Two Attacks on a White-Box AES
Implementation*

Tancréde Lepoint!2, Matthieu Rivain!,

Yoni De Mulder?, Peter Roelse?, and Bart Preneel?

! CryptoExperts, France
{tancrede.lepoint ,matthieu.rivain}@cryptoexperts.com

2 Ecole Normale Supérieure, France

3 KU Leuven and iMinds, Belgium
oni.demulder,bart.preneel {@esat.kuleuven.be
y P

4 Trdeto B.V., The Netherlands
peter.roelse@irdeto.com

Abstract. White-box cryptography aims to protect the secret key of a
cipher in an environment in which an adversary has full access to the
implementation of the cipher and its execution environment. In 2002,
Chow, Eisen, Johnson and van Oorschot proposed a white-box imple-
mentation of AES. In 2004, Billet, Gilbert and Ech-Chatbi presented an
efficient attack (referred to as the BGE attack) on this implementation,
extracting its embedded AES key with a work factor of 23°. In 2012,
Tolhuizen presented an improvement of the most time-consuming phase
of the BGE attack. The present paper includes three contributions. First
we describe several improvements of the BGE attack. We show that the
overall work factor of the BGE attack is reduced to 22 when all im-
provements are implemented. This paper also presents a new attack on
the initial white-box implementation of Chow et al. This attack exploits
collisions occurring on internal variables of the implementation and it
achieves a work factor of 222, Eventually, we address the white-box AES
implementation presented by Karroumi in 2010 which aims to withstand
the BGE attack. We show that the implementations of Karroumi and
Chow et al. are the same, making them both vulnerable to the same
attacks.

Keywords. White-box Cryptography, AES Implementation, Dual Ci-
pher, Cryptanalysis.

1 Introduction

In 2002, Chow et al. introduced the concept of white-box cryptography by pre-
senting a white-box implementation of AES [5]. White-box cryptography aims to

* The present paper is a merged abstract of two independent but overlapping works: a
paper by De Mulder, Roelse and Preneel [11] and a paper by Lepoint and Rivain [7].

protect the confidentiality of the secret key of a cipher in a white-box model, i.e.,
where an adversary is assumed to have full access to the implementation of the
cipher and its execution environment. For example, in a white-box context the
adversary can use tools such as decompilers and debuggers to reverse engineer
the implementation of the cipher, and to read and alter values of intermediate
results of the cipher during its execution. A typical example of an application
in which a cipher is implemented in a white-box environment is a content pro-
tection system in which a client is executed on the main processor of a PC, a
tablet, a mobile device, or a set-top box.

In 2004, Billet et al. [3] presented an attack on the white-box AES implemen-
tation of Chow et al.. The BGE attack assumes that the order of the bytes of the
intermediate AES results is randomized in the white-box implementation, and
extracts its embedded AES key with a work factor of 23°. In 2012, Tolhuizen [12)]
proposed an improvement to the most time-consuming phase of the BGE attack,
reducing the work factor of this phase to 2!°. If the improvement of Tolhuizen
is implemented, then the work factor of the BGE attack is dominated by the
other phases of the BGE attack, and equals 22°. This paper presents several
improvements to the other phases of the BGE attack, and shows that the work
factor of the BGE attack is reduced to 222 when Tolhuizen’s improvement and
the improvements presented in this paper are implemented.

This paper also presents a new attack on the white-box implementation of
Chow et al. The key idea is to exploit collisions in output of the first round in
order to construct sparse linear systems. Solving these systems then reveals the
byte encodings and secret key byte(s) involved in some target look-up tables.
Applied to the original scheme, we get an attack of complexity 222.

The BGE attack triggered the design of new white-box AES implementations,
such as the ones proposed by Xiao and Lai in 2009 [13] and by Karroumi in
2010 [6]. In [10], De Mulder, Roelse and Preneel presented a cryptanalysis of Xiao
and Lai’s white-box AES implementation, showing that this implementation is
insecure.

In [6], Karroumi uses the concept of dual ciphers [1,2,4] and the white-box
techniques of Chow et al. to design a new white-box AES implementation. In [6],
Karroumi argues that the additional secrecy introduced by the dual cipher in-
creases the work factor of the BGE attack to 2°3. This paper shows that the
white-box AES implementations of Chow et al. and Karroumi are the same. As
a direct consequence, Karroumi’s white-box AES implementation is vulnerable
to the same attacks, including the original BGE attack and the attacks presented
in this paper.

Paper organization. Section 2 describes aspects of AES, the white-box AES
implementation of Chow et al., and the BGE attack that are relevant to this pa-
per. The improvements of the BGE attack and their work factor are presented in
Section 3. The new attack based on collisions is presented in Section 4. The inse-
curity of Karroumi’s scheme is shown in Section 5. Finally, concluding remarks
are provided in Section 6

2 Preliminaries

2.1 AES

AES [8] is a key-iterated block cipher operating on 16-byte blocks. This paper
assumes throughout and without loss of generality that the AES variant in [8]
with a 128-bit key is used. AES consists of 10 rounds and has 11 round keys which
are derived from the secret key using a key scheduling process. Each AES round
and the operations within a round update a 16-byte state; the initial and final
state are the AES plaintext and ciphertext, respectively. AES can be described
elegantly by interpreting the bytes of the state as elements of the finite field
Fss56, and by defining AES operations as mappings over this field (see also [8]).
As the final round is not relevant for the discussion in this paper, only the first
9 rounds are considered in the following text. Each round r with 1 < r < 9
comprises four operations:

ShiftRows: a permutation on the indices of the 16 bytes of the state;

AddRoundKey: a byte-wise addition of 16 round key bytes kgm) (0<i,57 <3)
and the 16-byte state;

SubBytes: applies the AES S-box, denoted by S, to every byte of the 16-byte
state;

MixColumns: a linear operation on F}$;. The MixColumns operation is repre-
sented by a 4 x4 matrix MC over Fa56; the linear operation applies 4 instances
of this matrix in parallel to the 16-byte state. The 16 coefficients of MC are
denoted by mc;; for 0 <4,5 < 3.

In literature, the boundaries between rounds are defined in different ways. In
this paper, ShiftRows and MixColumns are the first and final operations within
a round, respectively. That is, the order of the operations within a round is
identical to the order used to describe the operations above. For details about
AES, refer to [8].

AES subrounds. The mappings in the following definition will be used to
describe the white-box AES implementations and the attacks on the implemen-
tations. In the following text, the finite field representation as defined in [8]
is referred to as the AES polynomial representation, and @ and ® denote the
addition and multiplication operations in this representation, respectively.

Definition 1. Let x;,y; € Fasg for 0 < i < 3 be represented using the AES
polynomial representation. The mapping AES(7) Fio = Fig for 1 < r <
9 and 0 < j < 3, called an AES subround, is defined by (yo,y1,Y2,y3) =
AES™I) (g, 21, T2, v3) with

yi =meio @ S (w0 & k(()m)) ®mei @ S(z1 @ kY’j))@

meis ® S(zs @ kYY) @ mess @ 8 (w5 @ k)

for 0 <i<3.

Observe that an AES subround consists of the key additions, the S-box op-
erations and the MixColumns operations in an AES round that are associated
with a single MixColumns matrix operation, and that one AES round comprises
four AES subrounds. The subrounds are indexed by j in Def. 1, and this paper
assumes throughout that the four subrounds in a round are numbered left to
right. The bytes k:gw) for 0 < i,j < 3 are the 16 bytes of the AES round key of
round r.

2.2 Chow et al.’s White-Box AES Implementation and the BGE
Attack

This section describes aspects of Chow et al.’s white-box AES implementation [5]
and the BGE attack [3] that are relevant to this paper. For an in-depth tutorial
on how Chow et al.’s white-box AES implementation is constructed, refer to [9].

Encoded AES subrounds. In the following text, Pi(r’j) and Qgr’j) for 0 <
i < 3 denote bijective mappings on the vector space F$5, referred to as en-
codings in white-box cryptography. The encodings are generated randomly and
are kept secret in a white-box implementation (for details about encodings, re-
fer to [5,9]). A vector of four mappings, such as (Po(m), Pl(m)7 Pg(r’j), Pém)) or

(ér’j), Qgr’j), ;T’j)7 i(f’j)), denotes the mapping defined by applying the i-th

element of the vector to its i-th input byte for 0 < ¢ < 3. For @ € F3 the mapping
@q: Fy — FL denotes the addition with a. With slight abuse of notation, an
input to AES(9) is considered to be an element of Fiss using the AES poly-
nomial representation in the following definition, and an output of AES() is
considered to be an element of (F§)*.

Definition 2. The mapping AESg;g): (F$)* — (F§)* for 1 <r <9 and 0 <
j <3, called an encoded AES subround, is defined by

AES(TJ) — (Qg)r#j), Qg'r’j)) Qg"’j), Qgr’ﬂ)) o

AES(TJ) o (Pér7j), Pl(r’j)a PZ(TJ) P3(T7J)) .

)

In Chow et al.’s white-box AES implementation, the output encodings Qz(-r_l’j)

and input encodings Pi(m) for 0 <i,7 < 3 of successive AES rounds are pairwise
annihilating to maintain the functionality of AES. The data-flow of the white-
box implementation between successive AES rounds r — 1 and r determines the
16 pairs of output/input encodings which are pairwise annihilating.

Remark 1. Although not explicitly mentioned by Chow et al. [5], one can use
a randomization of the order of the subrounds in an AES round and in the
order of the bytes within each subround to add confusion to the implementation.
This can be implemented without increasing the size and without decreasing the
performance of the white-box implementation. We capture such a randomization

in the next definition of encoded subround where permutations 7.7 : (F§)4 —
(F5)* (i =1,2) for 1 <r < 9and 0 < j < 3 are added to randomize the order of
the input bytes and output bytes of an AES subround. Moreover, permutations
7(1:{0,1,2,3} — {0,1,2,3} for 1 <r < 9 randomize the order of the four AES
subrounds within an AES round. These permutations are randomly chosen and
kept secret in a white-box implementation.

Definition 3. The mapping AES"7). (F$)* — (F$)* for 1 <r <9 and 0 <

enc

Jj <3, called an encoded AES subround with byte permutations, is defined by

(7") r,J r,J \J ,J
4ES n-] (Q(])’Q(])’ (]),Q()) o
1ES(T7J) (P(7 7J)7P(7 J)’P(;])7P(7 7])) ,

where the mapping AES(M) is defined by

HQ(TJ) © AES(T’W(T)(j)) °© Hl(nj) =uc o (8,8,8,8)0 @[/_fgw)]oﬁis-s)
7.(rJg)\ — (™ (G

with [kg J)]OSZ‘S? = (Hf f])) 1([7%(o (j))]ogz‘gg)

and Me(md) _ HQ(M) oMC o Hl(m) .

In [3], Billet et al. described a cryptanalysis of Chow et al.’s white-box AES
implementation [5] with byte permutations and subround permutations. The
starting point of their attack is that for rounds 1 < r < 9, it is possible to
compose certain white-box look-up tables in such a way that an adversary has
access to the encoded AES subrounds of each round.

BGE attack. As indicated above, the adversary has access to the encoded
AES subrounds AES(W) for 1 <r <9and 0 < j < 3. Next, the BGE attack [3]

enc
comprises the following three phases: Phases 1 and 2 retrieve the bytes of the
AES round key associated with round r for some r with 2 < r < 9, and Phase 3

determines the correct order of the round key bytes and extracts the AES key.

Phase 1 retrieves the encodings Qgr’j) (0 < i < 3) up to an affine part for each
encoded AES subround j (0 < j < 3). Because of the pairwise annihilating

property of the encodings between successive rounds, the encodings Pi(r’j) (0<
i,7 < 3) can be retrieved up to an affine part by applying the same technique to
the encoded AES subrounds of the previous round.

Phase 2 assumes that all encodings of an encoded AES round are affine mappings
(as the other parts have been retrieved in Phase 1). Phase 2 first retrieves the
affine encodings Q'"?) (0 < i < 3) for each encoded AES subround j (0 < j < 3).
During this process, the key-dependent affine mappings]Bi(r’j)(x) = Pi(r’j)(a:) &>
EETJ) (0 < 4,5 < 3) are obtained as well. As in Phase 1, the affine encodings
Pi(r’j) (0 < 4,5 < 3) are retrieved by applying the same technique to the encoded

AES subrounds of the previous round. This enables the adversary to compute
the round key bytes I_cgr’]) = Pi(r’j)(O) e Pi(r’j)(O) for 0 <4,5 <3.

Phase 3 retrieves the round key bytes of round r+1 as discussed above in Phases
1 and 2, and uses the fact that the round key bytes of rounds r and r + 1 are
related to each other via both the data-flow of the white-box implementation
and the AES key scheduling algorithm to retrieve the AES round key. Finally,
assuming that the AES variant with a 128-bit key is used, the adversary can
use the property of the AES key scheduling algorithm that the AES key can be
computed if one of the round keys is known.

Work factor of the BGE attack. In [3], the authors claim that the work factor
associated with the three phases of the BGE attack is around 23°. As a re-
sult, the white-box AES implementation of Chow et al. is insecure. For detailed
information about the BGE attack, refer to [3].

3 Reducing the Work Factor of the BGE Attack

In this section, an encoded AES subround is defined as in Def. 3. In 2012,
Tolhuizen [12] presented an improvement of the first phase of the BGE attack.
If the improvement of Tolhuizen is implemented, then the work factor of the
BGE attack is dominated by the second phase. In this section we present several
improvements to the other phases of the BGE attack:

1. A method to reduce the expected work factor of Phase 2 of the BGE attack;

2. An efficient method to retrieve the round key bytes of round r + 1 after the
round key bytes of round r are extracted;

3. An efficient method to determine the correct order of the round key bytes,
given the round key bytes of two consecutive rounds.

As the work factors of Phases 1 and 2 of the BGE attack are reduced by Tol-
huizen’s improvement and the first improvement above, respectively, it is now
important to have an efficient method for Phase 3 of the BGE attack as well, as
otherwise the work factor of this phase could dominate the overall work factor.
The second and third improvements above comprise such a method for Phase 3.
It will be shown that Tolhuizen’s improvement to Phase 1 of the BGE attack and
the above improvements to the other phases reduce the work factor of the BGE
attack to 222. The improved BGE attack comprises the following four (instead
of three) phases:

Phases 1 and 2: retrieve the round key bytes Egr’j) 0<1i,7<3)
associated with round » (2 < r < 8).

The first two phases are the ones of the BGE attack [3] using Tolhuizen’s im-

)

provement, and retrieve the round key bytes Iggr’j for 0 < 7,j < 3 associated

with round r for some r with 2 < r < 8.

Work factor of Phase 1. Tolhuizen’s improvement [12] reduces the work factor
of Phase 1 to around 2-4-4-(35-28) < 219, The first three factors (i.e., 2-4-4)
denote the number of encodings involved in Phase 1, i.e., four encodings for each
of the four subrounds for each of the two consecutive rounds. The fourth factor
(i.e., 35 - 2%) denotes the work factor required to retrieve one encoding up to an
affine part using Tolhuizen’s method.

Work factor of Phase 2. The expected work factor F' of the second phase as
described in [3] equals approximately 2 -4 -4 - 215 .28 = 228 and is measured in
the number of evaluations of mappings on F§. The evaluations are required to
determine if a mapping on F§ is affine. The mappings f that need to be tested
for being affine are listed in [3, Proposition 3]. Each f is associated with a secret
encoding Pi(m) (0 <i,5 < 3) of around r. As Phase 2 needs to be applied to two
consecutive rounds, this involves a total of 2 -4 -4 mappings (which corresponds
to the first three factors in F). The mappings f are permutations on F§ and
have the structure

f:s—loQ(c}d)oQoSo@koP, (1)

where S denotes the AES S-box mapping (viewed as a permutation on F3), k
denotes a key byte, P and @ denote bijective affine mappings on F§, and Q(_Cl d)

denotes a bijective affine mapping on F$ for each pair (¢, d) € F354. Furthermore,
Q(_C1) = Q" for one specific pair (c,d) € F3;5. An affine-test is performed for
each possible pair (c,d) € F4 until the corresponding mapping f is affine. The
expected number of pairs for which the test is performed equals approximately
2% which is the fourth factor in F. The fifth factor in F, i.e., 28, is associated
with the test used in [3].

Instead of the test used in [3], which requires 2" evaluations to determine if
f + Fy — F% is affine, we use the following algorithm to reduce the expected
number of evaluations. If e; (1 < i < n) denotes the i-th unit vector in F%, then
the algorithm first verifies if the equation

fler @ ea) = f(0) & fler) & fle2) (2)

holds true. If this equation does not hold true, then the algorithm terminates
with “f is not affine”. Observe that the algorithm requires 4 evaluations of f in
this case. If Eq. 2 holds true, then the algorithm applies the method used in [3]
to determine if f is affine (with the only difference that f is not re-evaluated for
the four input values 0,e1,e2 and e; @ ez). In this case 2" evaluations of f are
required.

To show the correctness of this algorithm, it is sufficient to show that an
affine mapping always satisfies Eq. 2. If f is affine, then f(x) = A(z) ® b for
some A € F3*" and some b € FZ. It follows that f(0) ® f(e1) @ f(e2) =
b @ A(el) EB b @ A(eg) @ b = A(€1 @ 62) @ b = f(€1 @ 62).

Lemma 1. If f is a random permutation on F% and if E(n) denotes the ex-
pected number of evaluations of f required by the algorithm described above, then
E(n) < 5.

Proof. Let p(n) denote the probability that Eq. 2 holds true for a random per-
mutation. To determine p(n), note that f(0), f(e1), f(e2) and f(ey @ e2) are
four distinct elements of F% if f is a permutation. From this it follows that
F(0)@ f(e1) @ f(e2) and f(e1 @es) are both elements of F3 \ {£(0), f(e), f(e2)}-
Further, as f is a random permutation, f(e; @ez) is a random element of this set.
Hence, p(n) = 1/(2"—3) and E(n) = 4(1—p)+2"p = 4+(2"—-4)/(2"-3) < 5. O

Under the assumption that f in Eq. 1 behaves as a random permutation on
F$ for every incorrect guess for (c,d), the expected work factor of the affine-test
is reduced from 28 to approximately 5 evaluations if f is not affine and the work
factor is 2% if f is affine. This implies that the fifth factor in F' is reduced to
approximately 5. That is, the expected work factor of Phase 2 of the BGE attack
is now approximately 2 -4 -4 -215 .5 ~ 222,

Phase 3: retrieve the round key bytes IZ:Z(T'H’” (0 <14, <3
associated with round » + 1.

As mentioned in the description of the BGE attack in Section 2.2, [3] obtains
the round key bytes of round r + 1 by applying Phases 1 and 2 to round r + 1 as
well. Here, we present a more efficient method based on the affine-test described
above. The method comprises the following three steps for each encoded AES
subround j (0 < j < 3) associated with round r + 1 to retrieve the round key

bytes l_cyﬂ’j) (0<4,5 <3):

Step 1 applies Phase 1 (using Tolhuizen’s improvement) to round r 4 1 in order

to retrieve the encodings Qg“’l’j) (0 <14 < 3) up to an affine part.

Step 2 first removes the non-affine part of the output encodings as recovered
in Step 1 from the encoded AES subround. Next, Step 2 removes the input
encodings P;Hl’]) (0 < i < 3) from the encoded AES subround (observe that
the inverses of these input encodings were obtained in Phases 1 and 2). The
resulting mapping f"+17) : (F§)* — (F§)* is given by

f(r—i-l,j) _ (C?ér#»l,j)7 Qgerl,j)7 Qéerl,j), Qz())rJrLj)) Om(r+l,j)

where Q") (0 < i < 3) are affine output encodings.

Step 3 retrieves the round key bytes I_@(THJ) (0 <i < 3). To find a key byte, say

Eér+1’j), fix the other three input bytes to f("+17) (e.g., to zero), search over all
possible 28 values of the key byte k and verify if

gi(z) = fUT9) (ke S7(x),0,0,0)

is affine using the test described above. In case gi(x) is affine, then l;;(()TH’J) =k.
Repeat this for l_sz(rﬂ’j) (1=1,2,3).

The correctness of Step 3 uses the fact that the mapping S(c &) S‘l(x)) is
non-affine for all non-zero values of c. This has already been proven in [3, proof
of Proposition 3.

Work factor of Phase 3. The work factor of Step 3 equals 4-4-27-5 ~ 23 where
4 - 4 denotes the number of round key bytes, 27 denotes the expected number
of key values for which the affine-test is performed and 5 denotes the expected
number of evaluations of the affine-test if g is not affine. The work factor of
Step 1is 4-4-(35-2%) < 218 where the first two factors denote the number of
output encodings involved in Step 1. As a result, the work factor of Phase 3 is
dominated by Step 1 and is less than 2'8.

Phase 4: determine the correct order of the round key bytes and
extract the secret AES key.

After Phases 1 - 3, the values of the round key bytes of two consecutive rounds r
and r 4+ 1 are known. However, for each round, the order of the round key bytes
of each subround and the order of the four subrounds are still unknown. Notice
that there are still (4!)% ~ 223 possibilities for the round key if only the bytes
of that round key are considered. In [3], it is indicated how the correct order
can be determined given the “shuffled” round key bytes of rounds r and r + 1.
However, [3] does not contain an explicit description of such a method. As the
work factor of the first three phases equals 222, it is desirable to have a method
to determine the correct order of the round key bytes with a work factor that is
less than 222. Below we present such a method, comprising the following three
steps:

Step 1 retrieves MC(™7) associated with each subround j (0 < j < 3) of round r.
Recall that the encodings Pi(r’j) and Qgr’j) (0 <i,7 < 3) were obtained in Phases
1 and 2. Together with the knowledge of the round key bytes Efr’j) (0<i,j <3),

compute

Mc(md) — (Qér’j)7Q1T’j), éﬁj)7Qgﬁj))*1 OTES(TJ) o

enc

. . . N —1 _
(P(g77])7Pl(nj)?PZ(T,])’PL’E’,J)) © @[EfTv.i) 3 o (Sa Sa Sa S) ! P

Jo<i<
for j=0,1,2,3.

Step 2 computes for each MC(™7) (0 < j < 3) the permutations ITy, IT, : (F§)* —
(F$)* such that

MC("™9) = [T, oMCo IT; . (3)

Let (IT™, IT(?)) denote the pairs of permutations for which MC remains invariant,
ie, MC = IT® oMC o [T, Tt is easily verified that there are exactly four such
pairs. The four permutations IT(") are the four different circular shifts on the
indices of a 4-byte vector, and IT(? = (IT)~! for each of these pairs. This
implies that there are also exactly four different pairs of permutations satisfying
Eq. 3, given by

(W oIy, Hyo ™) . (4)

As a consequence, finding one pair of permutation matrices satisfying Eq. 3
suffices to find the remaining three as well. Notice that exactly one of these four

pairs of permutations equals the pair (1T 1(T’j),HQ(T’j)) of the encoded subround
(see also Def. 3); in other words, one of these pairs is the correct pair.

After this, the order of the round key bytes associated with each subround
is known up to an uncertainty of four possibilities (circular shifts). Observe that
the order of the four subrounds is still unknown.

Step 3 determines the correct order of the round key bytes. For each of the
possible orderings of the four AES subrounds of round r and the round key
bytes within these subrounds (as determined in Step 2), obtain a candidate
for the (r 4+ 1)!* round key using the following two methods: (i) the AES key
scheduling algorithm and (ii) the data-flow of the white-box AES implementation
between the encoded subrounds of rounds r and r + 1. Notice that once an order
of the round key bytes of round r is selected, the order of the round key bytes
of round 7 + 1 can be determined using the corresponding pair of permutations
of each of the subrounds of round r (see also Eq. 4) and the data-flow of the
white-box implementation. With overwhelming probability, only one ordering of
round key bytes of round 7 results in the same (7 + 1)*" round key; this ordering
corresponds to the correct round key of round r. Finally, use the property of the
AES key scheduling algorithm that the AES key can be computed if one of the
round keys is known.

Work factor of Phase 4. A mnaive approach yields an expected work factor of
(4!)% ~ 29 for Step 2 by searching over all possible pairs of permutations. Step 2
reduces the number of possible orderings of the round key bytes from 223 to
4% . 41 < 213 (where the first and second factor denote the possible orderings of
round key bytes within each subround and of the four subrounds, respectively),
which equals the work factor of Step 3. As a result, the overall work factor of
Phase 4 is dominated by the work factor of Step 3 and hence is less than 2'3.

Conclusion

The work factor of the improved BGE attack is dominated by the work factor
of the second phase and equals 222.

Note that the uncertainty in the order of the round key bytes results in
the need to retrieve key bytes of two consecutive rounds. This affects the work
factor of the original BGE attack. In the improved BGE attack this is no longer
the case, as the work factors of the phases that determine the correct order
(i.e. Phases 3 and 4) are negligible compared to the work factor of Phase 2. A
consequence of Tolhuizen’s improvement is that the use of non-affine white-box
encodings has a negligible impact on the overall work factor of the improved
BGE attack.

4 A New Attack Exploiting Internal Collisions

In this section we propose a new attack on the initial Chow et al. implementa-
tion exploiting collisions in output of the first AES round. Note that unlike the

BGE attack, the description below only considers the basic implementation, i.e.,
without byte permutations. In this section, an encoded AES subround is defined
as in Def. 2.

According to Section 2, applying a set of successive look-up tables, one can
compute the first encoded AES subround AESS{CO), which is denoted by f/ in
the following for the sake of clarity (and in accordance to notations in [7]):

f/ _ ((()l,())’le,O)’Qél,O)7 :gl,O))OAES(LO) O(]30(1,0)’131(1,0)’‘Pz(l,O)7 351,0))) (5)

Let us denote by f; the coordinate functions of f’ such that " = (f§, f1, f3, f3)-
Let us further denote by S; the function defined as

Si(-) = S @ (PO)()) (6)

for 0 <7< 3.

4.1 Recovering the S; Functions

Our attack consists in finding collisions in output of the coordinate functions f;
in order to recover functions Sy, S1, So and S3 and associated key bytes. For
the sake of clarity, we drop all the surperscripts (1,0) in the following. We start
with the recovery of Sy and S; by looking for collision of the form

fé(OZ,0,0,0):fé((),B,0,0) . (7)

By definition of the MixColumns transformation, the above equation can be
rewritten as

Qo(02® So(e) ®03® S1(0) B c) = Qo (02® Sy(0) B 03® S1(8) ® c)
where ¢ = S3(0) @ S5(0), implying
02 ® Sp(a) ®03® S1(0) =02 ® Sp(0) B 03® S,(B) . (8)

Collecting several such equations, we can construct a linear system to recover
So and Sy. Let wug, ui, ..., usss and vy, vy, ..., vos5 denote the unknowns
associated to the outputs of Sy and Sy (i.e. u; = So(i) and v; = S1(¢)). Then
(8) can be rewritten as

02® (up ® ua) B 03® (vo Pvg) =0. (9)

Then we can easily obtain a system involving all the u; and all the v;. Indeed,
the functions a — f{(,0,0,0) and g — f;(0,5,0,0) are bijections, so we get
exactly 256 collisions between f{(«,0,0,0) and f§(0, 3,0,0) while « and 3 vary
over Fasg. Discarding the irrelevant collision for («, 8) = (0,0), we get 255 pairs
(o, B) satisfying f}(«,0,0,0) = f}(0,3,0,0) and providing an equation of the
form of (9). Moreover, every unknown u, and vg appears once for a,8 > 0

and the unknowns ug and vy appear in each equation. We proceed similarly
for coordinates f; with ¢ € {1,2,3}, for which the collisions give rise to similar
equations but with different pairs of coefficients in {01,02,03}. For instance a
collision f{(«,0,0,0) = f1(0,0,3,0) yields an equation

01 ® (up ® ua) B 02® (vo Pvg) =0.

We hence get 4 x 255 linear equations involving all the 512 unknowns. How-
ever, this system is not of full rank. Consider the 2 x 255 unknowns u; = uo ® u;
and v} = vo®v; for i € {1,2,...,255}. Every equation of the form of (9) can be
rewritten as

02®u, ®03®uv; =0.

This shows that the system can be rewritten in terms of 510 unknowns and
is hence of rank at most 510. But the system has still at least one degree of
freedom left, since more than one solution is still possible. For instance, the
system is solved by w}, = 0 and v, = 0 for every 4, and it is also solved by the
solution we are looking for (i.e. u; = Sy(0) @ So(¢) and v; = S1(0)H.S1(4)), which
is such that u} # 0 and v} # 0 by bijectivity of Sy and S;. The obtained system
is hence of rank at most 509.
In all our experiments, the 4 x 255 available linear equations always yielded
a system of rank 509. From such a system, all the unknowns can be expressed in
function of one unknown, say u}. And since all the unknowns are linearly linked,
there exist coefficients a; and b; such that u; = a; ® u} and v, = b; @ uf. These
coefficients can be easily recovered by solving the system for v} = 1. We then
get
ui:ai®(uo@u1)@uo R (10)

and
v; = b @ (uo ®uy) o - (11)

From the a; coefficients and from Equation (10), we can recover the overall
function Sy by exhaustive search on the pair (ug, u1). In order to determine the
good solution, we use the particular structure of the function Sy. Specifically, we
use the relation

S_l o So(> = Po() D ko .

By definition of Py, the above function has algebraic degree at most 4. We then
use the following lemma.

Lemma 2. Let g be a function from {0,1}® to itself with algebraic degree at
most 4. The map

15
©: xl—)@g(a?@a))
a=0

is the null function x — 0.

Proof. The map ¢ is a 4th-order derivative of the function g (specifically ¢ =
D1D,D4Dg(g)) and since g has algebraic degree at most 4, all its 4th-order
derivatives are null. O

Remark 2. For a wrong pair (ug,u1), the candidate function So obtained from
(10) is affine equivalent to Sp. Namely there exist a and b such that Sp(-) =
a® So(-) ®b, with a # 0 and (a,b) # (0,1). The function S~ oSy then satisfies

S71o Sy(-) = S a® S(ko @ Po()) ®b) ,
and it has an algebraic degree greater than 4 with overwhelming probability.?

According to Lemma 2 and the above remark, we can easily determine the
good pair (ug,u1) by computing the 4th-order derivative ¢ of the associated
function § = S~' 0 Sy, which satisfies

15
P(z) = @Sil(az@a ® (up B ur) ®ug) -
a=0

For the sake of efficiency, we first compute ¢(0) and check whether it equals 0
or not. If we get ¢(0) = 0, we step forwards and compute @(x) for another .
Note that we only need to compute ¢ for 16 inputs at most since for every x
we have ¢(z) = ¢(z @ 01) = --- = @(z ® 15). Getting ¢(x) = 0 for a wrong
pair (ug,u;) should roughly occur with probability 1/256, so wrong guesses are
quickly discarded.

Once Sj has been recovered, we can recover Sp from (11) by exhaustive search
on vg. Here again, the good solution is determined using Lemma 2 and the above
approach. The remaining functions Sy and S5 are recovered similarly by solving
the linear systems arising from collisions of the form f;(«,0,0,0) = £;(0,0,3,0)
and f;(«,0,0,0) = £;(0,0,0,3). Since Sy is already known, we get the same
situation as for the recovery of S;. Namely, all the elements of Sy (resp. Ss)
can be expressed as affine functions of S3(0) (resp. S5(0)), and we can recover
the overall function by exhaustive search on this value and with the selection
criterion of Lemma 2.

4.2 Recovering the Secret Key

Once the S; functions have been recovered, one can easily recover the byte-
encodings); in output of the first round. For instance evaluating f{(«,0,0,0)
one gets the value Qo (1(cv)) where

b: o 02® So(a) ® 03 ® S1(0) @ S2(0) & S3(0)

is a bijective function. We hence get Qo(-) = f§(1»~1(-),0,0,0) which enables to
fully retrieve Q)¢ by looping on the 256 input values. Each byte-encoding QELJ)
in output of the first round can be recovered in a similar way.

Since the output byte-encodings of the first round are the inverse of the

input byte-decodings of the second round, we now show how to retrieve the

5 We ran a few million tests and never obtained a function with algebraic degree 4 or
less.

key bytes in the second round from that knowledge. In what follows, we shall
slightly change the definition of f’ and the S;’s given in (5) and (6). Namely,
/' shall denote the first encoded subround of the second round (rather that of
the first round), and S; the associated functions, that is f' = AESgL’CO) and
Si(-) = S(kﬁz’o) ® (Pi(Q’O))(-)) for 0 <14 < 3. As in the previous section, we shall
further drop all the surperscripts (2,0) for the sake of clarity.

For the recovery of kg, we use the following distinguisher. Consider the func-
tion g associated to kg and defined as:

9= f(,)(Poil(Sil(') @ kO)v 0,0, 0) .
This function satisfies
g(2) =Qo(02®@xdc) where c =03 ® 51(0) ® S2(0) ® S3(0) ,

and it has algebraic degree at most 4 by definition of Qg (since multiplying and
adding constant coefficients are linear). Therefore, according to Lemma 2, the
4th-order derivative ¢: = — @};0 g(x ®) equals the null function. On the
other hand, consider the function § associated to a wrong guess ko = ko, that is

9(2) = fo(Py S Ha) @ ko), 0,0,0) = Qo(02® S(S™H(z) @ ko ® ko) @ c) .

This function has algebraic degree greater than 4 with overwhelming probabil-
ity.% This way, we can easily recover ko by exhaustive search while testing for
every candidate whether the function § is of algebraic degree 4 or not. Namely,
for every guess l%o, we test whether the function

15
¢(z) =P f(Pr (ST (@) @ ko), 0,0,0)
a=0

equals the null function = +— 0, or not. As for the previous recovery of the
S; functions, this is done at most for 16 different values of x since we have

S(x) = (@ 01) = --- = $(x & 15). Moreover, as for the recovery of the S;,
we only need to compute ¢ for 16 inputs at most since for every x we have
ox) = ¢z @ 01) = --- = @(x @ 15). Moreover getting ¢(x) = 0 for a wrong

guess ko roughly occur with probability 1/256, so wrong guesses are quickly
discarded.

The key bytes k1, ko and k3 can be retrieved similarly; only the definition
of the function g shall change. For instance, g is defined as f§(0, P, '(S7'(-) @
k1),0,0) for k1, and so on for ko and k3. And the other key bytes k‘z@’j) forj>1
can be recovered in the exact same way. Eventually, from the second round key,
one can easily recover the full AES secret key by inverting the key schedule
process.

5 Here again, we ran a few million tests and never obtained a function with algebraic
degree 4 or less.

4.3 Attack Complexity

The bottleneck of our attack is the exhaustive search to recover the functions S;
in the first round. Indeed, the previous system to solve for the recovery of the
a; and b; coefficients is very sparse and it can hence be solved with Gaussian
elimination in linear complexity (i.e. in 512 times a few operations). To recover
So, one loops on the 216 candidate values for (ug,u1), and for each value test
whether @(x) = 0 (which is a XOR over 16 elements) for at most 16 values x. We
use laziness, namely we test whether $(0) = 0 first, if false we stop and if true
we step forwards to the next z, and so on and so forth. Now getting @(z) =0
for a wrong pair (up,u;) roughly occurs with probability 1/256, therefore the
expected number of tests is 1+1/256 + - - - +1/(256'%) < 1.004. The complexity
of the recovery of Sy is hence of

216.1.004 - 2% & 220 .

Then the recovery of Sy (resp. S2, S3) from Sy only requires an exhaustive search
on vy, which makes a complexity of 28.1.004-2% ~ 212, We hence get a complexity
of 229 + 3. 2'2 & 220 for the recovery of Sy, Si, Sz and S3. This computation
must be performed for each subround of the first AES round, which makes a
total complexity of 4 x 220 = 222,

The recovery of the key bytes has a negligible complexity compared to the
recovery of the .S; functions in the first round. Indeed, according to the above
analysis, the recovery of one key byte is roughly of 28 - 1.004 - 2* ~ 22, This
must be done 16 times, yielding a complexity of 16 - 2!? < 222,

5 Karroumi’s White-Box AES Implementation

Karroumi’s method to generate a white-box AES implementation [6] can be
divided into two phases; Phase I generates a dual AES cipher from a key-
instantiated AES cipher, and Phase 2 applies the white-box techniques presented
by Chow et al. to the dual AES cipher. Below, aspects of these phases that are
relevant to this paper are described.

Phase 1: Dual AES cipher

In this section we give a description of the set of dual AES ciphers used by
Karroumi in [6]. First, we define a dual AES subround. The following notation
is used: mg, : Fosg — Fase with a € Fiy4 is defined by mq(z) = a ® x, and
ft : Fase — Fasg defined by fi(z) = 22" for 0 < t < 7 are the automorphisms of
Fa56 over Fo. Further, R; : Fos6 — Fasg are the isomorphisms mapping elements
in the AES polynomial representation to field elements in one of the polynomial
representations of Fosg. There are 30 irreducible polynomials of degree 8 over F,
each one resulting in a unique polynomial representation of Fass (one of these
representations being the AES polynomial representation), hence in total there
are 30 distinct isomorphisms R; (1 <1 < 30). The addition and multiplication

operations in the polynomial representation associated with R; are denoted by
@; and ®;, respectively (@; and ®; being equal to @ and ® for exactly one value
of [with 1 <1 < 30). Finally, the definition of a dual AES subround uses a set
of mappings, denoted by 7, and defined by

T={Riomyofi|1<1<30,0a€Fs5and0<t¢t<7} .
Observe that an element of 7 maps elements in the AES polynomial represen-
tation to elements in one of the 30 polynomial representations of Fas6.

Definition 4. Let A, ; € T with A, ; = R; o mq o fi for some triple (I, ,t)
with 1 <1< 30,00 € Fisg and 0 <t < 7, and let §,; = Ry o fy. Further, let
vi, w; € Foge for 0 < i < 3 be represented using the polynomial representation
associated with R;. The mapping AES(™74rs) « Fi.o — Fis for 1 < r <9
and 0 < j < 3, called a dual AES subround, is defined by (wp, w1, ws, w3) =
AES3:475) (vg, vy, v9, v3) with

w; = 0,5 (meio) @1 Arjo S o At (vo @y Ay (k§™))
@16, j(mein) @ Ay joSo A (v @ A ((r.9))))
@1 67 j(mei) @ Ay joSo A (vy By A, (kS))
@y 0 j(meiz) @y Ay joSo A (’Ug @ A (k:())”))

for0<i<3.

The following lemma presents a property that is required to show that a dual
AES cipher maintains the functionality of AES. As the lemma is also used in
the cryptanalysis in this paper, and as a formal proof of this property is omitted
in [4] and [6], we include a proof as well.

Lemma 3. If A, ; € T, then
ABSTI 45 0 (Arj, Arj, A, Arg) = (A, Arg, Argy Arg) 0 ABSTD
for1<r<9and0<j<3.

Proof. Let z; for 0 < i < 3 be elements of Faos4 using the AES polynomial
representation, let w; for 0 < i < 3 be elements of Fo56 using the polynomial
representation associated with R; (assuming that Ay j =Riomgo fi), and let

(wo, wr, wa, w3) = AES"4r3) o (A, 1 A jy Ay Ay i) (2o, 21, 22, 23)

Substituting v; = A, ;(z;) for 0 < ¢ < 3 in the equation in Def. 4 yields

3
= (D, 0ri(meiz) @1 Arj oS0 ALJ(A(x:) @1 Arj (kD))

z=0

for 0 <7 < 3. Next, observe that A”()®1 A, ;(b) = Riomgo fi(a)® Riomg o
fi(b) = Ri(mao fi(a) ®mao fi (b)) = Ri(ma(fi(a)® fi(b)) = Ri(ma(fi(a®b))) =

A, j(a@b) for all a,b € Fase and all o € Fizq; the second equality holds true
since R; is an isomorphism, the third equality holds true as a(a®b) = a(a)Da(b)
for all a, b € Fa56 and the fourth equality holds true since f; is an automorphism.
It follows that

3
w; = @l (5r,j<mciz) & Ar,j o S(SUZ o) kgr,j)) 7
2=0

for 0 <@ < 3. Next, note that 0, ;(a) ®; Ay ;(b) = Ry o fi(a) ® Ryomg o fr(b) =
Ri(fi(a) @ mq o fi(b)) = Ri(ma(fi(a®b))) = A, ;(a®Db) for all a,b € Fasp;
the second equality holds true since R; is an isomorphism and the third equality
uses the fact that a2 @ ab? = a(ab)? for all a,b € Fas and all o € Fi. 1t
follows that

3
wi = €D, Ary (meis © 5(- 9K)
2=0
for 0 <4 < 3. From this, A, ;j(a) ®&; A, ;(b) = A, j(a®b) for all a,b € Fase, and
the definition of y; in Def. 1, it follows that w; = A, ;(y;) for 0 < ¢ < 3. O

Now, Karroumi [6] obtains a dual AES cipher as follows:

Step 1 assigns a randomly chosen A, ; € T to each AES subround AES(J)
(1<r<9and0<j<3). Based on A, j, the corresponding dual AES subround
AES(™3:4r5) is implemented as specified by Def. 4. The mappings A, and 6, ;
(and the implementation of the dual cipher) are kept secret.

Step 2 ensures that the functionality of AES is maintained by including an ad-
ditional operation (referred to as ChangeDualState) between ShiftRows and
AddRoundKey operations of round r for 1 < r < 9. If the inverse ShiftRows oper-
ation is defined by the mapping sr(4,j) = (j+14) mod 4 for 0 < ¢,j < 3, then the

ChangeDualState operation of round r applies the mapping C’Z-(T’j) Fosg — Foasg
to the byte of the state associated with the i-th input byte of AES"94r3) for
0<4,j <3, defined by C\"7 = Ay j and €7 = A, jo AT if2<r<9.

r—1,sr(%,7)
Observe that for 2 < r < 9, C’Z.(T’J) maps elements from Fasg using the poly-
nomial representation associated with A,_; g j) to elements of Fas6 using the
polynomial representation associated with A, ;.

Karroumi presents two different but equivalent methods (from a security
point of view) in [6] to perform the ChangeDualState operation, and specifies
the white-box AES implementation using one of these methods. In this paper
we use the specification as in [6]; the cryptanalysis can easily be adapted if the
other method is used.

Phase 2: Apply the techniques of Chow et al.

The following description of Karroumi’s white-box AES implementation is equiv-
alent to the description in [6]:

Step 1 applies the techniques of Chow et al. to write the dual AES cipher (with
a fixed key) obtained in Phase 1 as a series of lookup tables. In particular, the
dual AES key addition operations and the dual S-box operations are merged

into key-dependent bijective mappings Ti(r’j’AT’j) for0<i,j<3and 1<r<9.
These mappings are referred to as dual T-boxes and are defined by

(r3,4Ar5) -1
LT = AnjoSeAjod, o

ol

where each dual T-box mapping is implemented as a table mapping 8 input bits
to 8 output bits. Recall that the mappings Ci(m) define the ChangeDualState
operation. Next, write the other part of the dual AES cipher as a series of
lookup tables as indicated by Chow et al. in [5]. The number and types of tables
(including the tables representing the dual T-boxes) and the data-flow between
tables are the same as in the lookup table implementation of AES in [5]. The only
difference is that the values of the table entries of the dual AES implementation
are likely to be different from the values of the corresponding entries in the AES
implementation in [5] due to the dual version of the AES operations.

Step 2 applies the white-box encoding techniques of Chow et al. in [5] to this
lookup table implementation of dual AES. As these white-box encoding tech-
niques do not depend on the values of the table entries, the number and types
of white-box tables, and the data-flow of Karroumi’s white-box AES implemen-
tation are the same as in the white-box AES implementation of Chow et al.
in [5].

In [6], Karroumi argues that the secrecy of the mappings A, ;, randomly
selected from the set 7 and used to generate the dual cipher, increases the work
factor of the BGE attack to 293.

5.1 Insecurity

This section shows that Karroumi’s white-box AES implementation [6] is in-
secure. Recall that Karroumi’s white-box AES implementation uses the same
number and types of white-box tables, and that the data-flow of the implemen-
tation is the same as in Chow et al.’s white-box AES implementation in [5]. As a
result, the techniques of Billet et al. can be applied directly to compose lookup
tables in Karroumi’s implementation to obtain access to the encoded dual AES
subrounds (instead of the encoded AES subrounds in case of Chow et al.’s im-
plementation) for rounds 1 < r < 9. In the following definition, Az(»m) and Bi(m)
for 0 < i < 3 denote bijective mappings (or encodings) on the vector space F$.
Further, with slight abuse of notation, an output of AET’J) is considered to be an
element of Fo56 using the polynomial representation associated with the map-
ping R; as defined by A,_; (i), and an output of AES(3:4r3) is considered
to be an element of (F§)*. In the following definition, I7\"7 17" and 7() are
the permutations as used in Def. 3.

Definition 5. The mapping AES T)Ara) (F§)* — (F§)* for 1 <r <9 and

enc

0 < j <3, called an encoded dual AES subround, is defined by

mi::z,Ar,j) _ (BéT’j),B§T’j),B§T’j)7B§T’j)) Om(’r‘,j,Ar,j) o
(AT, AT, AL AT | (12
. ——==(rd,Ar;) .
where the mapping AES is defined by
115 0 AES™4ri) o (50, P, 050, Dy o™ (13)
with j = 7 (j).
The next lemma shows that an encoded dual AES subround can be repre-
sented by an encoded AES subround using the same key bytes:

Lemma 4. An encoded dual AES subround AESS{?AM) is an encoded AES
subround AES(m) as in Def. 3 with

enc

P = A gpg P = ATt o AP if 2<r<9

r—1,st(i’,5)
and
QZ('TJ) _ Bi(ﬁj) oA,
for0<id,j<3andl <r <9, withi = (7T§T’j))71(7;) and §' = 7" (5) where
(71'§7“’j))_1 denotes the permutation on the indices of a 4-byte vector as a result

of the application of (Hl(r’j))_l-

Proof. The proof is given for the case 2 < r < 9; similar reasoning applies to the
case 7 = 1. From the definition of the ChangeDualState operation (see Step 2
of Phase 1 of Karroumi’s implementation) it follows that

(€50, 00)) = (A jr, Av g, App, Argr)
(At ATl At At) if2<r<9,

r—1,sr(0,5')) “r—1,sr(1,5/)’ “r—1,sr(2,5/) “r—1,sr(3,5’

for 0 < 5 < 3. Substituting the above expression for the ChangeDualState
operation in Eq. 13 and applying Lemma 3 gives

AES(TJ’ATJ‘) = Hér’j) o (Ar,j’a Ar,j’ ’ Anj,v Ahj') ° AES(TJ/) °
(A7? ATl ATl ATl

(r,9)
r—1,sr(0,5")? “r—1,sr(1,5/) Tr—1,sr(2,5/)’ r—l,sr(3,j’))oH1 :

Observe that HQ(M) and (A, ;r, Ay jr, Ay jry Ay jr) commute and thus can be
swapped. By applying the equation
—1 -1 -1 -1 (rg) _
(A1 ar(05) A tsr(1y) A tsr(2) Atz) O 1 =
Hl(rvj) o (A_l A_l A_l),A_l)) ,

r—1,sr(0’,5/)° “r—1,sr(1’,5/) “r—1,sr(2",5' r—1,sr(3',5')

where i/ = (7\"7)=1(i) for i = 0,1,2, 3 where (r\""))=1 denotes the permutation
on the indices of a 4-byte vector as a result of the application of (II 1(w))71, one
gets the result of Lemma 4. O

From the discussion above it follows that Karroumi’s white-box AES imple-
mentation and the white-box AES implementation of Chow et al. are the same.
As a consequence, Karroumi’s white-box AES implementation is vulnerable to
the original BGE attack and the attacks presented in this paper.

6 Conclusion

The BGE attack on the white-box AES implementation of Chow et al. extracts
the AES key from such an implementation with a work factor of 23°. Taking
Tolhuizen’s improvement to the most time-consuming phase of the BGE attack
as the starting point, Section 3 presented several improvements to the other
phases of the BGE attack. It was shown that the overall work factor of the
BGE attack is reduced to 222 when all improvements are implemented. Unlike
the original BGE attack, the use of non-affine white-box encodings and the
randomization in the order of the bytes of the intermediate results in AES have
a negligible contribution to the overall work factor of the improved BGE attack.

Section 4 presented a new attack on the white-box implementation of Chow
et al. based on collisions occurring in the output bytes of an encoded AES round.
It was shown that the new attack also has a work factor of 222.

Karroumi’s white-box AES implementation was designed to withstand the
BGE attack. Section 5 showed that the white-box AES implementations of Chow
et al. and Karroumi are the same. As a result, the original BGE attack and the
attacks presented in this paper can be applied directly to extract the key from
Karroumi’s white-box AES implementation, implying that this implementation
is insecure.

Acknowledgements. This work was supported in part by the Research Coun-
cil KU Leuven: GOA TENSE (GOA/11/007). In addition, this work was sup-
ported by the Flemish Government, FWO WET G.0213.11N and IWT GBO SEC
SODA. Yoni De Mulder was supported in part by a research grant of iMinds of
the Flemish Government.

References

1. Elad Barkan and Eli Biham. In How Many Ways Can You Write Rijndael? In
Yuliang Zheng, editor, ASTACRYPT, volume 2501 of Lecture Notes in Computer
Science, pages 160—175. Springer, 2002.

2. Elad Barkan and Eli Biham. The Book of Rijndaels. TACR Cryptology ePrint
Archive, 2002:158, 2002. http://eprint.iacr.org/2002/158.

10.

11.

12.

13.

Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a White
Box AES Implementation. In Helena Handschuh and M. Anwar Hasan, editors,
Selected Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science,
pages 227-240. Springer, 2004.

Alex Biryukov, Christophe De Canniere, An Braeken, and Bart Preneel. A Toolbox
for Cryptanalysis: Linear and Affine Equivalence Algorithms. In Eli Biham, editor,
EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 33—50.
Springer, 2003.

Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-
Box Cryptography and an AES Implementation. In Kaisa Nyberg and Howard M.
Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in
Computer Science, pages 250-270. Springer, 2002.

Mohamed Karroumi. Protecting White-Box AES with Dual Ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, ICISC, volume 6829 of Lecture
Notes in Computer Science, pages 278—-291. Springer, 2010.

Tancrede Lepoint and Matthieu Rivain. Another Nail in the Coffin of White-
Box AES Implementations. Cryptology ePrint Archive, Report 2013/455, 2013.
http://eprint.iacr.org/2013/455.pdf.

National Institute of Standards and Technology. Advanced Encryption Standard.
Federal Information Processing Standard (FIPS), Publication 197, U.S. Depart-
ment of Commerce, Washington D.C., November 2001. http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

James A. Muir. A Tutorial on White-box AES. Mathematics in Industry, 2012. To
appear. http://www.ccsl.carleton.ca/~jamuir/papers/wb-aes-tutorial.pdf.
Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao - Lai
White-Box AES Implementation. In Lars R. Knudsen and Huapeng Wu, editors,
Selected Areas in Cryptography, volume 7707 of Lecture Notes in Computer Science,
pages 34-49. Springer, 2012.

Yoni De Mulder, Peter Roelse, and Bart Preneel. Revisiting the BGE Attack on
a White-Box AES Implementation. Cryptology ePrint Archive, Report 2013/450,
2013. http://eprint.iacr.org/2013/450.pdf.

Ludo Tolhuizen. Improved Cryptanalysis of an AES implementation. 33rd WIC
Symposium on Information Theory in the Beneluz, 2012.

Yaying Xiao and Xuejia Lai. A Secure Implementation of White-Box AES. In 2nd
International Conference on Computer Science and its Applications (CSA 2009),
pages 1-6. IEEE, 2009.

