

Attack and Improvement of a Secure S-box Calculation Based on the Fourier Transform

Jean-Sébastien Coron¹, Christophe Giraud², Emmanuel Prouff², and Matthieu Rivain^{1,2}

¹ University of Luxembourg

² Oberthur Technologies

August 11, 2008

J.-S. Coron, C. Giraud, E. Prouff, and M. Rivain Attack and Improvement of the FT-Based S-box Calculation

- 2 S-box Masking Based on the Fourier Transform
- Differential Power Analysis vs. Biased Masking 3
- OPA against the FT-Based S-box Masking
- Improved FT-Based S-box Masking 5

Conclusion

Preliminaries

Differential Power Analysis (DPA)

DPA Basics

- Physical leakage dependent on intermediate variables
- Sensitive variable depends on both the input plaintext and on a guessable part of the secret key
- DPA exploits the physical leakage on a sensitive variable for key recovery

Differential Power Analysis (DPA)

DPA Basics

- Physical leakage dependent on intermediate variables
- Sensitive variable depends on both the input plaintext and on a guessable part of the secret key
- DPA exploits the physical leakage on a sensitive variable for key recovery

DPA Security

Every intermediate variable is independent of any sensitive variable.

Masking Countermeasure

- Every sensitive variable Z is masked with a random value R
- **masked variable** $\widetilde{Z} = Z \oplus R$ and **mask** R both independent of Z
- Masked variables and masks processed separately
- Completeness: $Z = \widetilde{Z} \oplus R$

Masking Countermeasure

- \blacksquare Every sensitive variable Z is masked with a random value R
- **masked variable** $\widetilde{Z} = Z \oplus R$ and **mask** R both independent of Z
- Masked variables and masks processed separately
- Completeness: $Z = \widetilde{Z} \oplus R$
- Masking a block cipher requires the masking of:
 - the key additions
 - the linear transformations
 - the substitution boxes (S-boxes)

Masking Countermeasure

- $\hfill\blacksquare$ Every sensitive variable Z is masked with a random value R
- **masked variable** $\widetilde{Z} = Z \oplus R$ and **mask** R both independent of Z
- Masked variables and masks processed separately
- Completeness: $Z = \widetilde{Z} \oplus R$

Masking a block cipher requires the masking of:

- the key additions
- the linear transformations
- the substitution boxes (S-boxes)

Key addition

Masked Var.		Mask		
$Z\oplus R$	\oplus	R	=	Z

Masking Countermeasure

- $\hfill\blacksquare$ Every sensitive variable Z is masked with a random value R
- **masked variable** $\widetilde{Z} = Z \oplus R$ and **mask** R both independent of Z
- Masked variables and masks processed separately
- Completeness: $Z = \widetilde{Z} \oplus R$

Masking a block cipher requires the masking of:

- the key additions
- the linear transformations
- the substitution boxes (S-boxes)

Key addition

 $\begin{array}{lll} \text{Masked Var.} & \text{Mask} \\ Z \oplus R \oplus K & \oplus & R &= & Z \oplus K \end{array}$

ъ

Masking Countermeasure

- \blacksquare Every sensitive variable Z is masked with a random value R
- **masked variable** $\widetilde{Z} = Z \oplus R$ and **mask** R both independent of Z
- Masked variables and masks processed separately
- Completeness: $Z = \widetilde{Z} \oplus R$

Masking a block cipher requires the masking of:

- the key additions
- the linear transformations
- the substitution boxes (S-boxes)

Linear transformation Masked Var. Mask $Z \oplus R \oplus R = Z$ $(\Box) (\overline{C}) (\overline{C})$

J.-S. Coron, C. Giraud, E. Prouff, and M. Rivain Attack and Improvement of the FT-Based S-box Calculation

Masking Countermeasure

- \blacksquare Every sensitive variable Z is masked with a random value R
- **masked variable** $\widetilde{Z} = Z \oplus R$ and **mask** R both independent of Z
- Masked variables and masks processed separately
- Completeness: $Z = \widetilde{Z} \oplus R$

Masking a block cipher requires the masking of:

- the key additions
- the linear transformations
- the substitution boxes (S-boxes)

Linear transformation

 $\begin{array}{rcl} \mbox{Masked Var.} & \mbox{Mask} \\ L(Z \oplus R) & \oplus & L(R) & = & L(Z) \end{array}$

イロト イポト イヨト イヨト

-

Masking Countermeasure

- $\hfill\blacksquare$ Every sensitive variable Z is masked with a random value R
- **masked variable** $\widetilde{Z} = Z \oplus R$ and **mask** R both independent of Z
- Masked variables and masks processed separately
- Completeness: $Z = \widetilde{Z} \oplus R$

Masking a block cipher requires the masking of:

- the key additions
- the linear transformations
- the substitution boxes (S-boxes)

Substitution box

Issue: From $Z \oplus R$ and R, compute $F(Z) \oplus R'$. All intermediate var. must be independent of Z.

イロト イポト イヨト イヨト

 Prouff, Giraud, and Aumonier in CHES 2006 : Provably Secure S-Box Implementation Based on Fourier Transform

- Prouff, Giraud, and Aumonier in CHES 2006 : Provably Secure S-Box Implementation Based on Fourier Transform
- The Fourier Transform of a $(n \times n)$ S-box F is defined by:

$$\widehat{F}(Z) = \sum_{a \in \mathbb{F}_2^n} F(a)(-1)^{a \cdot Z}$$

- Prouff, Giraud, and Aumonier in CHES 2006 : Provably Secure S-Box Implementation Based on Fourier Transform
- The Fourier Transform of a $(n \times n)$ S-box F is defined by:

$$\widehat{F}(Z) = \sum_{a \in \mathbb{F}_2^n} F(a)(-1)^{a \cdot Z}$$

It satisfies $\widehat{\widehat{F}} = 2^n F$, that is:

$$F(Z) = \frac{1}{2^n} \widehat{F}(Z) = \frac{1}{2^n} \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot Z}$$

J.-S. Coron, C. Giraud, E. Prouff, and M. Rivain Attack and Improvement of the FT-Based S-box Calculation

S-box Masking Based on the Fourier Transform

$$F(Z) = \frac{1}{2^n} \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot Z}$$

S-box Masking Based on the Fourier Transform

$$(-1)^{\widetilde{Z} \cdot R_1} F(Z) = \frac{1}{2^n} \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot \widetilde{Z} \oplus R_1 \cdot (a \oplus \widetilde{Z})}$$

S-box Masking Based on the Fourier Transform

$$(-1)^{(\widetilde{Z}\oplus R_2)\cdot R_1}F(Z) = \frac{1}{2^n}\sum_{a\in\mathbb{F}_2^n}\widehat{F}(a)(-1)^{a\cdot\widetilde{Z}\oplus R_1\cdot(a\oplus\widetilde{Z}\oplus R_2)}$$

S-box Masking Based on the Fourier Transform

$$(-1)^{(\widetilde{Z}\oplus R_2)\cdot R_1}F(Z) + R_3 \mod 2^n =$$

$$\frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a\in\mathbb{F}_2^n} \widehat{F}(a)(-1)^{a\cdot\widetilde{Z}\oplus R_1\cdot(a\oplus\widetilde{Z}\oplus R_2)} \mod 2^{2n} \right)$$

S-box Masking Based on the Fourier Transform

INPUTS: a masked var. $\widetilde{Z} = Z \oplus R_1$, a mask R_1 , a look-up table \widehat{F} OUTPUTS: a masked output $F(Z) \oplus R_3$, a mask R_3

$$(-1)^{(\widetilde{Z}\oplus R_2)\cdot R_1}F(Z) + R_3 \mod 2^n =$$

$$\frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a\in\mathbb{F}_2^n} \widehat{F}(a)(-1)^{a\cdot\widetilde{Z}\oplus R_1\cdot(a\oplus\widetilde{Z}\oplus R_2)} \mod 2^{2n} \right)$$

Remark

The sum is implemented by a loop on 2^n elements.

 \Rightarrow Of interest for S-boxes with small dimensions (e.g. n = 4).

$$(-1)^{(\widetilde{Z}\oplus R_2)\cdot R_1}F(Z) + R_3 = \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a\in\mathbb{F}_2^n} \widehat{F}(a)(-1)^{a\cdot\widetilde{Z}\oplus R_1\cdot(a\oplus\widetilde{Z}\oplus R_2)} \right)$$

J.-S. Coron, C. Giraud, E. Prouff, and M. Rivain Attack and Improvement of the FT-Based S-box Calculation

- 4 回 2 - 4 □ 2 - 4 □

1

$$(-1)^{(\widetilde{Z}\oplus R_2)\cdot R_1}F(Z) + R_3 = \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a\in\mathbb{F}_2^n} \widehat{F}(a)(-1)^{a\cdot\widetilde{Z}\oplus R_1\cdot(a\oplus\widetilde{Z}\oplus R_2)} \right)$$

The Flaw

 $\bullet \ a \cdot \widetilde{Z} \oplus R_1 \cdot (\widetilde{Z} \oplus a \oplus R_2) = a \cdot Z \oplus R_1 \cdot (\widetilde{Z} \oplus R_2)$

▲ □ ▶ ▲ □ ▶ ▲

$$(-1)^{(\widetilde{Z}\oplus R_2)\cdot R_1}F(Z) + R_3 = \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a\in\mathbb{F}_2^n} \widehat{F}(a)(-1)^{a\cdot\widetilde{Z}\oplus R_1\cdot(a\oplus\widetilde{Z}\oplus R_2)} \right)$$

The Flaw

- $\bullet \ a \cdot \widetilde{Z} \oplus R_1 \cdot (\widetilde{Z} \oplus a \oplus R_2) = a \cdot Z \oplus R_1 \cdot (\widetilde{Z} \oplus R_2)$
- **R**₁ and $(\widetilde{Z} \oplus R_2)$ are independently and uniformly distributed (iud)

$$(-1)^{(\widetilde{Z}\oplus R_2)\cdot R_1}F(Z) + R_3 = \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a\in\mathbb{F}_2^n} \widehat{F}(a)(-1)^{a\cdot\widetilde{Z}\oplus R_1\cdot(a\oplus\widetilde{Z}\oplus R_2)} \right)$$

The Flaw

- $\bullet \ a \cdot \widetilde{Z} \oplus R_1 \cdot (\widetilde{Z} \oplus a \oplus R_2) = a \cdot Z \oplus R_1 \cdot (\widetilde{Z} \oplus R_2)$
- **R**₁ and $(\widetilde{Z} \oplus R_2)$ are independently and uniformly distributed (iud)
- The scalar product of two iud r. v. $X \cdot Y$ is not a uniform r. v.:

$$P[X \cdot Y = 0] = \frac{1}{2} + \frac{1}{2^{n+1}}$$

Oifferential Power Analysis vs. Biased Masking

4 DPA against the FT-Based S-box Masking

5 Improved FT-Based S-box Masking

6 Conclusion

- Let $b_{k^*} = f(X, k^*)$ be a bit of the computation, where
 - ▶ X is a public variable (uniformly distributed)
 - k^* is a guessable part of the secret key
- Let L be the leakage on b_{k^*}

- Let $b_{k^*} = f(X, k^*)$ be a bit of the computation, where
 - X is a public variable (uniformly distributed)
 - k^* is a guessable part of the secret key
- Let L be the leakage on b_{k^*}

DPA Assumption

$$E[L|b_{k^*} = 0] - E[L|b_{k^*} = 1] = \Delta \neq 0$$

- Let $b_{k^*} = f(X,k^*)$ be a bit of the computation, where
 - X is a public variable (uniformly distributed)
 - k^* is a guessable part of the secret key
- Let L be the leakage on b_{k^*}

DPA Assumption

$$E[L|b_{k^*} = 0] - E[L|b_{k^*} = 1] = \Delta \neq 0$$

DPA Attack

• Make a guess $k \stackrel{?}{=} k^*$

- Let $b_{k^*} = f(X,k^*)$ be a bit of the computation, where
 - X is a public variable (uniformly distributed)
 - k^* is a guessable part of the secret key
- Let L be the leakage on b_{k^*}

DPA Assumption

$$E[L|b_{k^*}=0] - E[L|b_{k^*}=1] = \Delta \neq 0$$

- Make a guess $k \stackrel{?}{=} k^*$
- For several executions, measure L and predict $b_k = f(X, k)$.

- Let $b_{k^*} = f(X,k^*)$ be a bit of the computation, where
 - X is a public variable (uniformly distributed)
 - k^* is a guessable part of the secret key
- Let L be the leakage on b_{k^*}

DPA Assumption

$$E[L|b_{k^*}=0] - E[L|b_{k^*}=1] = \Delta \neq 0$$

- Make a guess $k \stackrel{?}{=} k^*$
- For several executions, measure L and predict $b_k = f(X, k)$.
- Compute the difference of means: $\Delta_k = \widehat{E} \left[L | b_k = 0 \right] \widehat{E} \left[L | b_k = 1 \right]$

- Let $b_{k^*} = f(X,k^*)$ be a bit of the computation, where
 - X is a public variable (uniformly distributed)
 - k^* is a guessable part of the secret key
- Let L be the leakage on b_{k^*}

DPA Assumption

$$E[L|b_{k^*}=0] - E[L|b_{k^*}=1] = \Delta \neq 0$$

- Make a guess $k \stackrel{?}{=} k^*$
- For several executions, measure L and predict $b_k = f(X, k)$.
- Compute the difference of means: $\Delta_k = \widehat{E} \left[L | b_k = 0 \right] \widehat{E} \left[L | b_k = 1 \right]$
 - If $k = k^*$ then $P[b_k = b_{k^*}] = 1$ and $\Delta_k \to \Delta$

- Let $b_{k^*} = f(X,k^*)$ be a bit of the computation, where
 - X is a public variable (uniformly distributed)
 - k^* is a guessable part of the secret key
- Let L be the leakage on b_{k^*}

DPA Assumption

$$E[L|b_{k^*}=0] - E[L|b_{k^*}=1] = \Delta \neq 0$$

- Make a guess $k \stackrel{?}{=} k^*$
- For several executions, measure L and predict $b_k = f(X, k)$.

• Compute the difference of means: $\Delta_k = \widehat{E} \left[L | b_k = 0 \right] - \widehat{E} \left[L | b_k = 1 \right]$

- If $k = k^*$ then $P[b_k = b_{k^*}] = 1$ and $\Delta_k \to \Delta$
- If $k \neq k^*$ then $P[b_k = b_{k^*}] = \alpha < 1$ and $\Delta_k \to (1 2\alpha)\Delta$

- Let $b_{k^*} = f(X,k^*)$ be a bit of the computation, where
 - X is a public variable (uniformly distributed)
 - k^* is a guessable part of the secret key
- Let L be the leakage on b_{k^*}

DPA Assumption

$$E[L|b_{k^*}=0] - E[L|b_{k^*}=1] = \Delta \neq 0$$

DPA Attack

- Make a guess $k \stackrel{?}{=} k^*$
- For several executions, measure L and predict $b_k = f(X, k)$.

• Compute the difference of means: $\Delta_k = \widehat{E} \left[L | b_k = 0 \right] - \widehat{E} \left[L | b_k = 1 \right]$

- If $k = k^*$ then $P[b_k = b_{k^*}] = 1$ and $\Delta_k \to \Delta$
- ▶ If $k \neq k^*$ then $P[b_k = b_{k^*}] = \alpha < 1$ and $\Delta_k \rightarrow (1 2\alpha)\Delta$

• Assuming $\alpha > 0$ we have $|(1 - 2\alpha)\Delta| < |\Delta|$

- The leakage L depends on a masked bit $b_{k^*} \oplus R$

• The mask is biased: $P[R=0] = \frac{1}{2} + \varepsilon$

- The leakage L depends on a masked bit $b_{k^*}\oplus R$

• The mask is biased: $P[R=0] = \frac{1}{2} + \varepsilon$

DPA Assumption

$$\mathbf{E}\left[L|b_{k^*} \oplus R = 0\right] - \mathbf{E}\left[L|b_{k^*} \oplus R = 1\right] = \Delta \neq 0$$

- The leakage L depends on a masked bit $b_{k^*}\oplus R$

• The mask is biased: $P[R=0] = \frac{1}{2} + \varepsilon$

DPA Assumption

$$\mathbf{E}\left[L|b_{k^*} \oplus R = 0\right] - \mathbf{E}\left[L|b_{k^*} \oplus R = 1\right] = \Delta \neq 0$$

DPA Attack

Make a guess
$$k\stackrel{?}{=}k^*$$

Compute the difference of means: $\Delta_k = \widehat{\mathrm{E}}\left[L|b_k=0
ight] - \widehat{\mathrm{E}}\left[L|b_k=1
ight]$

- The leakage L depends on a masked bit $b_{k^*}\oplus R$

• The mask is biased: $P[R=0] = \frac{1}{2} + \varepsilon$

DPA Assumption

$$\mathbf{E}\left[L|b_{k^*} \oplus R = 0\right] - \mathbf{E}\left[L|b_{k^*} \oplus R = 1\right] = \Delta \neq 0$$

DPA Attack

• Make a guess
$$k \stackrel{?}{=} k^*$$

• Compute the difference of means: $\Delta_k = \widehat{E} \left[L | b_k = 0 \right] - \widehat{E} \left[L | b_k = 1 \right]$

If
$$k = k^*$$
 then $P[b_k = b_{k^*} \oplus R] = \frac{1}{2} + \varepsilon$, and
 $\Delta_k \to (\frac{1}{2} + \varepsilon)\Delta + (\frac{1}{2} - \varepsilon)(-\Delta)$

- The leakage L depends on a masked bit $b_{k^*}\oplus R$

• The mask is biased: $P[R=0] = \frac{1}{2} + \varepsilon$

DPA Assumption

$$\mathbf{E}\left[L|b_{k^*} \oplus R = 0\right] - \mathbf{E}\left[L|b_{k^*} \oplus R = 1\right] = \Delta \neq 0$$

DPA Attack

– Make a guess
$$k \stackrel{?}{=} k^*$$

Compute the difference of means: $\Delta_k = \widehat{E} \left[L | b_k = 0 \right] - \widehat{E} \left[L | b_k = 1 \right]$

If $k = k^*$ then $P[b_k = b_{k^*} \oplus R] = \frac{1}{2} + \varepsilon$, and $\Delta_k \to (\frac{1}{2} + \varepsilon)\Delta + (\frac{1}{2} - \varepsilon)(-\Delta) = 2\varepsilon\Delta$

- The leakage L depends on a masked bit $b_{k^*}\oplus R$

• The mask is biased: $P[R=0] = \frac{1}{2} + \varepsilon$

DPA Assumption

$$\mathbf{E}\left[L|b_{k^*} \oplus R = 0\right] - \mathbf{E}\left[L|b_{k^*} \oplus R = 1\right] = \Delta \neq 0$$

DPA Attack

– Make a guess
$$k \stackrel{?}{=} k^*$$

• Compute the difference of means: $\Delta_k = \widehat{E} \left[L | b_k = 0 \right] - \widehat{E} \left[L | b_k = 1 \right]$

If $k = k^*$ then $P[b_k = b_{k^*} \oplus R] = \frac{1}{2} + \varepsilon$, and

$$\Delta_k \to \left(\frac{1}{2} + \varepsilon\right) \Delta + \left(\frac{1}{2} - \varepsilon\right) (-\Delta) = 2\varepsilon \Delta$$

• If
$$k \neq k^*$$
 then $\Delta_k \to 2\varepsilon(1-2\alpha)\Delta$

- The leakage L depends on a masked bit $b_{k^*}\oplus R$

• The mask is biased: $P[R=0] = \frac{1}{2} + \varepsilon$

DPA Assumption

$$\mathbf{E}\left[L|b_{k^*} \oplus R = 0\right] - \mathbf{E}\left[L|b_{k^*} \oplus R = 1\right] = \Delta \neq 0$$

DPA Attack

• Make a guess
$$k \stackrel{?}{=} k^*$$

• Compute the difference of means: $\Delta_k = \widehat{E} \left[L | b_k = 0 \right] - \widehat{E} \left[L | b_k = 1 \right]$

If
$$k = k^*$$
 then $\Pr\left[b_k = b_{k^*} \oplus R\right] = \frac{1}{2} + \varepsilon$, and

$$\Delta_k \to \left(\frac{1}{2} + \varepsilon\right) \Delta + \left(\frac{1}{2} - \varepsilon\right) (-\Delta) = 2\varepsilon \Delta$$

If
$$k \neq k^*$$
 then $\Delta_k \to 2\varepsilon(1-2\alpha)\Delta$

The convergence requires about (¹/_{2e})² times more leakage measurements

- 2 S-box Masking Based on the Fourier Transform
- 3 Differential Power Analysis vs. Biased Masking
- OPA against the FT-Based S-box Masking
- 5 Improved FT-Based S-box Masking

6 Conclusion

- Targeted bit: $a \cdot Z \oplus R_1 \cdot (\widetilde{Z} \oplus R_2)$
 - Z: sensitive n-bit S-box input
 - ► a: loop index
 - $R_1 \cdot (Z \oplus R_2)$: biased mask

- Targeted bit: $a \cdot Z \oplus R_1 \cdot (\widetilde{Z} \oplus R_2)$
 - Z: sensitive n-bit S-box input
 - ► a: loop index
 - $R_1 \cdot (\widetilde{Z} \oplus R_2)$: biased mask
- Mask bias: $\varepsilon = \frac{1}{2^{n+1}}$
 - Number of required measurements multiply by $(\frac{1}{2\epsilon})^2 = 2^{2n}$

• If
$$n = 4$$
 then $(\frac{1}{2\varepsilon})^2 = 256$

- Masked AES implementation
- S-box implemented with the composite field method

• F is defined as :
$$F(x) = \begin{cases} x^{-1} & \text{if } x \in GF(16) \setminus \{0\} \\ 0 & \text{if } x = 0 \end{cases}$$

- Masked AES implementation
- S-box implemented with the composite field method

• F is defined as :
$$F(x) = \begin{cases} x^{-1} & \text{if } x \in GF(16) \setminus \{0\} \\ 0 & \text{if } x = 0 \end{cases}$$

J.-S. Coron, C. Giraud, E. Prouff, and M. Rivain Attack and Improvement of the FT-Based S-box Calculation

Preliminaries

- S-box Masking Based on the Fourier Transform
- 3 Differential Power Analysis vs. Biased Masking
- 4 DPA against the FT-Based S-box Masking

Improved FT-Based S-box Masking

6 Conclusion

$$(-1)^{R_2} F(Z) + R_3 \mod 2^n$$

= $\left\lfloor \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot Z \oplus R_2} \mod 2^{2n} \right) \right\rfloor$

,

$$(-1)^{R_2} F(Z) + R_3 \mod 2^n$$

= $\left\lfloor \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot Z \oplus R_2} \mod 2^{2n} \right) \right\rfloor$

,

For every *a*:

 $Tmp \leftarrow a \cdot \widetilde{Z} \qquad [Tmp = a \cdot \widetilde{Z}]$

$$(-1)^{R_2} F(Z) + R_3 \mod 2^n$$

= $\left\lfloor \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot Z \oplus R_2} \mod 2^{2n} \right) \right\rfloor$

,

For every *a*:

$$Tmp \leftarrow a \cdot \widetilde{Z} \qquad [Tmp = a \cdot \widetilde{Z}]$$
$$Tmp \leftarrow Tmp \oplus R_2 \qquad [Tmp = a \cdot \widetilde{Z} \oplus R_2]$$

$$(-1)^{R_2} F(Z) + R_3 \mod 2^n$$

= $\left\lfloor \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot Z \oplus R_2} \mod 2^{2n} \right) \right\rfloor$

,

For every *a*:

$$Tmp \leftarrow a \cdot \widetilde{Z} \qquad [Tmp = a \cdot \widetilde{Z}]$$
$$Tmp \leftarrow Tmp \oplus R_2 \qquad [Tmp = a \cdot \widetilde{Z} \oplus R_2]$$
$$Tmp \leftarrow Tmp \oplus a \cdot R_1 \qquad [Tmp = a \cdot Z \oplus R_2]$$

$$(-1)^{R_2} F(Z) + R_3 \mod 2^n = \left\lfloor \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot Z \oplus R_2} \mod 2^{2n} \right) \right\rfloor ,$$

For every *a*:

$$Tmp \leftarrow a \cdot \widetilde{Z} \qquad [Tmp = a \cdot \widetilde{Z}]$$
$$Tmp \leftarrow Tmp \oplus R_2 \qquad [Tmp = a \cdot \widetilde{Z} \oplus R_2]$$
$$Tmp \leftarrow Tmp \oplus a \cdot R_1 \qquad [Tmp = a \cdot Z \oplus R_2]$$

DPA Security: exponent masked by R_2 , sum masked by (R_3, R_4)

$$(-1)^{R_2} F(Z) + R_3 \mod 2^n$$

= $\left\lfloor \frac{1}{2^n} \left(2^n R_3 + R_4 + \sum_{a \in \mathbb{F}_2^n} \widehat{F}(a) (-1)^{a \cdot Z \oplus R_2} \mod 2^{2n} \right) \right\rfloor$

,

For every *a*:

$$Tmp \leftarrow a \cdot \widetilde{Z} \qquad [Tmp = a \cdot \widetilde{Z}]$$

$$Tmp \leftarrow Tmp \oplus R_2 \qquad [Tmp = a \cdot \widetilde{Z} \oplus R_2]$$

$$Tmp \leftarrow Tmp \oplus a \cdot R_1 \qquad [Tmp = a \cdot Z \oplus R_2]$$

DPA Security: exponent masked by R₂, sum masked by (R₃, R₄)
 Efficiency: 2ⁿ⁺¹ look-ups avoided

- The FT-based DPA countermeasure of CHES 2006 has a flaw
- The flaw makes an efficient DPA attack possible
- Our attack has been practically validated
- We propose an improved version of the countermeasure
 - provably secure against DPA
 - more efficient than the original countermeasure