White-Box Cryptography
Matthieu Rivain

CARDIS 2017

]

CRYPTOCGXPERTS "

O

How to protect a cryptographic key?

Well, put it in a smartcard of course!

. or any piece of secure hardware

Secure hardware is expensive (production,
integration, infrastructures...)

Long lifecycle, limited updates

Bugs, security flaws might occur
» e.g. ROCA vulnerability (October 2017)

MwlLillOn“S;)f high-security crypto keys
crippled by newly discovered flaw

Pure software applications
= Advantages: cheaper, faster time-to-market,
easier to update
» Big trend in ICTs: cloud service + mobile app
» HCE-based mobile payment

» SE not available

» Emulated SE in software

» Short-term keys (tokens)

» Regular authentication to server
(“always on" paradigm)

loT (without SE)
Content protection, DRM
OS / firmwares

Potential threats:
» malwares » co-hosted applications

» users themselves >
White-box adversary model
» analyse the code » access the memory

» tamper with execution » ...

Ex: scan the memory for secret keys

Illustration: Shamir, van Someren. Playing hide and seek with stored keys.

General idea: hide the secret key in an
obfuscated cryptographic implementation

http://www.whiteboxcrypto.com/

Reign of

black-box

crypto

Side-channel attacks

timing power
attacks analysis

Reign of
black-box

1996 1999

crypto

Cryptographic obfuscation
(Barak et al. CRYPTO 2001)
Theoretical foundations
& impossibility result

Side-channel attacks

timing power
attacks analysis

Reign of
black-box

1996 1999 2001

crypto

Cryptographic obfuscation
(Barak et al. CRYPTO 2001)
Theoretical foundations
& impossibility result

Side-channel attacks

i timing power
Reign of attacks analysis 2002

black-box

1996 1999 2001

crypto

White-box cryptography
(Chow et al. SAC 2002, DRM 2002)
Introduce WBC terminology

Describe obfuscated implemen-
tations DES and AES

Cryptographic obfuscation
(Barak et al. CRYPTO 2001)
Theoretical foundations
& impossibility result

Side-channel attacks

timing pO\lNe[’
attacks analysis . 20.02 ~ No WBC land

Reign of
black-box

1996 1999 2001 2004

crypto

White-box cryptography
(Chow et al. SAC 2002, DRM 2002)
Introduce WBC terminology

Describe obfuscated implemen-
tations DES and AES

Cryptographic obfuscation
(Barak et al. CRYPTO 2001) First candidates
Theoretical foundations of secure constructions
& impossibility result (Garg et al. EC'13, FOCS'13)
Constructions of multilinear maps
and indisting. obfuscation (10)
Side-channel attacks + many many papers

Reign of timing ~ power

attacks analysis 2002
black-box : ; 2002 No WBC land
1996 1999 2001 2004 2013

crypto

White-box cryptography
(Chow et al. SAC 2002, DRM 2002)
Introduce WBC terminology

Describe obfuscated implemen-
tations DES and AES

Cryptographic obfuscation
(Barak et al. CRYPTO 2001) First candidates
Theoretical foundations of secure constructions
& impossibility result (Garg et al. EC'13, FOCS'13)
Constructions of multilinear maps
and indisting. obfuscation (10)
Side-channel attacks -+ many many papers

i timing ~ power
Reign of attacks analysis 2002 No WBC land 2015
black-box : : —t+—t i i
crypto 1996 1999 2001 2004 2013
Generic attacks
White-box cryptography Differential Computation
(Chow et al. SAC 2002, DRM 2002) Analysis (DCA), Fault
Introduce WBC terminology Attacks, coc
Describe obfuscated implemen- New paradigm

tations DES and AES

Cryptographic obfuscation
(Barak et al. CRYPTO 2001) First candidates
Theoretical foundations of secure constructions
& impossibility result (Garg et al. EC'13, FOCS'13)
Constructions of multilinear maps
and indisting. obfuscation (10)
Side-channel attacks -+ many many papers

i timing power
Reign of attacks ~analysis 2002 No WBC land 2015 2017
black-box ; : —t—t i i :
crypto 1996 1999 2001 2004 2013
Generic attacks
White-box cryptography Differential Computation
(Chow et al. SAC 2002, DRM 2002) Analysis (DCA), Fault
Introduce WBC terminology Attacks, cos
Describe obfuscated implemen- New paradigm

tations DES and AES
ECRYPT / CHES’17

WBC competition

White-box crypto theory

» Formal definitions & security notions

White-box crypto practice

» Practical constructions & attacks

White-box crypto competition
» Wrap-up, break of challenge 777

White-Box Crypto Theory

A word in a formal language P € L

execute: Lx{0,1}* - {0,1}*
(P,input) ~ output

|P|: size of Pe L

time(P): # operations for execute(P,-)

Va : execute(P,x) = f(x)
P1 = P2
Vx : execute(Py, x) = execute(P, x)

Straight-line programs
» no conditional statements, no loops
» |P| =time(P)

An algorithm:

|
P — Qg —> O(P)

Size and execution time increase
(hopefully not too much)

|
P — R 11,
ae .

Specific to an encryption function E

Can be constructed from an obfuscator

k—>P=zE()S [E]

What is an adversary?

= An algorithm:

randomness
0
owr) — —
1
obfuscated 1 bit of
program information

m Ex: msb of k if P=AES.(-)
w Wlg: 3 1-bit O = A multi-bit O

[Barak et al. — CRYPTO 2001]

On the (Im)possibility of Obfuscating Programs
Virtual Black Box (VBB) security notion

Impossibility result: VBB cannot be achieved
for all programs (counterexample)

Indistinguishability Obfuscation (10)

O(P) reveals nothing more than the |/O
behavior of P

P* inputs

-k P

secret keys

Kt ks

P~ cannot be VBB obfuscated:
» BB access to P* reveals nothing
» But O(P*)(0,0(P*)) = ki

The impossibility result does not apply to a
given encryption algorithm

VBB AES might exist

AES(+)

)
WB-AES), —> E — {? @ ®_> {?

The bad news: seems very hard to achieve

Indistinguishability Obfuscation (10)

= Notion restricted to straight-line programs

m Forany (P, P,) st P, =P, and |P| = | P,

o(P)

—@-{o

O(PR,)

_,1

w ie. O(P;) and O(P,) are indistinguishable

|O < Best Possible Obfuscation

For any P’:

Q" ’
o) |[— U P —»®_> {(1’

O(P) doesn't reveal anything more than the
best obfuscated program P’

Il
R

O does not imply resistance to key extraction

For instance

Any prog P = AES,(-) —— Ref implem of AES,(-)

Nevertheless
3P* = AES(+) secure

=

VP = AES;(-) with |P| > |P*|: IO(P) secure

VBB
AES
?

Obfuscation scale

VBB
AES

further white-box
security notions

Obfuscation scale

Unbreakability: resistance to key extraction

WB-AES), | —> E —— &

Basic requirement but insufficient in practice

Other security notions
» [SWPQ9] Towards Security Notions for White-Box
Cryptography (I1SC 2009)

» [DLPR13] White-Box Security Notions for
Symmetric Encryption Schemes (SAC 2013)

One-wayness: hardness of inversion

m

|

WB-AES,, | —> E %» m
c —/

Turns AES into a public-key cryptosystem
PK crypto with light-weight private operations

Incompressibility: hardness of compression

WB-AES,, AES
; { £ Dk
< 10 KB
> 10 GB

Makes the implementation less convenient to
share at a large scale

Incompressible primitives recently proposed
» Bogdanov et al. (CCS 2015, Asiacrypt 2016)
» Fouque et al. (Asiacrypt 2016)

But no white-box implementations of a
standard cipher (e.g. AES)

Security features

= Traceability: WB implem traceable

WB-AES; 4 —> - — [= AES,() _>@—> id

Security features

= Traceability: WB implem traceable

WB-AES;, g,

-
WB-AES iq, —> —— |1 = AESi() [—> —> id € {idy,ido, ..., id¢ }

WB-AESy g,

Traceability: WB implem traceable

WB-AES;, 4,
WB-AES;, 4, |—> U — l'[AESk (") —>@—> id € {idy,ido, ..., id;}
WB-AES} 4,

Password: WB implem locked by password

Toom
WB-AESk »
if (7 ===
return \Fx) T c= AES;(m
else return L
l / max proba 217
c \/\ NS

[DLPR13] Perturbation-Value Hiding notion:
PVH = traceability

If the underlying encryption scheme is secure:

INC

U
OW = UBK <« PVH

[DLPR13] Perturbation-Value Hiding notion:
PVH = traceability

If the underlying encryption scheme is secure:

INC

U
= OW = UBK < PVH <«

[DLPR13] Perturbation-Value Hiding notion:
PVH = traceability
If the underlying encryption scheme is secure:

¢
INC

U
= OW = UBK < PVH <«

[DLPR13] Perturbation-Value Hiding notion:
PVH = traceability
If the underlying encryption scheme is secure:

¢
INC

U
= OW = UBK < PVH <«

No UBK construction known for AES
no OW/INC/PVH/VBB construction neither

Very active research field
» 18 papers in 2017 (IACR conferences)
» 22 papers in 2016 (IACR conferences)

Most constructions rely on multilinear maps

€: (91 792 7~--agdd)'_>gel e

Many breaks, security still under investigation

Performances far beyond practical applications

White-Box Crypto Practice

SAC 2002: “White-Box Cryptography and an
AES Implementation” (Chow et al.)

First step: network of look-up tables
Each round split in 4 sub-rounds
02 03 01 01 S(x0 ® ko)
01 02 03 01 S(xs5 ® ks)
(20, 25,710, 715) = ®

01 01 02 03 S(x10 ® k10)
03 01 01 02 S(I15®k15)

Computed as
Tolzo] @ T5[x5] @ Tho[x10] @ Ths[215]
Tables T; : 8 bits - 32 bits

To[r] = S(x@ky) x (02 01 01 03)7
Ts[z] = S(z@ks)x (030201 01)"
Tio[r] = S(z® ki) = (01 03 02 01)7
Tis[x] = S(z®kis) = (01 0103 02)7

XOR table: 8 bits — 4 bits

Tior[To||T1] = o ® 11

Original white-box AES

|0123456789101112131{15|

.. 8XORs

|Ul 2 3 4 5 G 7 8§ 9 10 11 12 13 1415|

lllustration: J. Muir “A Tutorial on White-box AES” (ePrint 2013)

Second step: randomize look-up tables

Each table 7' is replaced by
T = goTo
where [, g are random encodings

For two connected tables T', R

T’:gOTO

R=hoRog' = R'oT"=ho(RoT)o

Intuition: encoded tables bring no information
True for a single (bijective) table goT o
Not for the large picture
‘uh T NTH

4 {

lllustration: J. Muir “A Tutorial on White-box AES" (ePrint 2013)

First break: BGE attack
» Billet et al. Cryptanalysis of a White Box AES
Implementation (SAC 2004)

Generic attack on WB SPN ciphers
» Michiels et al. Cryptanalysis of a Generic Class of
White-Box Implementations (SAC 2008)

Collision attack & improved BGE attack
» Lepoint et al. Two Attacks on a White-Box AES
Implementation (SAC 2013)

Attack complexity ~ 222

Example: collision attack

aOOO 0500

collision?
l yes

02 S(a) ®03- 5, (0) = 02- So(0) ®03- 5, ()
where Sy(z) = S(Po(z) ® ko) and Sy () = S(Pi(z) @ ky)

Perturbed WB-AES using MV crypto (Bringer et al. ePrint 2006)
= broken (De Mulder et al. INDOCRYPT 2010)

WB-AES based on wide linear encodings (Xiao-Lai, CSA 2009)
= broken (De Mulder et al. SAC 2012)

WB-AES based on dual AES ciphers (Karroumi, ICISC 2010)
= broken (Lepoint et al. SAC 2013)

Same situation with DES

Secret design paradigm

= Industrial need

. I don't like ‘
» home-made solutions that.. .

» mix of several obfuscation
techniques

» secret designs

= Security evaluations by ITSEF labs

= Development of generic attacks
» Fault attacks, DCA

» Avoid costly reverse engineering effort

Easy fault injection in the white-box context

Plenty of efficient FA techniques (on e.g. AES)

fault
injection
’ round 9 k1o

N
MC
U

round 10 k11

Original white-box AES vulnerable to this attack

Differential Computation Analysis

= Suggested by NXP / Riscure
» Presentation at BalckHat 2015
» Best paper award CHES 2016

» Record data-dependent information at
execution = computation trace

-
it

Trace: J. Bos (presentation CHES 2016)

= Apply DPA techniques to computation traces

Differential Computation Analysis

predictions computation traces
S(z1 @ k) bl L i, i
S(z2 @ k) a0 L .
S(zy @ k) |||||.||.|.|u.l||"|||||||||||I.|.||"ll.||||.I."||I|||||||||||||.|.||||.|I|||||||I||I||I"|I|.I|.
\ajrvrzlatiV
p(B) -~
! T~ ~
ey / N \k\ =k
/
i, || ||I||II| I, II| i |||| ||I|. ¥
|||I|| |I|I|||||| H
- ||||| '||||'|||II| SUNUINN ||I|"||||”|.|.|| LRI

DCA in presence of encodings

m DCA can break the original white-box AES
» [Bos et al. CHES 2016] Differential Computation Analysis

= Why?
» random encodings are hardcoded
» for some Enc, we might have
p(x;, Enc(x);) >0
» especially with 4-bit encodings

Enc(zg || z1) = Enc(zo) || Enc(z1)

DCA experiment

= Random 4-bit encoding Enc

m Correlation p(S(:U ® k), Enc(S(z @ k*))j)

Bit 2 Bit 3

DCA experiment

m With another (4-bit) encoding

Bit 0

Bit 2

Bit 1

Bit 3

m Most of the time 1, 2, or 3 bits leak

Countermeasures?

= Natural approach: use known SCA/FA
countermeasures

Countermeasures?

Pseudo
RNG

m Pseudo-randomness from m

m PRNG should be somehow secret

m

On-top obfuscation

C

Countermeasures hard to remove

P-randomness / redundancy hard to detect

How to obfuscate the countermeasures?
How to generate pseudo-randomness?

Resistance to higher-order DCA, multiple FA?

White-Box Crypto Competition

!

2017

Goal: confront designers and attackers in the
secret design paradigm

Designers could submit WB AES implems:
» C source code < 50MB

executable < 20MB

RAM consumption < 20MB

running time < 1sc

v

v

v

Attackers could try to recover the keys of
submitted implems

Score system

= Unbroken implem on day n
+1
1+2+---+n:n(nT)ST
= Break on day n
» Designer gets "2 ST points

n(n+1)

» Attacker gets points

» Challenge score starts decreasing symmetrically

Strawberry scores over time

07/01

07/16

08/01

08/16

09/01

09/16

450

400

350

300

250

200

Strawberry scores over time

No implementation got more
than 1% before 08/20

07/01

07/16

08/01

08/16

09/01

09/16

450

400

350

300

250

200

Strawberry scores over time

Everything was
broken in the end!

No implementation got more

than 14 before 08/20

07/01 07/16 08/01

08/16

09/01

09/16

450

400

350

300

250

200

Strawberry scores over time

Outstanding
winner

Everything was
broken in the end!

No implementation got more
than 1% before 08/20

A

07/01 07/16 08/01 08/16 09/01

09/16

Strawberry scores over time

Outstanding
winner A

Everything was
broken in the end!

No implementation got more geyeyal challengi

than 14 before 08/20 Ylementatior

07/01 07/16 08/01 08/16

94 submitted implementations

~ 870 breaks

Socreboard:
id | designer breaker score | # days | # breaks
777 | cryptolux team_cryptoexperts | 406 28 1
815 | grothendieck | cryptolux 78 12 1
753 | sebastien-riou | cryptolux 66 11 3
877 | chaes You! 55 10 2
845 | team4 cryptolux 36 8 2

cryptolux: Biryukov, Udovenko

team_cryptoexperts: Goubin, Paillier, Rivain, Wang

Several obfuscation layers
» Encoded Boolean circuit
» Bitslicing, error detection, dummy operations

» Virtualization, naming obfuscation
Code size: 28 MB
Code lines: 2.3 K

12 global variables
» pDeoW: computation state (2.1 MB)
» JGNNvi: program bytecode (15.3 MB)

1020 functions of the form

void xSnEq (uint UMNsVLp, uint KtFY, uint vzJZiq) {
if (nIlajqq () == IFWBUN (UMNsVLp, KtFY))
EWwon (vzJZq);
}

void rNUiPyD (uint hFqeIO, uint jvXpt) {
xkpRp [hFgeID] = MXRIWZQ (jvXpt);
}

void cOQnB (uint QRFOf, uint CoCiI, uint aLPxnn) {
00GoRv[(kIKfgl + QRFOf) & 97603] =
ooGoRv [(kIKfgl + CoCiI) | 173937] & ooGoRv[(kIKfgl + alPxnn) | 39896];
}

uint dLJT (uint RouDUC, uint TSCaTl) {
return o0oGoRv[763216 ull | gscwtK (RouDUC + (KIKfgI << 17), TSCaTl);
}

Table of function pointers indexed by bytecode
Only 210 functions are called (over 1020)

Ducplicates of 21 different functions
» memory reading/writing
» bitwise operations, bit shifts

» goto, conditional jump

PROGRAM
FUNC_PTR

interpretor()
{
pc = 8;
while(pc =< eop)
{
nb_arg = PROGRAM[pcl; pc++;

func_index = PROGRAM[pcl; pc++;
function = FUNC_PTR[func_index];
for (i=0; i<nb_arg; i++)

{

arg[i] = PROGRAM[pc]; pc++;
}

function{argl@l, ...);

Simulation = equivalent program with do-while loops
of arithmetic instructions

Remove some dummy loops

Get sequence of 64-loops of 64-bit instructions
» First part: 64x64 bitslice program
» 3 instances with the input plaintext
» rest with hardcoded values

» Second part: (probably) error detection and
extraction of the ciphertext

Extract a Boolean circuit with ~ 600K gates

Put it in Static Single Assignment (SSA) form:

r = r =

y = y =

t = -x tl = I
r = 1@y = to = 1@y
Yy = y/\t t3 = y/\tl
t

= xTVy ty = 1ToVig

Detect (over many executions) and remove:
Dummy variable: ¢; never used?
Constant: t;, =07 ¢t; =17
Duplicate: t; =¢; 7
Pseudo-randomness:

(t; > t;®1) = same result?

Several rounds: ~600K = ~280K gates

Data dependency graph (20% of the circuit):

Data dependency graph (10% of the circuit):

Data dependency graph (5% of the circuit):

Data dependency graph (5% of the circuit):

Data dependency graph (5% of the circuit):

S-boxes?
MixColumn?

Data dependency graph (5% of the circuit):

S-boxes?
MixColumn?

Initial pseudo-
randomness
generation?

Cluster analysis = gates within one “s-box”

|dentify all the outgoing variables:
S1,89,+.,8p
Likely hypothesis:
S(x @ k™) =Dec(s1,S2,---,8m)

for some deterministic decoding function

Hypothesis: linear decoding function

Record the s;'s over n executions

'Sgl) Sgl)

852) 852)

0

O
E

5

Sj(l‘(l) (&) k)
Sj(ZL'(Q) (&) k)

S](I(n)) k’)

Hypothesis: linear decoding function

Record the s;'s over n executions

IR) S;(z™M @ k)
352) 3;2) BRI Sj(x@.)eak)

EREFE ORI Sj(z™ @ k)

Hypothesis: linear decoding function

Record the s;'s over n executions

—Sgl) Sgl)

852) SgQ)

0

Oy

(2)

* Sm

.

i

Sj(l‘(l) (&) k)
Sj(%’(z) (&) k‘)

S](I(n)) k’)

Hypothesis: linear decoding function

Record the s;'s over n executions

BRGSO S;(z™ @ k)
352) 3;2) BRI S;(z® @ k)
-Sgn) Sgn) S%I,)‘ Sj(gj(n) ® k;)

Hypothesis: linear decoding function

Record the s;'s over n executions

'Sgl) Sgl)

852) 852)

Linear system solvable for k£ = k*

0

O
E

5

X

C1
C2

C n

Sj(l‘(l) (&) k)
Sj(ZL'(Q) (&) k)

S](I(n)) k’)

And it works! For example:
» s-box cluster with n = 34 outgoing variables

» using 7' = 50 executions traces
» one solution per S; for k = k*
» no solutions for k # k*

: 0,0,0,0,0,01,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,00001,00,1,1,01,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,00,0,0,0,1,0,10,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

T L T T TR
GO U W= O

Key recovery

m And it works! For example:
» s-box cluster with n = 34 outgoing variables

» using 1" = 50 executions traces
» one solution per S; for k = k*
» no solutions for k # k*

: 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
:0,0,00,001,001,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,00,0,0,0,10,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
: 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

T L T T TR
GO U W= O

Key recovery

m And it works! For example:
» s-box cluster with n = 34 outgoing variables

» using 7' = 50 executions traces

» one solution per S; for k = k*

» no solutions for k # k*
j=0:0,00000101,0,1,1,1,0,00,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j=1:000000100711071,1,1,1,1,1,1,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0
j=2:000000001010001,110,1,1,1,0,0,0,0,00,0,0,0,0,0,0,0,0
j=3:000000000110001,11,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j =4:0,0,0,0,0,00,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j =5:0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j =6:0,0,0,0,0,0,1,00,0,1,00,101,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j=17:000000010000100110,,0,0,0,0,0,00,0,0,00,0,0,0,0,0,0

m Decoding
x Bin. Mat.
* *
(57,88,...7521) EE— (So(l'@k),...,S7(£I3€Bk’))
\—,—/

15 outgoing bits 8 s-box coordinates

Key recovery

m And it works! For example:
» s-box cluster with n = 34 outgoing variables

» using 7' = 50 executions traces

» one solution per S; for k = k*

» no solutions for k # k*
j=0:0,00000101,0,1,1,1,0,00,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j=1:000000100711071,1,1,1,1,1,1,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0
j=2:000000001010001,110,1,1,1,0,0,0,0,00,0,0,0,0,0,0,0,0
j=3:000000000110001,11,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j =4:0,0,0,0,0,00,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j =5:0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j =6:0,0,0,0,0,0,1,00,0,1,00,101,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
j=17:000000010000100110,,0,0,0,0,0,00,0,0,00,0,0,0,0,0,0

m Decoding
x Bin. Mat.
* *
(57,88,...7521) EE— (So(l'@k),...,S7(£I3€Bk’))
\—,—/

15 outgoing bits 8 s-box coordinates

Theory:
» No provably secure constructions

» More work needed on security models & notions

Practice:
» Everything broken in the literature
» Moving toward a secret design paradigm

» More work needed on generic attacks and
countermeasures in the white-box context

ECRYPT / CHES'17 competition:
» Nothing stood > 28 days
» Can obscurity really bring (a bit of) security?

	White-Box Crypto Theory
	White-Box Crypto Practice
	White-Box Crypto Competition

