
White-Box Cryptography

Matthieu Rivain

CARDIS 2017

How to protect a cryptographic key?

How to protect a cryptographic key?

Well, put it in a smartcard of course!

... or any piece of secure hardware

But...

∎ Secure hardware is expensive (production,
integration, infrastructures...)

∎ Long lifecycle, limited updates

∎ Bugs, security flaws might occur

▸ e.g. ROCA vulnerability (October 2017)

Pure software applications

∎ Advantages: cheaper, faster time-to-market,
easier to update

∎ Big trend in ICTs: cloud service + mobile app

∎ HCE-based mobile payment

▸ SE not available

▸ Emulated SE in software

▸ Short-term keys (tokens)

▸ Regular authentication to server
(“always on” paradigm)

Pure software applications

∎ IoT (without SE)

∎ Content protection, DRM

∎ OS / firmwares

Protecting keys in software?

∎ Potential threats:
▸ malwares ▸ co-hosted applications

▸ users themselves ▸ ...

∎ White-box adversary model
▸ analyse the code ▸ access the memory

▸ tamper with execution ▸ ...

∎ Ex: scan the memory for secret keys

Illustration: Shamir, van Someren. Playing hide and seek with stored keys.

White-box cryptography

General idea: hide the secret key in an
obfuscated cryptographic implementation

Illustration: http://www.whiteboxcrypto.com/

http://www.whiteboxcrypto.com/

A scientific timeline

Reign of

black-box

crypto

A scientific timeline

1996 1999

timing
attacks

power
analysis

Side-channel attacks

Reign of

black-box

crypto

1996 1999

timing
attacks

power
analysis

Side-channel attacks

Cryptographic obfuscation

(Barak et al. CRYPTO 2001)
Theoretical foundations

& impossibility result

2001

Reign of

black-box

crypto

1996 1999

timing
attacks

power
analysis

Side-channel attacks

Cryptographic obfuscation

(Barak et al. CRYPTO 2001)
Theoretical foundations

& impossibility result

2001

White-box cryptography

(Chow et al. SAC 2002, DRM 2002)
Introduce WBC terminology

Describe obfuscated implemen-
tations DES and AES

2002
Reign of

black-box

crypto

1996 1999

timing
attacks

power
analysis

Side-channel attacks

Cryptographic obfuscation

(Barak et al. CRYPTO 2001)
Theoretical foundations

& impossibility result

2001

White-box cryptography

(Chow et al. SAC 2002, DRM 2002)
Introduce WBC terminology

Describe obfuscated implemen-
tations DES and AES

2002 No WBC land

2004

Reign of

black-box

crypto

1996 1999

timing
attacks

power
analysis

Side-channel attacks

Cryptographic obfuscation

(Barak et al. CRYPTO 2001)
Theoretical foundations

& impossibility result

2001

White-box cryptography

(Chow et al. SAC 2002, DRM 2002)
Introduce WBC terminology

Describe obfuscated implemen-
tations DES and AES

2002 No WBC land

2004

First candidates
of secure constructions

(Garg et al. EC’13, FOCS’13)
Constructions of multilinear maps

and indisting. obfuscation (IO)
+ many many papers

2013

Reign of

black-box

crypto

1996 1999

timing
attacks

power
analysis

Side-channel attacks

Cryptographic obfuscation

(Barak et al. CRYPTO 2001)
Theoretical foundations

& impossibility result

2001

White-box cryptography

(Chow et al. SAC 2002, DRM 2002)
Introduce WBC terminology

Describe obfuscated implemen-
tations DES and AES

2002 No WBC land

2004

First candidates
of secure constructions

(Garg et al. EC’13, FOCS’13)
Constructions of multilinear maps

and indisting. obfuscation (IO)
+ many many papers

2013

Generic attacks
Differential Computation

Analysis (DCA), Fault
Attacks, ...

New paradigm

2015
Reign of

black-box

crypto

1996 1999

timing
attacks

power
analysis

Side-channel attacks

Cryptographic obfuscation

(Barak et al. CRYPTO 2001)
Theoretical foundations

& impossibility result

2001

White-box cryptography

(Chow et al. SAC 2002, DRM 2002)
Introduce WBC terminology

Describe obfuscated implemen-
tations DES and AES

2002 No WBC land

2004

First candidates
of secure constructions

(Garg et al. EC’13, FOCS’13)
Constructions of multilinear maps

and indisting. obfuscation (IO)
+ many many papers

2013

Generic attacks
Differential Computation

Analysis (DCA), Fault
Attacks, ...

New paradigm

2015

ECRYPT / CHES’17
WBC competition

2017
Reign of

black-box

crypto

Overview of this talk

∎ White-box crypto theory

▸ Formal definitions & security notions

∎ White-box crypto practice

▸ Practical constructions & attacks

∎ White-box crypto competition

▸ Wrap-up, break of challenge 777

White-Box Crypto Theory

What is a program?

∎ A word in a formal language P ∈ L

execute ∶ L × {0,1}∗ → {0,1}∗

(P, input) ↦ output

(Universal Turing Machine)

∎ ∣P ∣: size of P ∈ L

∎ time(P): # operations for execute(P, ⋅)

What is a program?

∎ P ≡ f (P implements f)

∀x ∶ execute(P,x) = f(x)

∎ P1 ≡ P2 (functional equivalence)

∀x ∶ execute(P1, x) = execute(P2, x)

∎ Straight-line programs

▸ no conditional statements, no loops

▸ ∣P ∣ = time(P)

What is an obfuscator?

∎ An algorithm:

P

randomness

O(P)≡ P

∎ Size and execution time increase
(hopefully not too much)

What is a white-box compiler?

k

key

randomness

[Ek]≡ Ek(·)

encryption program

∎ Specific to an encryption function E

∎ Can be constructed from an obfuscator

k → P ≡ Ek(⋅)
O
Ð→ [Ek]

What is an adversary?

∎ An algorithm:

O(P)

obfuscated
program

randomness

{
0

1

1 bit of
information

∎ Ex: msb of k if P ≡ AESk(⋅)

∎ Wlg: ∄ 1-bit] ⇒ ∄ multi-bit]

[Barak et al. – CRYPTO 2001]

On the (Im)possibility of Obfuscating Programs

∎ Virtual Black Box (VBB) security notion

∎ Impossibility result: VBB cannot be achieved
for all programs (counterexample)

∎ Indistinguishability Obfuscation (IO)

VBB security notion

∀ O(P)

adversary
{
0

1

∃ P S
simulator

{
0

1
x

P (x)
'

∎ O(P) reveals nothing more than the I/O
behavior of P

Impossibility result

P ∗ inputs
secret keys

k∗1 , k
∗
2

k P

k
?
= k∗1

P (k∗1 ,⊥)
?
= k∗2

output k∗2

output k∗1 output 0

yes no

yes no

P ∗ cannot be VBB obfuscated:

▸ BB access to P ∗ reveals nothing

▸ But O(P ∗)(0,O(P ∗)) = k∗1

The good news

∎ The impossibility result does not apply to a
given encryption algorithm

∎ VBB AES might exist

WB-AESk

{
0

1
' S

{
0

1

AESk(·)

m c

∎ The bad news: seems very hard to achieve

Indistinguishability Obfuscation (IO)

∎ Notion restricted to straight-line programs

∎ For any (P1, P2) st P1 ≡ P2 and ∣P1∣ = ∣P2∣

'O(P1)

{
0

1
O(P2)

{
0

1

∎ i.e. O(P1) and O(P2) are indistinguishable

Why is IO meaningful?

∎ IO⇔ Best Possible Obfuscation

∎ For any P ′:

O(P)

{
0

1
' SP ′

{
0

1

P ′P ≡

∎ O(P) doesn’t reveal anything more than the
best obfuscated program P ′

Is IO meaningful for WBC?

∎ IO does not imply resistance to key extraction

∎ For instance

Any prog P ≡ AESk(⋅) z→ Ref implem of AESk(⋅)

∎ Nevertheless

∃P ∗ ≡ AESk(⋅) secure
⇒

∀P ≡ AESk(⋅) with ∣P ∣ ≥ ∣P ∗∣: IO(P) secure

simple
AES

VBB
AES

iO
AES

?

Obfuscation scale

simple
AES

VBB
AES

iO
AES

?

Obfuscation scale

further white-box

security notions

White-box security notions

∎ Unbreakability: resistance to key extraction

WB-AESk k

∎ Basic requirement but insufficient in practice

∎ Other security notions
▸ [SWP09] Towards Security Notions for White-Box

Cryptography (ISC 2009)

▸ [DLPR13] White-Box Security Notions for
Symmetric Encryption Schemes (SAC 2013)

One-wayness

∎ One-wayness: hardness of inversion

WB-AESk

m

c

m

∎ Turns AES into a public-key cryptosystem

∎ PK crypto with light-weight private operations

Incompressibility

∎ Incompressibility: hardness of compression

WB-AESk

> 10 GB

AESk
< 10 KB

∎ Makes the implementation less convenient to
share at a large scale

Incompressibility

∎ Incompressible primitives recently proposed
▸ Bogdanov et al. (CCS 2015, Asiacrypt 2016)

▸ Fouque et al. (Asiacrypt 2016)

∎ But no white-box implementations of a
standard cipher (e.g. AES)

Security features

∎ Traceability: WB implem traceable

WB-AESk,id Π ≡ AESk(·) T id

∎ Password: WB implem locked by password

WB-AESk,π

if (π̂ == π)
return AESk(m)

else return ⊥

π̂ m

c

c = AESk(m)

max proba 2−|π|

Security features

∎ Traceability: WB implem traceable

WB-AESk,id Π ≡ AESk(·) T

WB-AESk,id1

WB-AESk,id2

WB-AESk,idt

id ∈ {id1, id2, . . . , idt}

∎ Password: WB implem locked by password

WB-AESk,π

if (π̂ == π)
return AESk(m)

else return ⊥

π̂ m

c

c = AESk(m)

max proba 2−|π|

Security features

∎ Traceability: WB implem traceable

WB-AESk,id Π ≡ AESk(·) T

WB-AESk,id1

WB-AESk,id2

WB-AESk,idt

id ∈ {id1, id2, . . . , idt}

∎ Password: WB implem locked by password

WB-AESk,π

if (π̂ == π)
return AESk(m)

else return ⊥

π̂ m

c

c = AESk(m)

max proba 2−|π|

Some relations

∎ [DLPR13] Perturbation-Value Hiding notion:

PVH⇒ traceability

∎ If the underlying encryption scheme is secure:

VBB
�

INC
⇓

VBB ⇒

OW ⇒ UBK ⇐ PVH

⇐ VBB

∎ No UBK construction known for AES

⇒ no OW/INC/PVH/VBB construction neither

Some relations

∎ [DLPR13] Perturbation-Value Hiding notion:

PVH⇒ traceability

∎ If the underlying encryption scheme is secure:

VBB
�

INC
⇓

VBB ⇒ OW ⇒ UBK ⇐ PVH ⇐ VBB

∎ No UBK construction known for AES

⇒ no OW/INC/PVH/VBB construction neither

Some relations

∎ [DLPR13] Perturbation-Value Hiding notion:

PVH⇒ traceability

∎ If the underlying encryption scheme is secure:

VBB
�

INC
⇓

VBB ⇒ OW ⇒ UBK ⇐ PVH ⇐ VBB

∎ No UBK construction known for AES

⇒ no OW/INC/PVH/VBB construction neither

Some relations

∎ [DLPR13] Perturbation-Value Hiding notion:

PVH⇒ traceability

∎ If the underlying encryption scheme is secure:

VBB
�

INC
⇓

VBB ⇒ OW ⇒ UBK ⇐ PVH ⇐ VBB

∎ No UBK construction known for AES

⇒ no OW/INC/PVH/VBB construction neither

IO constructions

∎ Very active research field

▸ 18 papers in 2017 (IACR conferences)

▸ 22 papers in 2016 (IACR conferences)

∎ Most constructions rely on multilinear maps

e ∶ (ge11 , g
e2
2 , . . . , g

ed
d) z→ g e1 ⋅ e2 ⋯ ed

T

(or noisy variants)

∎ Many breaks, security still under investigation

∎ Performances far beyond practical applications

White-Box Crypto Practice

Original white-box AES

∎ SAC 2002: “White-Box Cryptography and an
AES Implementation” (Chow et al.)

∎ First step: network of look-up tables

∎ Each round split in 4 sub-rounds

(x0, x5, x10, x15) ↦

⎛

⎜
⎜
⎜

⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟
⎟
⎟

⎠

⊗

⎛

⎜
⎜
⎜

⎝

S(x0 ⊕ k0)
S(x5 ⊕ k5)
S(x10 ⊕ k10)
S(x15 ⊕ k15)

⎞

⎟
⎟
⎟

⎠

Original white-box AES

∎ Computed as

T0[x0] ⊕ T5[x5] ⊕ T10[x10] ⊕ T15[x15]

∎ Tables Ti ∶ 8 bits→ 32 bits

T0[x] = S(x⊕ k0) × (02 01 01 03)T

T5[x] = S(x⊕ k5) × (03 02 01 01)T

T10[x] = S(x⊕ k10) × (01 03 02 01)T

T15[x] = S(x⊕ k15) × (01 01 03 02)T

∎ XOR table: 8 bits→ 4 bits

Txor[x0∣∣x1] = x0 ⊕ x1

Original white-box AES

Illustration: J. Muir “A Tutorial on White-box AES” (ePrint 2013)

Original white-box AES

∎ Second step: randomize look-up tables

∎ Each table T is replaced by

T ′ = g ○ T ○ f−1

where f, g are random encodings

∎ For two connected tables T , R

T ′ = g ○ T ○ f−1

R′ = h ○R ○ g−1
⇒ R′ ○T ′ = h○(R○T)○f−1

Original white-box AES

∎ Intuition: encoded tables bring no information

∎ True for a single (bijective) table g ○ T ○ f−1

∎ Not for the large picture

Illustration: J. Muir “A Tutorial on White-box AES” (ePrint 2013)

Many breaks

∎ First break: BGE attack
▸ Billet et al. Cryptanalysis of a White Box AES

Implementation (SAC 2004)

∎ Generic attack on WB SPN ciphers
▸ Michiels et al. Cryptanalysis of a Generic Class of

White-Box Implementations (SAC 2008)

∎ Collision attack & improved BGE attack
▸ Lepoint et al. Two Attacks on a White-Box AES

Implementation (SAC 2013)

∎ Attack complexity ∼ 222

Example: collision attack

02 ⋅ S0(α) ⊕ 03 ⋅ S1(0) = 02 ⋅ S0(0) ⊕ 03 ⋅ S1(β)

where S0(x) = S(P0(x) ⊕ k0) and S1(x) = S(P1(x) ⊕ k1)

Illustration: Y. De Mulder (presentation SAC 2013)

Patches and variants

∎ Perturbed WB-AES using MV crypto (Bringer et al. ePrint 2006)

⇒ broken (De Mulder et al. INDOCRYPT 2010)

∎ WB-AES based on wide linear encodings (Xiao-Lai, CSA 2009)

⇒ broken (De Mulder et al. SAC 2012)

∎ WB-AES based on dual AES ciphers (Karroumi, ICISC 2010)

⇒ broken (Lepoint et al. SAC 2013)

∎ Same situation with DES

Secret design paradigm

∎ Industrial need

▸ home-made solutions

▸ mix of several obfuscation
techniques

▸ secret designs

∎ Security evaluations by ITSEF labs

∎ Development of generic attacks
▸ Fault attacks, DCA

▸ Avoid costly reverse engineering effort

Fault attacks

∎ Easy fault injection in the white-box context

∎ Plenty of efficient FA techniques (on e.g. AES)

MC

SB SR

k10

k11

fault
injection

round 9

round 10

∎ Original white-box AES vulnerable to this attack

Differential Computation Analysis

∎ Suggested by NXP / Riscure
▸ Presentation at BalckHat 2015

▸ Best paper award CHES 2016

∎ Record data-dependent information at
execution ⇒ computation trace

Trace: J. Bos (presentation CHES 2016)

∎ Apply DPA techniques to computation traces

Differential Computation Analysis

computation traces

...

predictions

S(x1 ⊕ k)

S(x2 ⊕ k)

...
S(xN ⊕ k)

correlation

ρ(· , ·)

k 6= k∗
k = k∗

DCA in presence of encodings

∎ DCA can break the original white-box AES
▸ [Bos et al. CHES 2016] Differential Computation Analysis

∎ Why?

▸ random encodings are hardcoded

▸ for some Enc, we might have

ρ(xi,Enc(x)j) ≫ 0

▸ especially with 4-bit encodings

Enc(x0 ∣∣ x1) = Enc(x0) ∣∣ Enc(x1)

DCA experiment

∎ Random 4-bit encoding Enc

∎ Correlation ρ(S(x⊕ k)0, Enc(S(x⊕ k∗))j)

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 0

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 1

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 2

5 10 15 20

-0.4

-0.2

0.2

Bit 3

DCA experiment

∎ With another (4-bit) encoding

5 10 15 20

-0.2

0.2

0.4

Bit 0

5 10 15 20

-0.4

-0.2

0.2

Bit 1

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 2

5 10 15 20

-0.4

-0.2

0.2

0.4

Bit 3

∎ Most of the time 1, 2, or 3 bits leak

Countermeasures?

∎ Natural approach: use known SCA/FA
countermeasures

AESk

m

c

⇒
AESk

masking,
shuffling, ...

m

c

RNG

⇒
RNG

AESk

masking,
shuffling, ...

AESk

masking,
shuffling, ...

m

error

detection

c

Countermeasures?

Pseudo

RNG

AESk

masking,
shuffling, ...

AESk

masking,
shuffling, ...

m

error

detection

c

∎ Pseudo-randomness from m

∎ PRNG should be somehow secret

Countermeasures?

Pseudo

RNG

AESk

masking,
shuffling, ...

AESk

masking,
shuffling, ...

m

error

detection

c

On-top obfuscation

∎ Countermeasures hard to remove

∎ P-randomness / redundancy hard to detect

Open problems

∎ How to obfuscate the countermeasures?

∎ How to generate pseudo-randomness?

∎ Resistance to higher-order DCA, multiple FA?

White-Box Crypto Competition

WhibOx Contest

∎ Goal: confront designers and attackers in the
secret design paradigm

∎ Designers could submit WB AES implems:

▸ C source code ≤ 50MB

▸ executable ≤ 20MB

▸ RAM consumption ≤ 20MB

▸ running time ≤ 1sc

∎ Attackers could try to recover the keys of
submitted implems

Score system

∎ Unbroken implem on day n

1 + 2 +⋯ + n =
n(n + 1)

2
ST

∎ Break on day n
▸ Designer gets n(n+1)

2 ST points

▸ Attacker gets n(n+1)
2 BN points

▸ Challenge score starts decreasing symmetrically

Strawberry scores over timeStrawberry scores over time

Strawberry scores over time

No implementation got more
than 1 before 08/20

Strawberry scores over time

Strawberry scores over time

No implementation got more
than 1 before 08/20

Everything was
broken in the end!

Strawberry scores over time

Strawberry scores over time

No implementation got more
than 1 before 08/20

Everything was
broken in the end!

Outstanding
winner

Strawberry scores over time

Strawberry scores over time

No implementation got more
than 1 before 08/20

Everything was
broken in the end!

Outstanding
winner

Several challenging
implementations

Strawberry scores over time

Results

∎ 94 submitted implementations

∎ ∼ 870 breaks

∎ Socreboard:

id designer breaker score # days # breaks
777 cryptolux team cryptoexperts 406 28 1
815 grothendieck cryptolux 78 12 1
753 sebastien-riou cryptolux 66 11 3
877 chaes You! 55 10 2
845 team4 cryptolux 36 8 2

cryptolux: Biryukov, Udovenko

team cryptoexperts: Goubin, Paillier, Rivain, Wang

Implementation 777

∎ Several obfuscation layers
▸ Encoded Boolean circuit

▸ Bitslicing, error detection, dummy operations

▸ Virtualization, naming obfuscation

∎ Code size: 28 MB

∎ Code lines: 2.3 K

∎ 12 global variables
▸ pDeoW: computation state (2.1 MB)

▸ JGNNvi: program bytecode (15.3 MB)

Implementation 777

∎ 1020 functions of the form

Analysis of functions

∎ Table of function pointers indexed by bytecode

∎ Only 210 functions are called (over 1020)

∎ Ducplicates of 21 different functions

▸ memory reading/writing

▸ bitwise operations, bit shifts

▸ goto, conditional jump

De-virtualisation

Simulation ⇒ equivalent program with do-while loops

of arithmetic instructions

Human reverse engineering

∎ Remove some dummy loops

∎ Get sequence of 64-loops of 64-bit instructions

▸ First part: 64×64 bitslice program

▸ 3 instances with the input plaintext

▸ rest with hardcoded values

▸ Second part: (probably) error detection and
extraction of the ciphertext

∎ Extract a Boolean circuit with ∼ 600K gates

SSA form

∎ Put it in Static Single Assignment (SSA) form:

x = ... x = ...
y = ... y = ...
t = ¬x t1 = ¬x
x = t⊕ y ⇒ t2 = t1 ⊕ y
y = y ∧ t t3 = y ∧ t1
t = x ∨ y t4 = t2 ∨ t3

⋮ ⋮

Circuit minimization

Detect (over many executions) and remove:

∎ Dummy variable: ti never used?

∎ Constant: ti = 0 ? t1 = 1 ?

∎ Duplicate: ti = tj ?

∎ Pseudo-randomness:

(ti → ti ⊕ 1) ⇒ same result?

∎ Several rounds: ∼600K ⇒ ∼280K gates

Data dependency analysis

Data dependency graph (20% of the circuit):

Data dependency analysis

Data dependency graph (10% of the circuit):

Data dependency analysis

Data dependency graph (5% of the circuit):

Data dependency analysis

Data dependency graph (5% of the circuit):

S-boxes?

Data dependency analysis

Data dependency graph (5% of the circuit):

S-boxes?

MixColumn?

Data dependency analysis

Data dependency graph (5% of the circuit):

S-boxes?

MixColumn?

Initial pseudo-
randomness
generation?

Data dependency analysis

∎ Cluster analysis ⇒ gates within one “s-box”

∎ Identify all the outgoing variables:

s1, s2, . . . , sn

∎ Likely hypothesis:

S(x⊕ k∗) = Dec(s1, s2, . . . , sm)

for some deterministic decoding function

Key recovery

∎ Hypothesis: linear decoding function

∎ Record the si’s over n executions

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(1)
1 s

(1)
2 ⋯ s

(1)
m

s
(2)
1 s

(2)
2 ⋯ s

(2)
m

⋮ ⋮ ⋱ ⋮

s
(n)
1 s

(n)
2 ⋯ s

(n)
m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
⋮
cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

∎ Linear system solvable for k = k∗

Key recovery

∎ Hypothesis: linear decoding function

∎ Record the si’s over n executions

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(1)
1 s

(1)
2 ⋯ s

(1)
m

s
(2)
1 s

(2)
2 ⋯ s

(2)
m

⋮ ⋮ ⋱ ⋮

s
(n)
1 s

(n)
2 ⋯ s

(n)
m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
⋮
cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

∎ Linear system solvable for k = k∗

Key recovery

∎ Hypothesis: linear decoding function

∎ Record the si’s over n executions

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(1)
1 s

(1)
2 ⋯ s

(1)
m

s
(2)
1 s

(2)
2 ⋯ s

(2)
m

⋮ ⋮ ⋱ ⋮

s
(n)
1 s

(n)
2 ⋯ s

(n)
m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
⋮
cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

∎ Linear system solvable for k = k∗

Key recovery

∎ Hypothesis: linear decoding function

∎ Record the si’s over n executions

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(1)
1 s

(1)
2 ⋯ s

(1)
m

s
(2)
1 s

(2)
2 ⋯ s

(2)
m

⋮ ⋮ ⋱ ⋮

s
(n)
1 s

(n)
2 ⋯ s

(n)
m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
⋮
cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

∎ Linear system solvable for k = k∗

Key recovery

∎ Hypothesis: linear decoding function

∎ Record the si’s over n executions

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(1)
1 s

(1)
2 ⋯ s

(1)
m

s
(2)
1 s

(2)
2 ⋯ s

(2)
m

⋮ ⋮ ⋱ ⋮

s
(n)
1 s

(n)
2 ⋯ s

(n)
m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1
c2
⋮
cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

∎ Linear system solvable for k = k∗

Key recovery
∎ And it works! For example:

▸ s-box cluster with n = 34 outgoing variables

▸ using T = 50 executions traces

▸ one solution per Sj for k = k∗

▸ no solutions for k ≠ k∗

j = 0: 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 1: 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 2: 0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 3: 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 4: 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 5: 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 6: 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 7: 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

∎ Decoding

(s7, s8, . . . , s21
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
15 outgoing bits

)
× Bin. Mat.
ÐÐÐÐÐÐÐ→ (S0(x⊕ k

∗), . . . , S7(x⊕ k
∗)

´¹¹¸¹¹¶
8 s-box coordinates

)

∎ HO-DCA might have work!

Key recovery
∎ And it works! For example:

▸ s-box cluster with n = 34 outgoing variables

▸ using T = 50 executions traces

▸ one solution per Sj for k = k∗

▸ no solutions for k ≠ k∗

j = 0: 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 1: 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 2: 0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 3: 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 4: 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 5: 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 6: 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 7: 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

∎ Decoding

(s7, s8, . . . , s21
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
15 outgoing bits

)
× Bin. Mat.
ÐÐÐÐÐÐÐ→ (S0(x⊕ k

∗), . . . , S7(x⊕ k
∗)

´¹¹¸¹¹¶
8 s-box coordinates

)

∎ HO-DCA might have work!

Key recovery
∎ And it works! For example:

▸ s-box cluster with n = 34 outgoing variables

▸ using T = 50 executions traces

▸ one solution per Sj for k = k∗

▸ no solutions for k ≠ k∗

j = 0: 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 1: 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 2: 0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 3: 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 4: 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 5: 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 6: 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 7: 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

∎ Decoding

(s7, s8, . . . , s21
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
15 outgoing bits

)
× Bin. Mat.
ÐÐÐÐÐÐÐ→ (S0(x⊕ k

∗), . . . , S7(x⊕ k
∗)

´¹¹¸¹¹¶
8 s-box coordinates

)

∎ HO-DCA might have work!

Key recovery
∎ And it works! For example:

▸ s-box cluster with n = 34 outgoing variables

▸ using T = 50 executions traces

▸ one solution per Sj for k = k∗

▸ no solutions for k ≠ k∗

j = 0: 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 1: 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 2: 0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 3: 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 4: 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 5: 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 6: 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

j = 7: 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

∎ Decoding

(s7, s8, . . . , s21
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
15 outgoing bits

)
× Bin. Mat.
ÐÐÐÐÐÐÐ→ (S0(x⊕ k

∗), . . . , S7(x⊕ k
∗)

´¹¹¸¹¹¶
8 s-box coordinates

)

∎ HO-DCA might have work!

Conclusion
∎ Theory:

▸ No provably secure constructions

▸ More work needed on security models & notions

∎ Practice:
▸ Everything broken in the literature

▸ Moving toward a secret design paradigm

▸ More work needed on generic attacks and
countermeasures in the white-box context

∎ ECRYPT / CHES’17 competition:
▸ Nothing stood > 28 days

▸ Can obscurity really bring (a bit of) security?

	White-Box Crypto Theory
	White-Box Crypto Practice
	White-Box Crypto Competition

