X4 −X3)
2 −D′}

41. T6 ← T7
2 {C}

42. T2 ← T2 − T6 {(Y ′1 − Y ′2 + X4 −X3)
2 −D′ − C}

43. T5 ← 2T5 {2Y4}
44. T2 ← T2 − T5 {Y3}
45. T1 ← 4T1 {4X3}
46. T2 ← 4T2 {4Y3}
47. T3 ← 2T3 {2Z3}
48. T4 ← 4T4 {4X4}
49. T5 ← 4T5 {8Y4}
50. T6 ← 16T6 {16C}

RRR = (T1 : T2 : T3), SSS = (T4 : T5 : T3), C = T6

3: end function
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Algorithm 26 (X,Y )-only co-Z conjugate-addition–addition with update (ZACAU′) (register allocation)

Require: PPP ′ = (X1 : Y1) and QQQ′ = (X2 : Y2) with Z(PPP ) = Z(QQQ), and C = (X1 −X2)2

Ensure: (RRR′,SSS′, C)← ZACAU′(PPP ′,QQQ′, C) where RRR′ ← (X3 : Y3) and SSS′ ← (X4 : Y4) for some RRR = 2PPP = (X3 : Y3 : Z3) and
SSS = PPP +QQQ = (X4 : Y4 : Z3) with C ← (X3 −X4)2

1: function ZACAU′(PPP ′,QQQ′, C)
T1 = X1 , T2 = Y1 , T3 = C , T4 = X2 , T5 = Y2

2:

1. T6 ← T3 × T4 {W2}
2. T3 ← T3 × T1 {W1}
3. T1 ← T2 + T5 {Y1 + Y2}
4. T4 ← T1

2 {D}
5. T4 ← T4 − T3 {D −W1}
6. T4 ← T4 − T6 {X′2}
7. T1 ← T2 − T5 {Y1 − Y2}
8. T1 ← T1

2 {D}
9. T1 ← T1 − T3 {D −W1}

10. T1 ← T1 − T6 {X′1}
11. T6 ← T6 − T3 {W2 −W1}
12. T6 ← T6 × T2 {−A1}
13. T2 ← T2 − T5 {Y1 − Y2}
14. T5 ← 2T5 {2Y2}
15. T5 ← T2 + T5 {Y1 + Y2}
16. T3 ← T3 − T4 {W1 −X′2}
17. T5 ← T3 × T5 {Y ′2 + A1}
18. T5 ← T5 + T6 {Y ′2}
19. T3 ← T3 + T4 {W1}
20. T3 ← T3 − T1 {W1 −X′1}
21. T2 ← T2 × T3 {Y ′1 + A1}
22. T2 ← T2 + T6 {Y ′1}
23. T3 ← T1 − T4 {X′1 −X′2}

24. T3 ← T3
2 {C′}

25. T6 ← T3 × T4 {W ′2}
26. T4 ← T1 × T3 {X4}
27. T3 ← T2 − T5 {Y ′1 − Y ′2}
28. T6 ← T4 − T6 {X4 −W ′2}
29. T5 ← T2 × T6 {Y4}
30. T2 ← T3

2 {D′}
31. T1 ← T2 + T6 {D′ + X4 −W ′2}
32. T1 ← T1 − T4 {D′ −W ′2}
33. T1 ← T1 − T4 {X3}
34. T6 ← T1 − T4 {X3 −X4}
35. T3 ← T3 − T6 {Y ′1 − Y ′2 + X4 −X3}
36. T3 ← T3

2 {(Y ′1 − Y ′2 + X4 −X3)
2}

37. T2 ← T3 − T2 {(Y ′1 − Y ′2 + X4 −X3)
2 −D′}

38. T3 ← T6
2 {C}

39. T2 ← T2 − T3 {(Y ′1 − Y ′2 + X4 −X3)
2 −D′ − C}

40. T5 ← 2T5 {2Y4}
41. T2 ← T2 − T5 {Y3}
42. T1 ← 4T1 {4X3}
43. T2 ← 4T2 {4Y3}
44. T3 ← 16T3 {16C}
45. T4 ← 4T4 {4X4}
46. T5 ← 4T5 {8Y4}

R′R′R′ = (T1 : T2), S′S′S′ = (T4 : T5), C = T3

3: end function


