Provably Secure Higher-Order Masking of AES

Matthieu Rivain Emmanuel Prouff
CryptoExperts Oberthur
CHES 2010, Santa Barbara, Aug. 20 ${ }^{\text {th }}$
CRYPTOEXPERTS ${ }^{\text {吅 }}$
WE INNOVATE TO SECURE YOUR BUSINESS

Outline

1. Introduction

- Higher-Order Masking
- ISW Scheme (CRYPTO'03)

2. Our Scheme

- Masking the S-box
- Masking the Whole AES
- Security
- Implementation Results

3. Conclusion

Outline

1. Introduction

- Higher-Order Masking
- ISW Scheme (CRYPTO'03)

2-Our Scheme

- Masking the S-box
- Masking the Whole AES
- Security
- Implementation Results

3 Conclusion

Higher-Order Masking
 Basic principle

- Every key-dependent variable x is shared into $d+1$ variables

$$
x_{0} \perp x_{1} \perp \cdots \perp x_{d}=x
$$

Higher-Order Masking
 Basic principle

- Every key-dependent variable x is shared into $d+1$ variables

$$
x_{0} \oplus x_{1} \oplus \cdots \oplus x_{d}=x
$$

Higher-Order Masking
 Basic principle

- Every key-dependent variable x is shared into $d+1$ variables

$$
x_{0} \oplus x_{1} \oplus \cdots \oplus x_{d}=x
$$

- The masks $(i \geq 1): x_{i} \leftarrow \$$

Higher-Order Masking
 Basic principle

- Every key-dependent variable x is shared into $d+1$ variables

$$
x_{0} \oplus x_{1} \oplus \cdots \oplus x_{d}=x
$$

- The masks $(i \geq 1): x_{i} \leftarrow \$$
- The masked variable: $x_{0} \leftarrow x \oplus x_{1} \oplus \cdots \oplus x_{d}$

Higher-Order Masking
 Basic principle

- Every key-dependent variable x is shared into $d+1$ variables

$$
x_{0} \oplus x_{1} \oplus \cdots \oplus x_{d}=x
$$

- The masks $(i \geq 1): x_{i} \leftarrow \$$
- The masked variable: $x_{0} \leftarrow x \oplus x_{1} \oplus \cdots \oplus x_{d}$
- Note: equiv. $d+1$ out of $d+1$ secret sharing of x

Higher-Order Masking
 Basic principle

- Every key-dependent variable x is shared into $d+1$ variables

$$
x_{0} \oplus x_{1} \oplus \cdots \oplus x_{d}=x
$$

- The masks $(i \geq 1): x_{i} \leftarrow \$$
- The masked variable: $x_{0} \leftarrow x \oplus x_{1} \oplus \cdots \oplus x_{d}$
- Note: equiv. $d+1$ out of $d+1$ secret sharing of x
- Computation carried out by processing the shares separately

Higher-Order Masking Soundness

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$

Higher-Order Masking Soundness

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$
- Number of leakage samples to distinguish $\left(\left(L_{i}\right)_{i} \mid x=0\right)$ from $\left(\left(L_{i}\right)_{i} \mid x=1\right)$:

$$
q \geq O(1) \sigma^{d}
$$

Higher-Order Masking Soundness

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked $\mapsto x_{0}, x_{1}, \ldots, x_{d}$
- Leakage : $L_{i} \sim x_{i}+\mathcal{N}\left(\mu, \sigma^{2}\right)$
- Number of leakage samples to distinguish $\left(\left(L_{i}\right)_{i} \mid x=0\right)$ from $\left(\left(L_{i}\right)_{i} \mid x=1\right)$:

$$
q \geq O(1) \sigma^{d}
$$

Higher-order masking is sound in the presence of noisy leakage!

Higher-Order Masking Schemes

Definition

A dth-order masking scheme for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

$$
\left(c_{0}, c_{1}, \ldots, c_{d}\right) \leftarrow \mathcal{E}^{\prime}\left(\left(m_{0}, m_{1}, \ldots, m_{d}\right),\left(k_{0}, k_{1}, \ldots, k_{d}\right)\right)
$$

Higher-Order Masking Schemes

Definition

A dth-order masking scheme for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

$$
\left(c_{0}, c_{1}, \ldots, c_{d}\right) \leftarrow \mathcal{E}^{\prime}\left(\left(m_{0}, m_{1}, \ldots, m_{d}\right),\left(k_{0}, k_{1}, \ldots, k_{d}\right)\right)
$$

- completeness: $\bigoplus_{i} m_{i}=m$ and $\bigoplus_{i} k_{i}=k$

$$
\Rightarrow \bigoplus_{i} c_{i}=\mathcal{E}(m, k)
$$

Higher-Order Masking Schemes

Definition

A dth-order masking scheme for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

$$
\left(c_{0}, c_{1}, \ldots, c_{d}\right) \leftarrow \mathcal{E}^{\prime}\left(\left(m_{0}, m_{1}, \ldots, m_{d}\right),\left(k_{0}, k_{1}, \ldots, k_{d}\right)\right)
$$

- completeness: $\bigoplus_{i} m_{i}=m$ and $\bigoplus_{i} k_{i}=k$

$$
\Rightarrow \bigoplus_{i} c_{i}=\mathcal{E}(m, k)
$$

- security: $\forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathcal{E}^{\prime}\right\}^{d}$:

$$
\mathrm{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
$$

Higher-Order Masking Schemes

Definition

A dth-order masking scheme for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

$$
\left(c_{0}, c_{1}, \ldots, c_{d}\right) \leftarrow \mathcal{E}^{\prime}\left(\left(m_{0}, m_{1}, \ldots, m_{d}\right),\left(k_{0}, k_{1}, \ldots, k_{d}\right)\right)
$$

- completeness: $\bigoplus_{i} m_{i}=m$ and $\bigoplus_{i} k_{i}=k$

$$
\Rightarrow \bigoplus_{i} c_{i}=\mathcal{E}(m, k)
$$

- security: $\forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathcal{E}^{\prime}\right\}^{d}$:

$$
\operatorname{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
$$

For SPN (eg. DES, AES) the main issue is masking the S-box.

Higher-Order Masking Schemes Literature

Software implementations:

- [Schramm-Paar CT-RSA'06]
- secure only for $d \leq 2$ [Coron-Prouff-Rivain CHES'07]

Higher-Order Masking Schemes Literature

Software implementations:

- [Schramm-Paar CT-RSA'06]
- secure only for $d \leq 2$ [Coron-Prouff-Rivain CHES'07]
- [Rivain-Dottax-Prouff FSE'08]
- alternative solutions dedicated to $d=2$

Higher-Order Masking Schemes
 Literature

Software implementations:

- [Schramm-Paar CT-RSA'06]
- secure only for $d \leq 2$ [Coron-Prouff-Rivain CHES'07]
- [Rivain-Dottax-Prouff FSE'08]
- alternative solutions dedicated to $d=2$

Hardware implementations:

- [Ishai-Sahai-Wagner CRYPTO'03]
- every wire/logic gate is masked at an arbitrary order d
- wires values \equiv intermediate variables
$\Rightarrow d$ th-order masking scheme

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\oplus_{i} a_{i}=a, \oplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{lll}
a_{0} b_{0} & a_{0} b_{1} & a_{0} b_{2} \\
a_{1} b_{0} & a_{1} b_{1} & a_{1} b_{2} \\
a_{2} b_{0} & a_{2} b_{1} & a_{2} b_{2}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme

Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & a_{0} b_{1} & a_{0} b_{2} \\
0 & a_{1} b_{1} & a_{1} b_{2} \\
0 & 0 & a_{2} b_{2}
\end{array}\right) \oplus\left(\begin{array}{ccc}
0 & 0 & 0 \\
a_{1} b_{0} & 0 & 0 \\
a_{2} b_{0} & a_{2} b_{1} & 0
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme

Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & a_{0} b_{1} & a_{0} b_{2} \\
0 & a_{1} b_{1} & a_{1} b_{2} \\
0 & 0 & a_{2} b_{2}
\end{array}\right) \oplus\left(\begin{array}{ccc}
0 & a_{1} b_{0} & a_{2} b_{0} \\
0 & 0 & a_{2} b_{1} \\
0 & 0 & 0
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & a_{0} b_{1} \oplus a_{1} b_{0} & a_{0} b_{2} \oplus a_{2} b_{0} \\
0 & a_{1} b_{1} & a_{1} b_{2} \oplus a_{2} b_{1} \\
0 & 0 & a_{2} b_{2}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & a_{0} b_{1} \oplus a_{1} b_{0} & a_{0} b_{2} \oplus a_{2} b_{0} \\
0 & a_{1} b_{1} & a_{1} b_{2} \oplus a_{2} b_{1} \\
0 & 0 & a_{2} b_{2}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme
 Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & a_{0} b_{1} \oplus a_{1} b_{0} & a_{0} b_{2} \oplus a_{2} b_{0} \\
0 & a_{1} b_{1} & a_{1} b_{2} \oplus a_{2} b_{1} \\
0 & 0 & a_{2} b_{2}
\end{array}\right) \oplus\left(\begin{array}{ccc}
0 & r_{1,2} & r_{1,3} \\
0 & 0 & r_{2,3} \\
0 & 0 & 0
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme
 Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & a_{0} b_{1} \oplus a_{1} b_{0} & a_{0} b_{2} \oplus a_{2} b_{0} \\
0 & a_{1} b_{1} & a_{1} b_{2} \oplus a_{2} b_{1} \\
0 & 0 & a_{2} b_{2}
\end{array}\right) \oplus\left(\begin{array}{ccc}
0 & r_{1,2} & r_{1,3} \\
r_{1,2} & 0 & r_{2,3} \\
r_{1,3} & r_{2,3} & 0
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & \left(a_{0} b_{1} \oplus r_{1,2}\right) \oplus a_{1} b_{0} & \left(a_{0} b_{2} \oplus r_{1,3}\right) \oplus a_{2} b_{0} \\
r_{1,2} & a_{1} b_{1} & \left(a_{1} b_{2} \oplus r_{2,3}\right) \oplus a_{2} b_{1} \\
r_{1,3} & r_{2,3} & a_{2} b_{2}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & \left(a_{0} b_{1} \oplus r_{1,2}\right) \oplus a_{1} b_{0} & \left(a_{0} b_{2} \oplus r_{1,3}\right) \oplus a_{2} b_{0} \\
r_{1,2} & a_{1} b_{1} & \left(a_{1} b_{2} \oplus r_{2,3}\right) \oplus a_{2} b_{1} \\
r_{1,3} & r_{2,3} & a_{2} b_{2}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example ($d=2$):

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & \left(a_{0} b_{1} \oplus r_{1,2}\right) \oplus a_{1} b_{0} & \left(a_{0} b_{2} \oplus r_{1,3}\right) \oplus a_{2} b_{0} \\
r_{1,2} & a_{1} b_{1} & \left(a_{1} b_{2} \oplus r_{2,3}\right) \oplus a_{2} b_{1} \\
r_{1,3} & r_{2,3} & a_{2} b_{2}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example ($d=2$):

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & \left(a_{0} b_{1} \oplus r_{1,2}\right) \oplus a_{1} b_{0} & \left(a_{0} b_{2} \oplus r_{1,3}\right) \oplus a_{2} b_{0} \\
r_{1,2} & a_{1} b_{1} & \left(a_{1} b_{2} \oplus r_{2,3}\right) \oplus a_{2} b_{1} \\
r_{1,3} & r_{2,3} & a_{2} b_{2}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & \left(a_{0} b_{1} \oplus r_{1,2}\right) \oplus a_{1} b_{0} & \left(a_{0} b_{2} \oplus r_{1,3}\right) \oplus a_{2} b_{0} \\
r_{1,2} & a_{1} b_{1} & \left(a_{1} b_{2} \oplus r_{2,3}\right) \oplus a_{2} b_{1} \\
r_{1,3} & r_{2,3} & a_{2} b_{2} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & \left(a_{0} b_{1} \oplus r_{1,2}\right) \oplus a_{1} b_{0} & \left(a_{0} b_{2} \oplus r_{1,3}\right) \oplus a_{2} b_{0} \\
r_{1,2} & a_{1} b_{1} & \left(a_{1} b_{2} \oplus r_{2,3}\right) \oplus a_{2} b_{1} \\
r_{1,3} & r_{2,3} & a_{2} b_{2} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

Ishai-Sahai-Wagner (ISW) Scheme

Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & \left(a_{0} b_{1} \oplus r_{1,2}\right) \oplus a_{1} b_{0} & \left(a_{0} b_{2} \oplus r_{1,3}\right) \oplus a_{2} b_{0} \\
r_{1,2} & a_{1} b_{1} & \left(a_{1} b_{2} \oplus r_{2,3}\right) \oplus a_{2} b_{1} \\
r_{1,3} & r_{2,3} & a_{2} b_{2} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

- Ishai et al. prove (d/2)th-order security

Ishai-Sahai-Wagner (ISW) Scheme

Principle

- AND gates encoding:
- Input: $\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ s.t. $\bigoplus_{i} a_{i}=a, \bigoplus_{i} b_{i}=b$
- Output: $\left(c_{i}\right)_{i}$ s.t. $\bigoplus_{i} c_{i}=a b$

$$
\bigoplus_{i} c_{i}=\left(\bigoplus_{i} a_{i}\right)\left(\bigoplus_{i} b_{i}\right)=\bigoplus_{i, j} a_{i} b_{j}
$$

- Example $(d=2)$:

$$
\left(\begin{array}{ccc}
a_{0} b_{0} & \left(a_{0} b_{1} \oplus r_{1,2}\right) \oplus a_{1} b_{0} & \left(a_{0} b_{2} \oplus r_{1,3}\right) \oplus a_{2} b_{0} \\
r_{1,2} & a_{1} b_{1} & \left(a_{1} b_{2} \oplus r_{2,3}\right) \oplus a_{2} b_{1} \\
r_{1,3} & r_{2,3} & a_{2} b_{2} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

- Ishai et al. prove (d/2)th-order security
- We prove d th-order security

Ishai-Sahai-Wagner (ISW) Scheme

 Example: AND gate for $d=2$

Ishai-Sahai-Wagner (ISW) Scheme Practical Issues

- Important area overhead for the masked circuit
- A wire is encoded by $d+1$ wires
- One AND gate encoded by
: $(d+1)^{2}$ ANDs $+2 d(d+1)$ XORs $+d(d+1) / 2 \$$

Ishai-Sahai-Wagner (ISW) Scheme Practical Issues

- Important area overhead for the masked circuit
- A wire is encoded by $d+1$ wires
- One AND gate encoded by
. $(d+1)^{2}$ ANDs $+2 d(d+1)$ XORs $+d(d+1) / 2 \$$
- Example: AES S-box circuit

	ISW		
No masking	$d=1$	$d=2$	$d=3$
200 gates	500 gates	1.1 Kgates	2 Kgates

Ishai-Sahai-Wagner (ISW) Scheme Practical Issues

- Important area overhead for the masked circuit
- A wire is encoded by $d+1$ wires
- One AND gate encoded by
$=(d+1)^{2}$ ANDs $+2 d(d+1)$ XORs $+d(d+1) / 2 \$$
- Example: AES S-box circuit

	ISW		
No masking	$d=1$	$d=2$	$d=3$
200 gates	500 gates	1.1 Kgates	2 Kgates

- Practical security issue with glitches
- addition of synchronizing elements \Rightarrow additional overhead

Ishai-Sahai-Wagner (ISW) Scheme Practical Issues

- Important area overhead for the masked circuit
- A wire is encoded by $d+1$ wires
- One AND gate encoded by
$=(d+1)^{2}$ ANDs $+2 d(d+1)$ XORs $+d(d+1) / 2 \$$
- Example: AES S-box circuit

	ISW		
No masking	$d=1$	$d=2$	$d=3$
200 gates	500 gates	1.1 Kgates	2 Kgates

- Practical security issue with glitches
- addition of synchronizing elements \Rightarrow additional overhead
- Not suitable for software implementations

Outline

1. Introduction

- Higher-Order Masking
- ISW Scheme (CRYPTO'03)

2-Our Scheme

- Masking the S-box
- Masking the Whole AES
- Security
- Implementation Results

Masking the S-box

- Non-linearity \Rightarrow difficulty to mask

Masking the S-box

- Non-linearity \Rightarrow difficulty to mask
- We use the AES S-box structure: $S=\operatorname{Exp} \circ A f$
- Af: affine transformation over \mathbb{F}_{2}^{8}
- Exp : $x \mapsto x^{254}$ over \mathbb{F}_{256}

Masking the S-box

- Non-linearity \Rightarrow difficulty to mask
- We use the AES S-box structure: $S=\operatorname{Exp} \circ$ Af
- Af: affine transformation over \mathbb{F}_{2}^{8}
- Exp : $x \mapsto x^{254}$ over \mathbb{F}_{256}
- Masking Af is easy:

$$
\operatorname{Af}(x)=\operatorname{Af}\left(x_{0}\right) \oplus \operatorname{Af}\left(x_{1}\right) \oplus \cdots \oplus \operatorname{Af}\left(x_{d}\right) \oplus 0 \mathrm{x} 63 \text { iff } d \text { is odd }
$$

Masking the S-box

- Non-linearity \Rightarrow difficulty to mask
- We use the AES S-box structure: $S=\operatorname{Exp} \circ A f$
- Af: affine transformation over \mathbb{F}_{2}^{8}
- Exp : $x \mapsto x^{254}$ over \mathbb{F}_{256}
- Masking Af is easy:

$$
\operatorname{Af}(x)=\operatorname{Af}\left(x_{0}\right) \oplus \operatorname{Af}\left(x_{1}\right) \oplus \cdots \oplus \operatorname{Af}\left(x_{d}\right) \oplus 0 \mathrm{x} 63 \text { iff } d \text { is odd }
$$

- For Exp we use an exponentiation algorithm
- approach used for 1st-order masking in [Blömer-Merchan-Krummel SAC'04]
- we want to design a d th-order secure exponentiation
- we need d th-order secure square and multiplication

Masking the S-box

- dth-order secure square
- squaring is linear over \mathbb{F}_{256}

$$
x_{0}^{2} \oplus x_{1}^{2} \oplus \cdots \oplus x_{d}^{2}=x^{2}
$$

Masking the S-box

- dth-order secure square
- squaring is linear over \mathbb{F}_{256}

$$
x_{0}^{2^{j}} \oplus x_{1}^{2^{j}} \oplus \cdots \oplus x_{d}^{2^{j}}=x^{2^{j}}
$$

Masking the S-box

- dth-order secure square
- squaring is linear over \mathbb{F}_{256}

$$
x_{0}^{2^{j}} \oplus x_{1}^{2^{j}} \oplus \cdots \oplus x_{d}^{2^{j}}=x^{2^{j}}
$$

- dth-order secure multiplication
- we generalize the ISW scheme to \mathbb{F}_{256}
- AND $\Rightarrow \mathbb{F}_{256}$ multiplication
- $\mathrm{XOR} \Rightarrow \mathbb{F}_{256}$ addition (8-bit XOR)
- $\$_{1} \Rightarrow \$_{8}$ (random 8-bit value)

Masking the S-box

- dth-order secure square
- squaring is linear over \mathbb{F}_{256}

$$
x_{0}^{2^{j}} \oplus x_{1}^{2^{j}} \oplus \cdots \oplus x_{d}^{2^{j}}=x^{2^{j}}
$$

- dth-order secure multiplication
- we generalize the ISW scheme to \mathbb{F}_{256}
- AND $\Rightarrow \mathbb{F}_{256}$ multiplication
- $\mathrm{XOR} \Rightarrow \mathbb{F}_{256}$ addition (8-bit XOR)
- $\$_{1} \Rightarrow \$_{8}$ (random 8-bit value)
- Complexity:
- secure square: $d+1$ squares
- secure mult: $(d+1)^{2}$ mult, $2 d(d+1)$ XOR, $d(d+1) / 2 \$_{8}$

Masking the S-box

- dth-order secure square
- squaring is linear over \mathbb{F}_{256}

$$
x_{0}^{2^{j}} \oplus x_{1}^{2^{j}} \oplus \cdots \oplus x_{d}^{2^{j}}=x^{2^{j}}
$$

- dth-order secure multiplication
- we generalize the ISW scheme to \mathbb{F}_{256}
- AND $\Rightarrow \mathbb{F}_{256}$ multiplication
- $\mathrm{XOR} \Rightarrow \mathbb{F}_{256}$ addition (8-bit XOR)
- $\$_{1} \Rightarrow \$_{8}$ (random 8-bit value)
- Complexity:
- secure square: $d+1$ squares
- secure mult: $(d+1)^{2}$ mult, $2 d(d+1)$ XOR, $d(d+1) / 2 \$_{8}$
- Our goal: minimize the number of multiplications which are not squares

Masking the S-box

The proposed addition chain:
x

Masking the S-box

The proposed addition chain:

- one square

Masking the S-box

The proposed addition chain:

- one square
- one mult

Masking the S-box

The proposed addition chain:

- one square
- one mult
- one ^4 (two squares)

Masking the S-box

The proposed addition chain:

Masking the S-box

The proposed addition chain:

CHES 2010 - Provably Secure Higher-Order Masking of AES

Masking the S-box

The proposed addition chain:

CHES 2010 - Provably Secure Higher-Order Masking of AES

Masking the S-box

The proposed addition chain:

CHES 2010 - Provably Secure Higher-Order Masking of AES

Masking the S-box

The proposed addition chain:

- one square
- one mult
- one ^4 (two squares)
- one mult
- one ^16 (four squares)
- one mult
- one mult
- Total: 4 mult and 7 squares

Masking the S-box

The proposed addition chain:

- one square
- one mult
- one ^4 (two squares)
- one mult
- one ^16 (four squares)
- one mult
- one mult
- Total: 4 mult and 7 squares
- Memory: 3 registers

Masking the S-box

The proposed addition chain:

- one square
- one mult
- one ^4 (two squares)
- one mult
- one ^16 (four squares)
- one mult
- one mult
- Total: 4 mult and 7 squares
- Memory: 3 registers
- LUT for ${ }^{\wedge} 2, ~ ` 4$ and ${ }^{\wedge} 16$

Masking the S-box

Algorithmic description:
Input: shares x_{i} s.t. $\bigoplus_{i} x_{i}=x$
Output: shares y_{i} s.t. $\bigoplus_{i} y_{i}=x^{254}$ 1. $\left(z_{i}\right)_{i} \leftarrow\left(x_{i}^{2}\right)_{i}$

$$
\left[\bigoplus_{i} z_{i}=x^{2}\right]
$$

2. RefreshMasks $\left(\left(z_{i}\right)_{i}\right)$
3. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(z_{i}\right)_{i},\left(x_{i}\right)_{i}\right)$
4. $\left(w_{i}\right)_{i} \leftarrow\left(y_{i}^{4}\right)_{i}$

$$
\begin{array}{r}
{\left[\bigoplus_{i} y_{i}=x^{3}\right]} \\
{\left[\bigoplus_{i} w_{i}=x^{12}\right]}
\end{array}
$$

5. RefreshMasks $\left(\left(w_{i}\right)_{i}\right)$
6. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(w_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{15}\right]$
7. $\left(y_{i}\right)_{i} \leftarrow\left(y_{i}^{16}\right)_{i}$
8. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(w_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{240}\right]$
9. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(z_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{252}\right]$
$\left[\bigoplus_{i} y_{i}=x^{254}\right]$

Masking the S-box

Algorithmic description:
Input: shares x_{i} s.t. $\bigoplus_{i} x_{i}=x$
Output: shares y_{i} s.t. $\bigoplus_{i} y_{i}=x^{254}$ 1. $\left(z_{i}\right)_{i} \leftarrow\left(x_{i}^{2}\right)_{i}$

$$
\left[\bigoplus_{i} z_{i}=x^{2}\right]
$$

2. RefreshMasks $\left(\left(z_{i}\right)_{i}\right)$
3. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(z_{i}\right)_{i},\left(x_{i}\right)_{i}\right)$
4. $\left(w_{i}\right)_{i} \leftarrow\left(y_{i}^{4}\right)_{i}$

$$
\begin{array}{r}
{\left[\bigoplus_{i} y_{i}=x^{3}\right]} \\
{\left[\bigoplus_{i} w_{i}=x^{12}\right]}
\end{array}
$$

5. RefreshMasks $\left(\left(w_{i}\right)_{i}\right)$
6. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(w_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{15}\right]$
7. $\left(y_{i}\right)_{i} \leftarrow\left(y_{i}^{16}\right)_{i}$
$\left[\bigoplus_{i} y_{i}=x^{240}\right]$
8. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(w_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{252}\right]$
9. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(z_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{254}\right]$

Masking the S-box

Algorithmic description:
Input: shares x_{i} s.t. $\bigoplus_{i} x_{i}=x$
Output: shares y_{i} s.t. $\bigoplus_{i} y_{i}=x^{254}$ 1. $\left(z_{i}\right)_{i} \leftarrow\left(x_{i}^{2}\right)_{i}$

$$
\left[\bigoplus_{i} z_{i}=x^{2}\right]
$$

2. RefreshMasks $\left(\left(z_{i}\right)_{i}\right)$
3. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(z_{i}\right)_{i},\left(x_{i}\right)_{i}\right)$
4. $\left(w_{i}\right)_{i} \leftarrow\left(y_{i}^{4}\right)_{i}$

$$
\begin{array}{r}
{\left[\bigoplus_{i} y_{i}=x^{3}\right]} \\
{\left[\bigoplus_{i} w_{i}=x^{12}\right]}
\end{array}
$$

5. RefreshMasks $\left(\left(w_{i}\right)_{i}\right)$
6. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(w_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{15}\right]$
7. $\left(y_{i}\right)_{i} \leftarrow\left(y_{i}^{16}\right)_{i}$
8. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(w_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{240}\right]$
9. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(z_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{252}\right]$
$\left[\bigoplus_{i} y_{i}=x^{254}\right]$

Masking the S-box

Algorithmic description:
Input: shares x_{i} s.t. $\bigoplus_{i} x_{i}=x$
Output: shares y_{i} s.t. $\bigoplus_{i} y_{i}=x^{254}$ 1. $\left(z_{i}\right)_{i} \leftarrow\left(x_{i}^{2}\right)_{i}$

$$
\left[\bigoplus_{i} z_{i}=x^{2}\right]
$$

2. RefreshMasks $\left(\left(z_{i}\right)_{i}\right)$
3. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(z_{i}\right)_{i},\left(x_{i}\right)_{i}\right)$
4. $\left(w_{i}\right)_{i} \leftarrow\left(y_{i}^{4}\right)_{i}$

$$
\begin{array}{r}
{\left[\bigoplus_{i} y_{i}=x^{3}\right]} \\
{\left[\bigoplus_{i} w_{i}=x^{12}\right]}
\end{array}
$$

5. RefreshMasks $\left(\left(w_{i}\right)_{i}\right)$
6. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(w_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{15}\right]$
7. $\left(y_{i}\right)_{i} \leftarrow\left(y_{i}^{16}\right)_{i}$
8. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(w_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{240}\right]$
9. $\left(y_{i}\right)_{i} \leftarrow \operatorname{SecMult}\left(\left(y_{i}\right)_{i},\left(z_{i}\right)_{i}\right)$
$\left[\bigoplus_{i} y_{i}=x^{252}\right]$
$\left[\bigoplus_{i} y_{i}=x^{254}\right]$

Masking the Whole AES

- Linear operations of encryption/key schedule (ShiftRows, MixColumns, RotWord) processed on every share independently

$$
\Lambda\left(\bigoplus_{i} x_{i}\right)=\bigoplus_{i} \Lambda\left(x_{i}\right)
$$

Masking the Whole AES

- Linear operations of encryption/key schedule (ShiftRows, MixColumns, RotWord) processed on every share independently

$$
\Lambda\left(\bigoplus_{i} x_{i}\right)=\bigoplus_{i} \Lambda\left(x_{i}\right)
$$

- Key addition performed by adding each key-share to one single state-share

$$
\left(\bigoplus_{i} s_{i}\right) \oplus\left(\bigoplus_{i} k_{i}\right)=\bigoplus_{i}\left(s_{i} \oplus k_{i}\right)
$$

Security

d th-order security

$$
\begin{array}{r}
\forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathcal{E}^{\prime}\right\}^{d}: \\
\operatorname{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
\end{array}
$$

Security

d th-order security

$$
\begin{aligned}
& \forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathcal{E}^{\prime}\right\}^{d}: \\
& \operatorname{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
\end{aligned}
$$

- Algorithm split into several transformations applied to one/two d th-order masked value(s)

Security

d th-order security

$$
\begin{array}{r}
\forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathcal{E}^{\prime}\right\}^{d}: \\
\operatorname{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
\end{array}
$$

- Algorithm split into several transformations applied to one/two d th-order masked value(s)
- Every transformation is locally secure
- all transformations are linear (straightforward security) except the field multiplication

Security

d th-order security

$$
\begin{array}{r}
\forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathcal{E}^{\prime}\right\}^{d}: \\
\operatorname{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
\end{array}
$$

- Algorithm split into several transformations applied to one/two d th-order masked value(s)
- Every transformation is locally secure
- all transformations are linear (straightforward security) except the field multiplication
- field multiplication secured using ISW scheme
- improved security proof for ISW scheme
- $d / 2 \rightarrow d$

Security

d th-order security

$$
\begin{array}{r}
\forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathcal{E}^{\prime}\right\}^{d}: \\
\operatorname{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
\end{array}
$$

- Algorithm split into several transformations applied to one/two d th-order masked value(s)
- Every transformation is locally secure
- all transformations are linear (straightforward security) except the field multiplication
- field multiplication secured using ISW scheme
- improved security proof for ISW scheme

$$
d / 2 \rightarrow d
$$

- Local security for every transformation implies global security for the whole algorithm

Implementation Results (8051)

Method	K cycles	ms (31MHz)	RAM (bytes)	ROM (bytes)	
Unprotected Implementation					
Na.	3	0.1	32	1150	
First-Order Masking					
[Messerges FSE'00]	10	0.3	$256+35$	1553	
[Oswald+ FSE'05]	77	2.5	42	3195	
Our scheme (d=1)	129	4	73	3153	
Second-Order Masking					
[Schramm+ CT-RSA'06]	594	19	$512+90$	2336	
[Rivain+ FSE'08]	672	22	$256+86$	2215	
Our scheme (d=2)	271	9	79	3845	
Third-Order Masking					
Our scheme (d=3)	470	15	103	4648	

Implementation Results (8051)

Method	K cycles	ms (31MHz)	RAM (bytes)	ROM (bytes)	
Unprotected Implementation					
	3	0.1	32	1150	
Na.	First-Order Masking				
[Messerges FSE'00]	10	0.3	$256+35$	1553	
[Oswald+ FSE'05]	77	2.5	42	3195	
Our scheme (d=1)	129	4	73	3153	
Second-Order Masking					
[Schramm+ CT-RSA'06]	594	19	$512+90$	2336	
[Rivain+ FSE'08]	672	22	$256+86$	2215	
Our scheme (d=2)	271	9	79	3845	
Third-Order Masking					
Our scheme (d=3)	470	15	103	4648	

- Interpolation: $30 d^{2}+50 d+50 \mathrm{~K}$ cycles
- $d=4: 730 \mathrm{Kc} / 24 \mathrm{~ms}$
- $d=5: 1050 \mathrm{Kc} / 34 \mathrm{~ms}$

CHES 2010 - Provably Secure Higher-Order Masking of AES

Outline

1. Introduction

- Higher-Order Masking
- ISW Scheme (CRYPTO'03)

2. Our Scheme

- Masking the S-box
- Masking the Whole AES
- Security
- Implementation Results

3. Conclusion

Conclusion

- First masking scheme for software implementations of AES with provable security at any order
- Based on the work [Ishai-Sahai-Wagner CRYPTO'03]
- Generalization: secure field multiplication in software
- Improved security proof $(d / 2 \rightarrow d)$, significant in practice
- On-going work:
- generalization to any S-box/SPN
- formal security model for d th-order secure implementations

