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Abstract. Nowadays, Side Channel Analysis is one of the most power-
ful cryptanalytic technique against cryptosystems embedded in portable
devices such as smart cards. Faced with this threat, it is of crucial impor-
tance to precisely determine what is achievable by a given side channel
adversary against a cryptosystem producing a given side channel leak-
age. This can be answered by evaluating the success rate of an attack
according to the adversary capacities and to the leakage properties.

In this paper, we investigate the issue of evaluating the success rate of
side channel analysis in the widely admitted Gaussian leakage model.
We introduce a new approach that allows us to efficiently compute the
success rate of an attack in this model and we apply it to the two main
families of side channel analysis: differential side channel analysis and
profiling side channel analysis.

1 Introduction

Side Channel Analysis (SCA) is a cryptanalytic technique that consists in an-
alyzing the physical leakage produced during the execution of a cryptographic
algorithm embedded on a physical device (e.g. execution time [13], power con-
sumption [12], electromagnetic emanations [8]). Some kinds of SCA exploit this
side channel leakage to recover information on the operation flow that may de-
pend on the secret key (e.g. Simple SCA [12], Timing Attacks [13]). These can
be circumvent by ensuring that the operation flow is independent of the secret
key. Other kinds of SCA exploit the fact that the side channel leakage is sta-
tistically dependent on the intermediate variables of the computation. Some of
these variables are themselves related to small parts of the secret key which
enables key recovery attacks. These second kinds of SCA are particularly power-
ful and securing cryptographic implementation against them constitutes a real
challenge.

SCA targeting intermediate variables divides into two main categories: differ-
ential SCA and profiling SCA. Differential SCA relies on correlation techniques
[12, 4]. Based on several leakage observations, the attacker estimates a correlation
between the leakage and different predictions on the value of a key-dependent
intermediate variable. According to the obtained correlation values, the attacker
is able to (in)validate some hypotheses on the secret key. Profiling SCA [6,19] is
based on the maximum likelihood approach. It assumes that the attacker owns a



profile of the leakage according to the values of some key-dependent intermediate
variables. This profile is involved to derive the likelihood of some key hypotheses
given the observed leakage.

Faced with the threat of side channel analysis, a crucial issue is to quantify
the efficiency of the different attacks according to the adversary capacities and
the leakage statistical properties. For this purpose, a natural metric is the success
rate, namely the probability that an attack succeeds in recovering the correct
key (or in isolating it in a restricted set). A straightforward way to evaluate the
success rate is to estimate it empirically by performing the attack several times.
However such an approach is costly in time and may even become impossible for
attacks with medium or high complexity. It is therefore not suitable to efficiently
and precisely determine the resistance of an embedded device if this one is not
quite weak. To tackle this issue, it is of particular interest to investigate efficient
ways to compute (or at least to precisely estimate) the success rate of an attack
without requiring to perform it many times.

Previous investigations have been done regarding this issue [7, 16, 22]. These
works investigate differential SCA in a noisy context. They provide an approxi-
mation of the required number of leakage measurements for a successful attack
[7,16] and an approximation of the success rate [22]. For the sake of generality,
these works do not take into account the relationship between the different key
candidates (which depends on the target algorithm logical properties and on the
leakage statistical properties) and only focus on the good key guess. However,
the success rate depends on the joint behavior of the different candidates and
this relationship cannot be neglected while looking for a precise estimation of the
success rate. Concerning profiling SCA, to the best of our knowledge no solution
for the success rate evaluation has been proposed in the literature so far. This
is a lack since these attacks are considered as the strongest form of side channel
analysis.

In this paper, we address the issue of evaluating the success rate of a side
channel key recovery attack. We analyze both differential SCA and profiling
SCA under the widely admitted assumption that the noise in the leakage has a
Gaussian distribution. We show that the result of these attacks can be expressed
as a multivariate Gaussian random variable which leads to an efficient way for
determining their success rates.

The rest of the paper is organized as follows. Section 2 introduces some
preliminaries. Section 3 presents the side channel theoretical model considered
in this paper. In Sections 4 and 5, we respectively analyze differential SCA
and profiling SCA. Based on these analyses, Section 6 shows how to efficiently
evaluate the success rate of the focused attacks. Finally an empirical validation
is provided in Section 7 and concluding remarks are given in Section 8.

2 Preliminaries

The calligraphic letters, like X, are used to denote finite sets (e.g. F%). The
corresponding large letter X denotes a random variable over X, while the low-



ercase letter x denotes a particular realization of X. The probability of an event
ev is denoted by P [ev]. In case X has a continuous distribution, the notation
x — P[X = z] is further used to denote the probability density function (pdf)
of X. The expectation and the variance of a random variable X are respectively
denoted by E[X] and Var [X]. The covariance between two random variables
X and Y is denoted by Cov [X,Y]. The Gaussian distribution of dimension T
with T-size expectation vector m and T x T covariance matrix X' is denoted by
N (m, X)), and the corresponding pdf is denoted by ¢x ... We recall that this
pdf is defined for every z € RT as:

G5m(x) = Lo omy st m)) ,

1
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where (z —m)’ denotes the transpose of the vector (z —m) and | X| denotes the
determinant of the matrix Y. If the dimension T equals 1, then the Gaussian
distribution is said to be univariate and the single element of the covariance
matrix is the variance that is denoted by o2. If T > 1, the Gaussian distribution
is said to be multivariate.

3 Side Channel Model

A formal modeling of side channel key recovery attacks has been initiated by
Standaert et al. in [21]. The theoretical model introduced hereafter follows the
outlines of their work.

3.1 Side Channel Key Recovery Attacks

Let Esk be a cryptographic algorithm E parameterized by a secret key SK. Let
K be a random variable representing a guessable part of SK. Let X be a random
variable representing a part of a public value such as an input (resp. output)
of Esk. Let S be a random variable representing the result of an intermediate
computation of Esk that satisfies S = (X, K) for a given function ¢ : X x
K — S§. We denote by L the random variable that represents the side channel
leakage generated by the computation (and/or the handling) of S on a physical
implementation of Esx. We shall further denote by L (s) the random variable
(LIS = s).

A side channel key recovery attack targeting the signal S aims at recovering
the value £* taken by K on a given physical implementation of Esk. For such
a purpose, the attacker collects several, say N, leakage measurements (1;); re-
sulting from the computation of ¢(x;, k*) for N inputs (z;);. Namely, the 1;’s
are realizations of the random variables L (p(K,x;)) that are assumed to be
mutually independent. Then, the attack makes use of a distinguisher, that is a
function D which, from the leakage measurements vector 1 = (13, --- ,1y) and the
corresponding inputs vector x = (x1,--- ,zn), outputs a distinguishing vector
d = (d)kerc. If the distinguisher is sound and if the leakage brings enough infor-
mation on S, then k* = argmax;cx dy holds with a non-negligible probability.



Finally, a side channel adversary can be defined as the composition of a
distinguisher with a strategy to select the algorithm inputs ¢.e. the x; values.
These can be randomly drawn (in a known plaintext/ciphertext attack setting)
or they can be chosen by the adversary (in a chosen plaintext attack setting).
In this paper, we do not assume a specific strategy. Rather, we investigate the
success rate of an attack according to the inputs vector x.

3.2 Gaussian Leakage Model

In practice, the leakage measurements are composed of several samples, say T,
corresponding to several successive instants in time. The leakage L can hence
be modeled by a T-size random vector. In the Gaussian leakage model, the
leakage L (s) resulting from the computation of any signal s € S has a Gaussian
distribution: L (s) ~ N (ms, Xs).

Remark 1. The Gaussian model assumption is both very usual in the side chan-
nel literature (see for instance [6,15,19,21]) and fairly realistic in practice (see
for instance [15, §4]).

For clarity and without ambiguity, we shall respectively denote by mg - and
Xk the mean vector my,(, p+) and the covariance matrix X, j+)-

3.3 Success Rate

The success rate is a classical metric in side channel analysis. Usually, a key
recovery attack is considered successful if the distinguishing vector satisfies k* =
argmaxycx di. In [21], the authors propose to extend the notion of success rate
to different orders. The o* order success rate of a side channel attack using a
distinguisher D and a public vector x, and targeting a secret key k* is defined
as:

Succ—ogyk* =P |(li = L(p(k*,z))),; d—=D(x,1) : k* € argmax-o d| ,
kek

where argmax-orcx dp denotes the set of the o elements k € K that maximize
di. The notion of order is motivated by the fact that an attacker may perform
an off-line exhaustive search after the side channel analysis. A o order success
means that the attacker has at the most o key guesses to test after the attack in
order to recover the correct one.

Remark 2. In [21], the authors also suggest to use another metric: the so-called
guessing entropy [17,5]. This one is defined as the expected rank of the good
key guess in the distinguishing vector, namely it indicates the average number
of key guesses to test after the side channel analysis. This notion is discussed in
Appendix A where we show that it can be expressed with respect to the success
rates at the different orders.



Our Approach. In order to determine the exact success rate of an attack,
we must investigate the multivariate probability distribution of the distinguish-
ing vector. This distribution can be expressed with respect to the inputs vector
x, the secret key £* and the leakage distribution parameters (ms,X)  g. In
the rest of the paper, we will investigate the two main families of side channel
analysis: differential SCA and profiling SCA. We will show that under the Gaus-
sian assumption, the multivariate distribution of the distinguishing vector is (or
at least can be precisely approximated by) a multivariate Gaussian distribution.
This will enable us to show how the success rate of such attacks can be efficiently
computed.

4 Differential Side Channel Analysis

4.1 Description

Differential side channel analysis uses correlation techniques as distinguisher.
Several variants have been proposed in the literature [1,4,3,12,18]. In this pa-
per, we focus on the Pearson correlation coefficient since it is the most widely
used and seems to be the most efficient technique in practice [4]. Note that our
analysis could be easily extended to other differential distinguishers that rely on
correlation computations [1, 3,12, 18]. The adversary is assumed to own a model
of the side channel leakage that is a function M : X x K — R such that M(x, k)
is linearly related to the expectation of the leakage L (¢(z, k)). The attack con-
sists in estimating, for every key guess k € KC, the linear correlation between
the prediction M(X, k) (i.e. the predicted value of the leakage for the guess k)
and the observable leakage L (¢(X, k*)). This correlation is estimated based on
the prediction vector (M(zl, k),--- ,M(Q:N,k:)) and the leakage measurements
vector 1 by the following coefficient:

) &5 (M@ k) = & 55, MG, ) (1 - 4 2, 1)
k= 2 2
\/Jbzz (M(xiak)_%z:j M(%’v@) \/]{721 (11‘_%23‘%')

If the model is sound, the prediction vector for the correct key guess is signif-
icantly correlated to the leakage measurements vector. As a result, for N large
enough, p; is expected to be maximal for k = k*.

Since the correlation distinguisher takes as input a set of 1-size leakage mea-
surements, we investigate hereafter the distribution of this distinguisher in the
univariate Gaussian model.

4.2 Distinguisher Distribution

Let us first denote by 7, the occurrence ratio of an element x € X through the
inputs vector x, i.e. :

_ i@ = 2}
Ty = " (2)



We shall further denote by My, and &, the mean and the standard deviation of
the prediction vector (M(;z:i, k))i, namely:

Mk‘: ZTIM(x,k) and 6:]%.: ZTI (M(ka)_mk)z .
reX TEX

Instead of focusing on pg, we focus in the sequel on the following coefficient:

1

== Z (M(zi, k) — M) 1; . (3)

Q)
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The distribution of (p),cx is indeed more convenient to analyze than the one
of (pr)peic- Moreover, one can verify that the ratio pr/pr equals the standard
deviation of the leakage measurement vector 1. Consequently, pi/px is positive
and constant with respect to the key guess k. As a result, argmax-oxcx pr =
argmax-ogcx Pr holds for every k and hence, the success rate of the attack is
fully determined by the distribution of the vector (px), - The next proposition
provides us with the exact distribution of this vector.

Proposition 1. The vector (pr),cxc has a multivariate Gaussian distribution
whose expectation satisfies for every k € K:

Bl = 2 3 o (M. k) — M) e @)

g
k zeX

and whose covariance satisfies for every (ki,ks) € K2:

1

Now.on 7o (M(z, k1) — Mg,) (M(2,k2) = My,) 02 5 . (5)

Cov [pln ) pkz] =
reX

Proof. Since the 1;’s are drawn from Gaussian distributions N (my, g+, 04, k*)
and since the vector (fx),ci is a linear transformation of 1, one deduces that
(Pk)kex has a multivariate Gaussian distribution.

Now, for every z € X, we have N7, elements among the z;’s that are equal
to x. This, together with (3) immediately leads to (4). Then, the mutual inde-
pendence of the 1;’s and the bilinearity of the covariance imply (5). o

Proposition 1 gives the exact distribution of the distinguishing vector (pg)rek -
This makes it possible to precisely compute the success rate of a differential SCA
that involves the Pearson correlation coefficient (see Section 6).

If the model is sound, namely if M(z, k) is linearly related to my i, then (4)
implies that the expectation of pi is maximal for the good key guess k = k*
which shows the soundness of the attack.

From (4) we see that the distinguishing vector expectation does not depend
on the leakage variance nor on the number of leakage measurements. Conversely,
(5) shows that the covariance matrix depends on these parameters. If the leakage
variance is multiplied by a factor A then so does the covariance matrix. And if



the number of measurements is multiplied by a factor A then the covariance
matrix is multiplied by 1/A. As a result, if the leakage variance is increased by
a given factor, the number of leakage measurements must also be increased by
the same factor to keep unchanged the distinguisher distribution and hence the
attack success rate.

Another interesting observation is that the distribution of (pg)rex does not
fully depend on the inputs vector x but only on the different ratios 7,’s. A
usual choice, for a chosen plaintext differential SCA, is to set these ratios at
T, = 1/]X|. For a known plaintext/ciphertext differential SCA, assuming that
the x;’s are uniformly drawn, we further have 7, = 1/|X| for N large enough.
We investigate this setting hereafter.

Uniform Setting. We investigate here the setting where the z;’s are chosen
such that 7, = 1/|X| holds for every x. We further assume that the target signal
S can be expressed as S = (X @ K) where ¢ is a balanced function (i.e. the
cardinal of 9)~1(s) is constant for every s € S).

In the uniform setting, the previous study can be simplified. In this setting,
the mean and the standard deviation of the prediction vector are constant with

respect to k*. Indeed, for every k € K, we have My, = |S‘ Y ses M(s) and 75, =

\/W Sses (M(s) — M) . Hence, we can focus on the following coefficient:

Z xu 1; (6>

Once again gy /py is positive and constant with respect to k& which implies that
focusing on py instead of g does not affect the success rate of the attack. The
following corollary gives the distribution of (fx), -

Corollary 1. The vector (i) has a multivariate Gaussian distribution whose
expectation satisfies for every k € K:

E [jx] > M@, k)mg- (7)
|X| reX

and whose covariance satisfies for every (ky, ks) € K2:
Cov [P, Pry) = N|X| Z M(z, k1)M(z, k2)os - - (8)

Proof. Corollary 1 straightforwardly holds from Proposition 1 by setting My, to
0 and &, to 1. o

An interesting property of the uniform setting is stressed in the following
proposition.



Proposition 2. Let (dy);,cxc and (d},), o be the distributions of the vector ()i
for two secret keys ki € K and k5 € K respectively. In the uniform setting, the
distributions (drgr: )rex and (d;ceak;)kelC are indentical.

Proof. In the uniform setting, we have M(z,k) = M(¢(x @ k)) and my g =
My (zek-)- Hence, from (7) we get E [drgrr | = E[d;@kg] for every k € K and from

(8) we get Cov [di, qkr, dryar: | = Covldy, uss diyars] for every (ki ko) € K.
Finally, since (dy);cx and (d},),c,c are both Gaussian then they are identical. o

Proposition 2 shows that the vector (frgr+),cx has the same distribution
for every k*. Moreover, the event k* € argmax-opcx pr can be rewritten as
0 € argmax-oxck Preok+- Since the distribution of (ﬁkﬂak*)kem is independent of
k*, we get that, in the uniform setting, the success rate is constant with respect
to k*. Therefore, one only needs to analyze the distribution of (frags+ ), for a
given secret key (e.g. for k* = 0) to get the distribution and the success rate of
(Pr)geic for any secret key k*.

5 Profiling Side Channel Analysis

5.1 Description

Profiling Side Channel Analysis assumes an adversary that owns a profile of the
side channel leakage (also called template in the literature from the initial work
of Chari et al. [6]). More precisely, the adversary owns an estimation of the pdf
l— PL=1S=s] for every s € S. In practice, this estimation is obtained
through a profiling phase on a physical implementation identical to the targeted
one (except the secret key) and that is under the attacker control (see for instance
[2,6,14,19)]).

The attack consists in estimating the likelihood of a key guess k, i.e. the
probability that K is equal to k, given the leakage measurements vector 1 and
the inputs vector x. Assuming that K is uniformly distributed (which is very
usual in cryptography), it can be checked that this probability satisfies:

N
P[K =k|(Lx)] = a][P[L=1L[S = e, k)] , (9)

i=1

where o denotes a value constant with respect to k.

In the Gaussian model, the leakage pdf 1 — P [L =1|S = s] is the Gaussian
pdf ¢ 5, m.. Estimating such a pdf amounts to estimate the parameters (ms, 2s)
for every s € S. In the sequel, we shall denote these estimations by m, and
XYs. For clarity and without ambij\guity, the parameters M,k and Yy, k) are

further denoted by my  and by Xy k.

For computational reasons, one usually processes the logarithm of the esti-
mated likelihood and averages it on the number of leakage measurements. More-
over, since « is constant with respect to k, it is usually ignored. On the whole,



one computes the log-likelihood L, = 3- log(P [K = k|(1,x)] /a). In the Gaussian
model, L, satisfies:

Ly, = 2NZ(log (@M S bl) = (U5 = ) T3k (6= ) - (10)

In the next section, we investigate the distribution of the log-lekelihood dis-
tinguisher under the Gaussian model assumption.

5.2 Distinguisher Distribution

Let us first introduce few notations. The element of the i*" row and of the
7' column of a matrix A is denoted by A[i, j] while the i*® element of a vector
V is denoted by Vi]. A" denotes the transpose of a matrix (or a vector) A. The
notation ||-|| is used to denote the Euclidian norm while the notation ||-||,,, refers

to the Hilbert-Schmidt matrix norm defined by [|Al[,, = \/Zi,jA[i,j]Q‘ We

shall further denote by A? the product A’A and by A~/2? any matrix satisfying
(A=1/2)A=1/2 = A (e.g. the Cholesky decomposition matrix). Finally the trace
of A is denoted by Tr(A).

The next proposition provides a precise approximation of the distribution of
the likelihood vector (Ly)rex (the proof is given in Appendix B).

Proposition 3. The distribution of the vector (Li)rex tends toward a mul-
tivariate Gaussian distribution as N grows. Moreover, for every k € IKC, the
expectation of Ly satisfies:

1 N 2
E[Ly] = 3 Z T (log (271'\230 k) — HZ 1/2 (O mLk)H
TEX

—Tr(Z V25 (2;,1/2)’)) ., (1)

and for every (k1,ks) € K2, the covariance between Ly, and Ly, satisfies:

12 5 a—1/2\/]|?
Cov [ﬁk?l?Lk?z N ZTI( 9 HZI wk* Ez,kz )/ hs

+ (Mo — apy) S0 S S (M e —mz,kz)) . (12)

Proposition 3 gives an approximation of the distribution of the log-likelihood
vector (Lg)kex which becomes quickly tight as N grows (see Appendix C). As
shown in Section 6, this approximation can be used to estimate the success rate
of profiling SCA. The computational cost of (11) and (12) is O(|X|T?) where
T denotes the leakage dimension. The total cost of computing the distribution
parameters is hence O(|K|?|X|T3). This may be prohibitive if the leakage dimen-
sion is high. However, the leakage dimension can be reduced by pre-processing
the leakage measurements [2,20]. In practice, T' = 3 is often sufficient to catch
most of the side channel information [2, 20].

In order to simplify our analysis, let us make the following assumption.



Assumption 1 (Constant Covariance Assumption) The covariance matriz
X5 is the same for all signals s € S.

Remark 3. This assumption is quite usual in the literature (see for instance
[19,11,21]). The noise in the leakage is indeed often independent of the target
signal. This is especially true if most of the noise amount is produced by a noise
generator (independent of the target algorithm) as a countermeasure to side
channel analysis.

Observing the expectation of L£j (11), one identifies three sums. The first
one and the third one only involve the leakage covariance matrices and/or their
estimations. Therefore, under the constant covariance assumption, these sums
are constant with respect to k and hence, they provide no discrimination between
the different key candidates. Actually, only the second sum in (11) provides some
discrimination which depends on the leakage means m,, j, (corresponding to the
different processed signals s = p(x, k)). If these means are clearly dissociated
and if their estimations m, j are precise, then the second sum is around zero
for and only for the good key guess k*. As a result, the expectation of Ly is
maximized for the good key guess k = k* which illustrates the attack soundness.

From (11) and (12) we also see that, unlike for differential SCA, increasing
the number of leakage measurements and increasing the leakage variance do not
have a complementary effect on the distinguisher distribution. However, it has
a complementary effect on the success rate: if the leakage covariance matrix is
multiplied by a factor A (and assuming that its estimation is also multiplied by
A) then the attacker must multiply the number of measurements by a factor A
in order to keep the success rate constant. This fact is formally demonstrated in
Appendix D. We hence remark (according to the analysis in Section 4.2) that
Differential SCA and Profiling SCA are affected in the same way by the leakage
noise increase. Besides, when the leakage noise is amplified, the ratio between
the efficiencies! of both attacks remains constant.

As final remark, let us mention that Proposition 2 also applies to the log-
likelihood vector (Lg)kex. Besides, in the uniform setting (see Section 4.2), the
success rate of the profiling SCA is also constant with respect to k*.

6 Success Rate Evaluation

In accordance with the analyses of Sections 4.2 and 5.2, we assume that the
distribution of the distinguishing vector d = (d), i is a multivariate Gaussian
N (mq, Xq). In this section we present two approaches to compute the success
rate of a side channel key recovery attack, once the parameter of this distribution
have been determined.

In the first approach, we show that the success rate can be expressed as a sum
of Gaussian cumulative distribution functions (cdf). It can hence be estimated by

! By efficiency, we mean the required number of leakage measurements to succeed the
attack (with high probability).



numerically computing these cdf. The second approach consists in simulating the
multivariate Gaussian vector d several times in order to get a precise estimation
of the success rate.

6.1 Numerical Computation

We show hereafter that the success rate can be expressed as a sum of Gaussian
cdf. For this purpose, we need to introduce the comparison vector that is the
(IK| = 1)-size vector ¢ = (ck)yex/(x+y defined for every k € K/{k"} by:

C = dk* — dk . (13)

If all the coordinates of this vector are positive then the attack succeeds in
isolating the good key guess as first candidate. If n coordinates are negative
then the attack rates the good key guess as the (n + 1) candidate; in other
words, it succeeds at the (n + 1) order. The comparison vector is a linear
transformation of the distinguishing vector by a ((JKC| —1) x |K|)-matrix P whose
expression straightforwardly follows from (13). This implies that the comparison
vector has a multivariate Gaussian distribution N (me, X.) where me = Pmg
and Y. = PY4P'.

Let o« C {1,--- ,|K|—1} be a set of indices and let I, and S, be the (|K]|—1)-
size vectors defined by:

) —oo ifica ) 0 ifica
IQ[Z]_{O ifi ¢ a and Sa[l]_{+00 ifi¢a

The vector ¢ has exactly n negative coordinates if and only if there exists a set
a of cardinal n s.t. I, < ¢ < S,. Since the intervals ([I, Sa]),, are disjoints, the
probability that exactly n coordinates of c be negative can be written as:

pn= Y Pla<c<S,]. (14)

a;|lal=n

The o'" order success rate equals the sum pg + p;y + - - - + p,_1 which from (14)
gives:
Succ-0 = Z P[I,<c<S,]= Z P 5. (I Sa) s (15)

a;lal<o a;lal<o

where @, 5 denotes the Gaussian cdf that satisfies &,,, » : (a,b) — f: Gm,x () dz.

Relation (15) shows that the o'® order success rate can be computed by
performing >, _, (“C ‘fl) multivariate Gaussian cdf calculations (on (|K| — 1)-
size Gaussian vectors). The numerical computation of multivariate Gaussian cdf
is a classical issue in statistics. Some solutions exist (see for instance [9,10]) that
can be used to precisely compute the success rate according to (15).

This approach has some drawbacks. Firstly, the numerical computations of
Gaussian cdf may be difficult with covariance matrices having particular forms
and/or quite high dimensions. For instance it requires that the covariance matrix



is not singular, which is not always the case in our context. Yet another drawback
of this approach is that the computation of high order success rates requires
an important number of Gaussian cdf computations. Regarding these issues, a
possible alternative is presented in the next section.

6.2 Gaussian simulation

Another possibility to compute the success rate is to perform a Gaussian sim-
ulation. The principle is to simulate several times the distribution A (mgq, Xq).
This amounts to randomly pick up several distinguishing vectors each one corre-
sponding to the result of an attack. The success rate is estimated based on these
different results. In other words this approach works as an attack simulation
but instead of performing the attack several times, we perform several Gaussian
random vectors simulation which is clearly more efficient especially when the
number of leakage measurements is high and/or the leakage dimension is high.
Another advantage of this approach is that the success rate at the different or-
ders as well as the guessing entropy (see Appendix A) can all be computed using
the same simulated distinguishing vectors. Finally Gaussian simulation is sound
even when the covariance matrix is singular which may happen in our context.

7 Empirical Validation

In order to empirically validate the theoretical analyses conducted in the previous
sections we performed several simulations. We chose S = X & K as target signal
where X and K are 8 bits variables. The leakage means (my)scs and the leakage
covariance matrix X' (assumed constant for the different signals s € S) were
drawn with random coefficients. Their dimensions were set to 1 for differential
SCA, and to 3 for profiling SCA (this is a typical dimension when subspace-based
profiling is involved [2,20]). The attacker model/estimations were first assumed
to be exact (i.e. M(s) = mg, ms = my and 3= Y) and then assumed to be
slightly erroneous (by inserting random errors).

On the one hand, the success rate was estimated empirically by simulating
the attack. Namely, the leakage measurements 1; corresponding to random inputs
x; were randomly picked up according to the leakage parameters (mg, g+, Xy, k*)-
The attack was performed several times (few thousands) on such simulated mea-
surements in order to obtain an empirical success rate. On the other hand, the
success rate was estimated using our approach. We computed the distinguishing
vector expectation and covariance matrix (such as described in Sections 4.2 and
5.2) according to the leakage parameters and assuming 7,, = 1/256 for every z.
Then we performed Gaussian simulations (see Section 6.2) to get an estimation
of the success rate.

As expected, for differential SCA, the different success rates obtained with
our approach always match almost perfectly the success rates obtained by attack
simulations. For profiling SCA, the success rates obtained with our approach also
match quite well the success rates obtained by attack simulations. The precision
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Fig. 1. Success rates of different pro- Fig. 2. Success rates of a profiling SCA
filing SCA attacks over an increasing attack over an increasing number of
number of leakage measurements. leakage measurements.

of this matching depends on the number of leakage measurements required for
the attack to succeed (with a high probability). When this number is quite low
(i.e. around few hundreds), our estimation slightly overvalues the real success
rate. This overvaluation becomes less marked as the number of required leakage
measurements increases. As an illustration the success rate of four attacks requir-
ing different amounts of leakage measurements is plotted Figure 1. Success rates
obtained by attack simulation are plotted in black while the corresponding ones
obtained with our approach are plotted in grey. The convergence can be clearly
observed. Figure 2 shows both success rates for an attack requiring around 200
leakage measurements. When moving up to 500 required leakage measurements,
the curves completely mix up.

The different empirical results that we obtained have demonstrated the sound-
ness of our theoretical analysis. They also show that the approximation 7, =
1/]X| is sound when the z;’s are randomly drawn (4.e. in a known plaintext/cipher-
text attack setting).

8 Conclusion and Open Issues

In this paper, we have investigated the issue of evaluating the success rate of
side channel analysis in the Gaussian leakage model. For the two main families of
SCA, namely differential SCA and profiling SCA, we have shown that the distin-
guishing vector resulting from the attack has (or at least quickly tends towards)
a multivariate Gaussian distribution. This allowed us to exhibit an efficient way
to compute the success rate of such an attack according to the number of leakage
measurements and to the leakage distribution parameters. Finally, our analysis
was validated empirically by a large number of attack simulations.

Our analysis stresses several interesting open issues. Future works could focus
on chosen plaintext attacks and investigate how the choice of the target inputs
may affect the success rate of an attack. Another interesting issue is the tolerance
for a distinguisher to the error on the leakage model. How does an error on



the attacker model/estimations affect the success rate of the attack ? Finally,
extension of our analysis to protected implementations (for instance by masking
techniques) would be of great interest to quantify their security.
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A Guessing Entropy

The guessing entropy [17,5] is defined as the expected number of key guesses
to test before recovering a target key value. As pointed out in [21], the guessing
entropy is relevant in the context of side channel analysis since it indicates the
average workload to perform after side channel analysis. Let ranky (d) denote the
index i € {1,---,|K|} such that dj, is the i higher element of d. The guessing
entropy of a side channel attack using a distinguisher D and a public vector x,
and targeting a secret key k* is formally defined as:

GED ). =E[(li — L(p(k*,x;))), ; d <« D(x,1) : ranky-(d)] . (16)

The guessing entropy is related to the success rate of every order. In fact,
the correct key guess is rated at the o' rank in the distinguishing vector if and
only it is rated among the o first candidates but it is not rated among the o — 1
first candidates. As a result, the probability that the correct key guess be rated
at the o' rank satisfies for every o: P [ranky-(d) = o] = Succ-o — Succ-(o — 1),
where Succ-0 is naturally defined at zero. This brings to the following relation:

IK| IK|-1
GE = Zo P [rankg-(d) = 0] = |K|— Z Succ-o . (17)
o=1 o=1



B Proof of Proposition 3

The proof of Proposition 3 makes use of the following lemma.

Lemma 1. Let X be a T-size random vector having a Gaussian distribution
N(0,X). Let A1 and Ay be two (T x T)-matrices and let m1 and ms be two
T-size vectors. Let Q1 and Q2 be two quadratic forms defined, for j = 1,2, by
Q=X+ mj)’Ag (X +my). For j = 1,2, the expectation of Q; satisfies:

E[Q;] = ||A;my||” + Tr(4; £ A)) . (18)
And the covariance of Q1 and Qo satisfies:
Cov [Q1, Q2] = 2| A1 £ Ayl +4 m' A7 T AZmy . (19)
Proof. We have Q; = Zzll (A; (X + mj))[i]2 which leads to:
T

E(Q)) = DB [(4; (X +my)) il (20)

7

Il
—

I
.Mﬂ

Il
-

T
E [(4; (X +my) i) + ZVar [(Aj (X +my))[El] . (21)

?

since E [Y?] = Var[Y] + E [Y]? holds for every random variable Y. From (X +
m;) ~ N (my, £) we have A; (X + m;) ~ N (A;m;, A; ¥ A}) which directly
yields (18).

The quadratic form Q; can be rewritten as Q; = (4; X)? + (A;m;)? +
2m/; A3 X for j = 1,2. By bilinearity, Cov [Q1, Q2] satisfies:

Cov [Ql; QQ] = Cov [(Al X)27 (A2 X)z]
+2 Cov [(41 X)?, my As X| +2 Cov [(A2 X)?, m} A1 X]|
+4 Cov[m} AX, mjyAX] . (22)

We claim the three following relations:

Cov [(A1 X)?, (A2 X)?] = 2| A1 S A5, (23)
Cov [(A1 X)?,mhy A3 X] = Cov [(A2 X)?,m| AT X] =0, (24)
Cov [m} AT X, my A3 X]| =m) A} X Aim, . (25)

These relations together with (22) result in (19) and state the correctness of
Lemma 1. Relation (25) straightforwardly holds from the bilinearity of the co-
variance and by symmetry of A% (i.e. (A?)’ = A?). Relations (23) and (24) are
stated hereafter.



First, let us show (23). The covariance between (A; X)? and (A2 X)? can be
rewritten as:

Cov [(41 X)?, (A2 X)) = 3~ Cov | (Ar X)lif*, (A2 X))’

= 3 (B [ )P4 0B - B [ 0] B (42 007] ) - (26)

Since the expectations of A; X and As X equal zero, the expectation of the
product (A4; X)[i]*(As X)[j]* is the Gaussian forth order moment that is known
to satisfy:

B (A1 X) [ (42 X)[P] = B (41 X) ] B [ (42 X) 5T
+2 Cov[(A1 X) [, (A NI . (27)

Hence, (26) gives:

Cov [(A1 X)?, (A2 X)?] = 2ZCOV (A X)[i], (A2 X)[5]]? . (28)

Since we have Cov (41 X)[i], (A2 X)[j]] = (A1 X AL)[4, 5], one deduces that (28)
finally results in (23).

We now show the correctness of (24). We have:

Cov [(A1 X)?, my A3X] =Y Cov [(A1 X)[i)?, ml, A2 X} . (29)

Since X has a zero mean, every term of the previous sum is a Gaussian third
order moment and is hence equal to zero. This way, we get (24). o

We give hereafter the proof of Proposition 3.

Proof. (Proposition 8) Since the 1;’s are independently drawn from Gaussian

distributions N (my, g+, Xy, x+) and since, for every z, there is a ratio 7, of the

x;’s that equal z, Relation (10) and Lemma 1 directly lead to (11) and (12).
Now, (Li)rex can be expressed as a linear transformation of the vector

Zf\il l; and of the vector (Zfil Li[g1)l [j2]> < g The first one has a multi-
1<j1,52<

variate Gaussian distribution and, from the multivariate central limit theorem,

the second one tends toward a multivariate Gaussian distribution as N grows.

Hence (Ly)reic tends toward a multivariate Gaussian distribution as N grows.

<



C Convergence of the Log-Likelihood Distribution

According to (10), the log-likelihood L) can be expressed as the sum of |X|
values Ly, , that are defined by:

N
Ty N 1 R ~_ R
.= E@bg (2m) |0 x]) — N (i — g p) £y (i —ak) . (30)
i=1

Ly

)

The first term is constant and the second term is a sum of N1, elements of
the form X’ A% X where A is the matrix X i and X is a Gaussian random
variable N (mg g+ — My g, 2y k). The distribution of such a sum is given in the
following lemma. At first, let us recall that the chi-square distribution with n
degrees of freedom x? (n) is the distribution obtained by summing n independent
N (0,1)-distributed random variables.

Lemma 2. Let (X;); be n independent T-size random vectors having a Gaus-
sian distribution N (m, X), let A be a (T x T)-matriz and let (Q;); be the
quadratic forms defined as Q; = X} A% X;. The sum of the Q; satisfies:

n T
Y Qi=8+G+> aiCi, (31)
j=1 i=1

where 3 = n(A-m)?, a; = (AX A)[i,i], G is an univariate Gaussian random
variable, C; are T chi-square random variables with n degrees of freedom.

Proof. For j = 1,2, we have Q; = (AX;)2 Denoting by & the centered

random variable X; —m, we get Q; = (Am)?+2m’ A2 X ;4 (A X,)? and hence,
— — 2

2 Qi =B+23;m A X+ 30,5 (AX )]

After denoting 23, m/ A?X; by G and ai > (ij)[i]2 by C;, we get (31).
Now, G is Gaussian since it is defined as a sum of Gaussian random variables.
Moreover, the covariance matrix of A X; being equal to A X' A", we have, for every
j: a; = Var [(AX;)[i]]. This implies that \/%(A X ;)[i] is N (0, 1)-distributed for

every j, hence by definition C; is x? (n)-distributed. o

A chi-square distribution with n degrees of freedom quickly tends towards
a Gaussian distribution as n grows. A rule of thumb in probability theory is
to consider the approximation x? (n) ~ N (n,2n) quite reasonable for n > 30.
From Lemma 2, Ly, , is a sum between a constant, a Gaussian random variable
and T chi-square random variables with N7, degrees of freedom. Therefore, for
N, large enough, we can consider that £ ; has a Gaussian distribution. If this
holds for every x € X then the distribution of £ can fairly be approximated by
a Gaussian.



D Profiling SCA — Number of Leakage Measurements vs.
Leakage Variance

Let us denotes the leakage covariance matrix by X' and its estimation by 5%
Under the constant covariance assumption, (11) and (12) can be rewritten as:

E[Ly] =C — % > 1 HZAJ_UQ (M jx — fﬁa:,k)HQ ; (32)
oy

and
1 Iy o1 v S .
Cov [Lyy, L] = Co + Do T (Mg =g p) ST E ST (mg e — k)
rzeX
(33)
where C; and C5 are some values constant with respect to & that satisfy C; =
. N N . N 2
log (2] £) + Tr(£-12.2 (£7172)") and €3 = 5y | £-1/2 5 (S-12y
hs
We show in Section 6.1 that the success rate depends of the distribution of
the comparison vector ¢ = (Ck)kelC/{k*} that is defined, for Profiling SCA, by
¢y = Ly — Ly, for every k € K. Assuming (Li)rex Gaussian, ¢ has a Gaussian
distribution whose parameters satisfies:

Elex] = E[Ly] = E[Lk] , (34)
and
Cov [Ckl s Ckz] = Var [Ek*]—f—COV [Ekl s EkQ]—COV [Ek* R Ekl]—COV [Ek* R £k2] . (35)

From these expressions, we can see that the constant terms C; and Cs of (32)
and (33) cancel each other out in the expectation and the covariance matrix of c.
It thus appears that multiplying the leakage covariance matrix by a factor A (and
assuming that its estimation is also multiplied by A) results in the multiplication
of me and X by 1/A while multiplying the number of leakage measurements by
A results in the multiplication of X by 1/A.

One can verify that the Gaussian cdf satisfies for every (a, b):

@m//\)z//@ (a, b) = @m,g()\a, )\b) . (36)

As shown in Section 6.1, the success rate can be expressed as a sum of cdf @,,_ s,
with inputs in {0, +o00, —0o}FI=1. One thus deduces from (36) that multiplying
me by 1/X and X, by 1/A? keeps the success rate unchanged. Hence we obtain
that multiplying the leakage covariance matrix and multiplying the number of

leakage measurements have complementary effects on the success rate of Profiling
SCA.



