## Provably Secure Higher-Order Masking of AES

Matthieu Rivain Emmanuel Prouff CryptoExperts Oberthur

CHES 2010, Santa Barbara, Aug. 20<sup>th</sup>



## Outline

#### 1 Introduction

- Higher-Order Masking
- ISW Scheme (CRYPTO'03)

#### 2 Our Scheme

- Masking the S-box
- Masking the Whole AES
- Security
- Implementation Results

### **3** Conclusion



## Outline

#### **1** Introduction

- Higher-Order Masking
- ISW Scheme (CRYPTO'03)

#### 2 🛯 Our Scheme

- Masking the S-box
- Masking the Whole AES
- Security
- Implementation Results

#### **3** Conclusion





• Every key-dependent variable x is shared into d+1 variables

 $x_0 \perp x_1 \perp \cdots \perp x_d = x$ 





• Every key-dependent variable x is shared into d + 1 variables

 $x_0 \oplus x_1 \oplus \cdots \oplus x_d = x$ 



• Every key-dependent variable x is shared into d+1 variables

 $x_0 \oplus x_1 \oplus \cdots \oplus x_d = x$ 

• The masks  $(i \ge 1)$ :  $x_i \leftarrow \$$ 



• Every key-dependent variable x is shared into d+1 variables

 $x_0 \oplus x_1 \oplus \cdots \oplus x_d = x$ 

• The masks 
$$(i \ge 1)$$
:  $x_i \leftarrow \$$ 

• The masked variable:  $x_0 \leftarrow x \oplus x_1 \oplus \cdots \oplus x_d$ 



• Every key-dependent variable x is shared into d+1 variables

 $x_0 \oplus x_1 \oplus \cdots \oplus x_d = x$ 

- The masks  $(i \ge 1)$ :  $x_i \leftarrow \$$
- The masked variable:  $x_0 \leftarrow x \oplus x_1 \oplus \cdots \oplus x_d$
- Note: equiv. d+1 out of d+1 secret sharing of x

• Every key-dependent variable x is shared into d+1 variables

 $x_0 \oplus x_1 \oplus \cdots \oplus x_d = x$ 

- The masks  $(i \ge 1)$ :  $x_i \leftarrow \$$
- The masked variable:  $x_0 \leftarrow x \oplus x_1 \oplus \cdots \oplus x_d$
- Note: equiv. d + 1 out of d + 1 secret sharing of x
- Computation carried out by processing the shares separately



### Higher-Order Masking Soundness

#### [Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked  $\mapsto x_0, x_1, \ldots, x_d$
- Leakage :  $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$





### Higher-Order Masking Soundness

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked  $\mapsto x_0, x_1, \ldots, x_d$
- Leakage :  $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
- Number of leakage samples to distinguish ((L<sub>i</sub>)<sub>i</sub>|x = 0) from ((L<sub>i</sub>)<sub>i</sub>|x = 1):

$$q \ge O(1)\sigma^d$$



### Higher-Order Masking Soundness

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked  $\mapsto x_0, x_1, \ldots, x_d$
- Leakage :  $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
- Number of leakage samples to distinguish  $((L_i)_i | x = 0)$  from  $((L_i)_i | x = 1)$ :  $q \ge O(1)\sigma^d$

Higher-order masking is sound in the presence of noisy leakage!



#### Definition

A  $dth\text{-}order\ masking\ scheme\ for\ an\ encryption\ algorithm\ }c \leftarrow \mathcal{E}(m,k)\ is\ an\ algorithm\$ 

$$(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$$





#### Definition

A  $dth\text{-}order\ masking\ scheme$  for an encryption algorithm  $c \leftarrow \mathcal{E}(m,k)$  is an algorithm

$$(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$$

• completeness:  $\bigoplus_i m_i = m$  and  $\bigoplus_i k_i = k$ 

$$\Rightarrow \bigoplus_i c_i = \mathcal{E}(m,k)$$

#### Definition

A  $dth\text{-}order\ masking\ scheme\ for\ an\ encryption\ algorithm\ }c \leftarrow \mathcal{E}(m,k)\ \text{is\ an\ algorithm\ }$ 

$$(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$$

• completeness: 
$$\bigoplus_i m_i = m$$
 and  $\bigoplus_i k_i = k$   
 $\Rightarrow \bigoplus_i c_i = \mathcal{E}(m, k)$ 

• security:  $\forall (iv_1, iv_2, \dots, iv_d) \in \{\text{intermediate var. of } \mathcal{E}'\}^d :$  $\mathrm{MI}((iv_1, iv_2, \dots, iv_d), (m, k)) = 0$ 

CRYPTOExpert

#### Definition

A  $dth\text{-}order\ masking\ scheme$  for an encryption algorithm  $c \leftarrow \mathcal{E}(m,k)$  is an algorithm

$$(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$$

• completeness: 
$$\bigoplus_i m_i = m$$
 and  $\bigoplus_i k_i = k$   
 $\Rightarrow \bigoplus_i c_i = \mathcal{E}(m, k)$ 

security: 
$$\forall (iv_1, iv_2, \dots, iv_d) \in \{\text{intermediate var. of } \mathcal{E}'\}^d :$$
  
 $\mathrm{MI}((iv_1, iv_2, \dots, iv_d), (m, k)) = 0$ 

For SPN (eg. DES, AES) the main issue is masking the S-box.

CRYPTOEXPERTS

Software implementations:

- [Schramm-Paar CT-RSA'06]
  - ▶ secure only for  $d \le 2$  [Coron-Prouff-Rivain CHES'07]





#### Software implementations:

- [Schramm-Paar CT-RSA'06]
  - ▶ secure only for  $d \le 2$  [Coron-Prouff-Rivain CHES'07]
- [Rivain-Dottax-Prouff FSE'08]
  - $\blacktriangleright$  alternative solutions dedicated to d=2



### Higher-Order Masking Schemes Literature

#### Software implementations:

- [Schramm-Paar CT-RSA'06]
  - ▶ secure only for  $d \le 2$  [Coron-Prouff-Rivain CHES'07]
- [Rivain-Dottax-Prouff FSE'08]
  - $\blacktriangleright$  alternative solutions dedicated to d=2

#### Hardware implementations:

- [Ishai-Sahai-Wagner CRYPTO'03]
  - $\blacktriangleright$  every wire/logic gate is masked at an arbitrary order d
  - wires values  $\equiv$  intermediate variables
    - $\Rightarrow$  dth-order masking scheme



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$





- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} b_{j}$$



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Example (d = 2):

$$\begin{pmatrix} a_0b_0 & a_0b_1 & a_0b_2 \\ a_1b_0 & a_1b_1 & a_1b_2 \\ a_2b_0 & a_2b_1 & a_2b_2 \end{pmatrix}$$

- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Example (d = 2):

$$\begin{pmatrix} a_0b_0 & a_0b_1 & a_0b_2 \\ 0 & a_1b_1 & a_1b_2 \\ 0 & 0 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 & 0 \\ a_1b_0 & 0 & 0 \\ a_2b_0 & a_2b_1 & 0 \end{pmatrix}$$



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Example (d = 2):

$$\begin{pmatrix} a_0b_0 & a_0b_1 & a_0b_2 \\ 0 & a_1b_1 & a_1b_2 \\ 0 & 0 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & a_1b_0 & a_2b_0 \\ 0 & 0 & a_2b_1 \\ 0 & 0 & 0 \end{pmatrix}$$



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a_i$ ,  $\bigoplus_i b_i = b_i$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example (d = 2):

$$\begin{pmatrix} a_0b_0 & a_0b_1 \oplus a_1b_0 & a_0b_2 \oplus a_2b_0 \\ 0 & a_1b_1 & a_1b_2 \oplus a_2b_1 \\ 0 & 0 & a_2b_2 \end{pmatrix}$$

**CRYPTO**EXPERTS

- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a_i$ ,  $\bigoplus_i b_i = b_i$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example (d = 2):

$$\begin{pmatrix} a_0b_0 & a_0b_1 \oplus a_1b_0 & a_0b_2 \oplus a_2b_0 \\ 0 & a_1b_1 & a_1b_2 \oplus a_2b_1 \\ 0 & 0 & a_2b_2 \end{pmatrix}$$

- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example 
$$(d = 2)$$
:

$$\begin{pmatrix} a_0b_0 & a_0b_1 \oplus a_1b_0 & a_0b_2 \oplus a_2b_0 \\ 0 & a_1b_1 & a_1b_2 \oplus a_2b_1 \\ 0 & 0 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{1,2} & r_{1,3} \\ 0 & 0 & r_{2,3} \\ 0 & 0 & 0 \end{pmatrix}$$



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example 
$$(d = 2)$$
:  

$$\begin{pmatrix} a_0b_0 & a_0b_1 \oplus a_1b_0 & a_0b_2 \oplus a_2b_0 \\ 0 & a_1b_1 & a_1b_2 \oplus a_2b_1 \\ 0 & 0 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{pmatrix}$$



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a_i$ ,  $\bigoplus_i b_i = b_i$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example (d = 2):

| $(a_0b_0)$          | $(a_0b_1\oplus r_{1,2})\oplus a_1b_0$ | $(a_0b_2\oplus r_{1,3})\oplus a_2b_0$ |
|---------------------|---------------------------------------|---------------------------------------|
| $r_{1,2}$           | $a_1b_1$                              | $(a_1b_2\oplus r_{2,3})\oplus a_2b_1$ |
| $\setminus r_{1,3}$ | $r_{2,3}$                             | $a_2b_2$ /                            |



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example (d = 2):

$$\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix}$$

- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

■ Example (*d* = 2):

$$\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{1,2}) \oplus a_1b_0 & (a_0b_2 \oplus r_{1,3}) \oplus a_2b_0 \\ r_{1,2} & a_1b_1 & (a_1b_2 \oplus r_{2,3}) \oplus a_2b_1 \\ r_{1,3} & r_{2,3} & a_2b_2 \end{pmatrix}$$



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a_i$ ,  $\bigoplus_i b_i = b_i$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

■ Example (*d* = 2):

| $(a_0b_0)$                | $(a_0b_1\oplus r_{1,2})\oplus a_1b_0$ | $(a_0b_2\oplus r_{1,3})\oplus a_2b_0$ |
|---------------------------|---------------------------------------|---------------------------------------|
| $r_{1,2}$                 | $a_1b_1$                              | $(a_1b_2\oplus r_{2,3})\oplus a_2b_1$ |
| $\langle r_{1,3} \rangle$ | $r_{2,3}$                             | $a_2b_2$ /                            |
| $c_1$                     | $c_2$                                 |                                       |

- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

• Example (d = 2):

| $\left(a_0b_0\right)$     | $(a_0b_1\oplus r_{1,2})\oplus a_1b_0$ | $(a_0b_2\oplus r_{1,3})\oplus a_2b_0$ |
|---------------------------|---------------------------------------|---------------------------------------|
| $r_{1,2}$                 | $a_1b_1$                              | $(a_1b_2\oplus r_{2,3})\oplus a_2b_1$ |
| $\langle r_{1,3} \rangle$ | $r_{2,3}$                             | $a_2b_2$ /                            |
| $c_1$                     | $c_2$                                 | $c_3$                                 |



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a_i$ ,  $\bigoplus_i b_i = b_i$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example (d = 2):

| $\left(a_0 b_0\right)$    | $(a_0b_1\oplus r_{1,2})\oplus a_1b_0$ | $(a_0b_2\oplus r_{1,3})\oplus a_2b_0$ |
|---------------------------|---------------------------------------|---------------------------------------|
| $r_{1,2}$                 | $a_1b_1$                              | $(a_1b_2\oplus r_{2,3})\oplus a_2b_1$ |
| $\langle r_{1,3} \rangle$ | $r_{2,3}$                             | $a_2b_2$ /                            |
| $c_1$                     | $c_2$                                 | $c_3$                                 |



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example (d = 2):

| $(a_0b_0)$                | $(a_0b_1\oplus r_{1,2})\oplus a_1b_0$ | $(a_0b_2\oplus r_{1,3})\oplus a_2b_0$ |
|---------------------------|---------------------------------------|---------------------------------------|
| $r_{1,2}$                 | $a_1b_1$                              | $(a_1b_2\oplus r_{2,3})\oplus a_2b_1$ |
| $\langle r_{1,3} \rangle$ | $r_{2,3}$                             | $a_2b_2$ /                            |
| $c_1$                     | $c_2$                                 | $c_3$                                 |

Ishai et al. prove (d/2)th-order security



- AND gates encoding:
  - ▶ Input:  $(a_i)_i$ ,  $(b_i)_i$  s.t.  $\bigoplus_i a_i = a$ ,  $\bigoplus_i b_i = b$
  - Output:  $(c_i)_i$  s.t.  $\bigoplus_i c_i = ab$

$$\bigoplus_i c_i = \left(\bigoplus_i a_i\right) \left(\bigoplus_i b_i\right) = \bigoplus_{i,j} a_i b_j$$

Example (d = 2):

| $(a_0b_0)$                | $(a_0b_1\oplus r_{1,2})\oplus a_1b_0$ | $(a_0b_2\oplus r_{1,3})\oplus a_2b_0$ |
|---------------------------|---------------------------------------|---------------------------------------|
| $r_{1,2}$                 | $a_1b_1$                              | $(a_1b_2\oplus r_{2,3})\oplus a_2b_1$ |
| $\langle r_{1,3} \rangle$ | $r_{2,3}$                             | $a_2b_2$ /                            |
| $c_1$                     | $c_2$                                 | $c_3$                                 |

Ishai *et al.* prove (d/2)th-order security
 We prove dth-order security


### Ishai-Sahai-Wagner (ISW) Scheme Example: AND gate for d = 2





- Important area overhead for the masked circuit
  - A wire is encoded by d+1 wires
  - One AND gate encoded by
    - $(d+1)^2$  ANDs + 2d(d+1) XORs + d(d+1)/2 \$



Important area overhead for the masked circuit

- $\blacktriangleright$  A wire is encoded by d+1 wires
- One AND gate encoded by

 $(d+1)^2$  ANDs + 2d(d+1) XORs + d(d+1)/2 \$

Example: AES S-box circuit

|            | ISW       |            |          |
|------------|-----------|------------|----------|
| No masking | d = 1     | d=2        | d = 3    |
| 200 gates  | 500 gates | 1.1 Kgates | 2 Kgates |



Important area overhead for the masked circuit

- $\blacktriangleright$  A wire is encoded by d+1 wires
- One AND gate encoded by

 $(d+1)^2$  ANDs + 2d(d+1) XORs + d(d+1)/2 \$

Example: AES S-box circuit

|            | ISW       |            |          |
|------------|-----------|------------|----------|
| No masking | d = 1     | d=2        | d = 3    |
| 200  gates | 500 gates | 1.1 Kgates | 2 Kgates |

- Practical security issue with glitches
  - $\blacktriangleright$  addition of synchronizing elements  $\Rightarrow$  additional overhead



Important area overhead for the masked circuit

- $\blacktriangleright$  A wire is encoded by d+1 wires
- One AND gate encoded by

 $(d+1)^2 \text{ ANDs } + 2d(d+1) \text{ XORs } + d(d+1)/2$ 

Example: AES S-box circuit

|            | ISW       |            |          |
|------------|-----------|------------|----------|
| No masking | d = 1     | d=2        | d = 3    |
| 200 gates  | 500 gates | 1.1 Kgates | 2 Kgates |

- Practical security issue with glitches
  - $\blacktriangleright$  addition of synchronizing elements  $\Rightarrow$  additional overhead
- Not suitable for software implementations

CHES 2010 - Provably Secure Higher-Order Masking of AES



# Outline

# 1 Introduction Higher-Order Masking ISW Scheme (CRYPTO'03) 2 Our Scheme Masking the S-box Masking the Whole AES Security Implementation Results

### **3** Conclusion



• Non-linearity  $\Rightarrow$  difficulty to mask





• Non-linearity  $\Rightarrow$  difficulty to mask

 $\blacksquare$  We use the AES S-box structure: S = Exp  $\circ$  Af

- Af: affine transformation over  $\mathbb{F}_2^8$
- Exp :  $x \mapsto x^{254}$  over  $\mathbb{F}_{256}$



• Non-linearity  $\Rightarrow$  difficulty to mask

 $\blacksquare$  We use the AES S-box structure: S = Exp  $\circ$  Af

- Af: affine transformation over  $\mathbb{F}_2^8$
- Exp :  $x \mapsto x^{254}$  over  $\mathbb{F}_{256}$
- Masking Af is easy:

 $Af(x) = Af(x_0) \oplus Af(x_1) \oplus \cdots \oplus Af(x_d) \oplus 0x63$  iff d is odd



■ Non-linearity ⇒ difficulty to mask

- We use the AES S-box structure:  $S = Exp \circ Af$ 
  - Af: affine transformation over  $\mathbb{F}_2^8$
  - Exp :  $x \mapsto x^{254}$  over  $\mathbb{F}_{256}$
- Masking Af is easy:

 $Af(x) = Af(x_0) \oplus Af(x_1) \oplus \cdots \oplus Af(x_d) \oplus 0x63$  iff d is odd

- For Exp we use an exponentiation algorithm
  - approach used for 1st-order masking in [Blömer-Merchan-Krummel SAC'04]
  - ▶ we want to design a *d*th-order secure exponentiation
  - ▶ we need *d*th-order secure square and multiplication



dth-order secure square

• squaring is linear over  $\mathbb{F}_{256}$ 

$$x_0^2 \oplus x_1^2 \oplus \dots \oplus x_d^2 = x^2$$





dth-order secure square

• squaring is linear over  $\mathbb{F}_{256}$ 

$$x_0^{2^j} \oplus x_1^{2^j} \oplus \dots \oplus x_d^{2^j} = x^{2^j}$$



- dth-order secure square
  - squaring is linear over  $\mathbb{F}_{256}$

$$x_0^{2^j} \oplus x_1^{2^j} \oplus \dots \oplus x_d^{2^j} = x^{2^j}$$

- dth-order secure multiplication
  - $\blacktriangleright$  we generalize the ISW scheme to  $\mathbb{F}_{256}$ 
    - AND  $\Rightarrow \mathbb{F}_{256}$  multiplication
    - XOR  $\Rightarrow$   $\mathbb{F}_{256}$  addition (8-bit XOR)
    - $\$_1 \Rightarrow \$_8$  (random 8-bit value)



- dth-order secure square
  - squaring is linear over  $\mathbb{F}_{256}$

$$x_0^{2^j} \oplus x_1^{2^j} \oplus \dots \oplus x_d^{2^j} = x^{2^j}$$

- dth-order secure multiplication
  - $\blacktriangleright$  we generalize the ISW scheme to  $\mathbb{F}_{256}$ 
    - AND  $\Rightarrow \mathbb{F}_{256}$  multiplication
    - XOR  $\Rightarrow$   $\mathbb{F}_{256}$  addition (8-bit XOR)
    - $\$_1 \Rightarrow \$_8$  (random 8-bit value)

Complexity:

- ▶ secure square: d + 1 squares
- $\blacktriangleright$  secure mult:  $(d+1)^2$  mult, 2d(d+1) XOR, d(d+1)/2  $_8$



- dth-order secure square
  - ▶ squaring is linear over 𝔽<sub>256</sub>

$$x_0^{2^j} \oplus x_1^{2^j} \oplus \dots \oplus x_d^{2^j} = x^{2^j}$$

- dth-order secure multiplication
  - $\blacktriangleright$  we generalize the ISW scheme to  $\mathbb{F}_{256}$ 
    - AND  $\Rightarrow \mathbb{F}_{256}$  multiplication
    - XOR  $\Rightarrow$   $\mathbb{F}_{256}$  addition (8-bit XOR)
    - $\$_1 \Rightarrow \$_8$  (random 8-bit value)
- Complexity:
  - secure square: d+1 squares
  - $\blacktriangleright$  secure mult:  $(d+1)^2$  mult, 2d(d+1) XOR, d(d+1)/2  $\$_8$

CRYPTOEXPEPT

 Our goal: minimize the number of multiplications which are not squares

The proposed addition chain:

x

CHES 2010 - Provably Secure Higher-Order Masking of AES













- one square
- one mult







- one square
- one mult
- one<sup>4</sup> (two squares)





- one square
- one mult
- one<sup>4</sup> (two squares)
- one mult







- one square
- one mult
- one<sup>4</sup> (two squares)
- one mult
- one<sup>16</sup> (four squares)





- one square
- one mult
- one<sup>4</sup> (two squares)
- one mult
- one<sup>16</sup> (four squares)
- one mult







- one square
- one mult
- one<sup>4</sup> (two squares)
- one mult
- one<sup>16</sup> (four squares)
- one mult
- one mult





- one square
- one mult
- one<sup>4</sup> (two squares)
- one mult
- one<sup>16</sup> (four squares)
- one mult
- one mult
- Total: 4 mult and 7 squares





- one square
- one mult
- one<sup>4</sup> (two squares)
- one mult
- one<sup>16</sup> (four squares)
- one mult
- one mult
- Total: 4 mult and 7 squares
- Memory: 3 registers



The proposed addition chain:



- one square
- one mult
- one<sup>4</sup> (two squares)
- one mult
- one<sup>16</sup> (four squares)
- one mult
- one mult
- Total: 4 mult and 7 squares
- Memory: 3 registers
- LUT for 2, 4 and 16

CRYPTOEXDED



Algorithmic description:

**Input:** shares  $x_i$  s.t.  $\bigoplus_i x_i = x$ **Output:** shares  $y_i$  s.t.  $\bigoplus_i y_i = x^{254}$ 1.  $(z_i)_i \leftarrow (x_i^2)_i$  $\left[\bigoplus_{i} z_{i} = x^{2}\right]$ **2.** RefreshMasks $((z_i)_i)$ **3.**  $(y_i)_i \leftarrow \mathsf{SecMult}((z_i)_i, (x_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{3}\right]$  $\left[\bigoplus_{i} w_{i} = x^{12}\right]$ 4.  $(w_i)_i \leftarrow (y_i^4)_i$ **5.** RefreshMasks $((w_i)_i)$ **6.**  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{15}\right]$  $\left[\bigoplus_{i} y_{i} = x^{240}\right]$ **7.**  $(y_i)_i \leftarrow (y_i^{16})_i$ 8.  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{252}\right]$  $\left[\bigoplus_{i} y_{i} = x^{254}\right]$ 9.  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (z_i)_i)$ 

Algorithmic description:

**Input:** shares  $x_i$  s.t.  $\bigoplus_i x_i = x$ **Output:** shares  $y_i$  s.t.  $\bigoplus_i y_i = x^{254}$ 1.  $(z_i)_i \leftarrow (x_i^2)_i$  $\left[\bigoplus_{i} z_{i} = x^{2}\right]$ **2.** RefreshMasks $((z_i)_i)$ **3.**  $(y_i)_i \leftarrow \mathsf{SecMult}((z_i)_i, (x_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{3}\right]$  $\left[\bigoplus_{i} w_{i} = x^{12}\right]$ 4.  $(w_i)_i \leftarrow (y_i^4)_i$ **5.** RefreshMasks $((w_i)_i)$ **6.**  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{15}\right]$  $\left[\bigoplus_{i} y_{i} = x^{240}\right]$ **7.**  $(y_i)_i \leftarrow (y_i^{16})_i$ **8.**  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{252}\right]$  $\left[\bigoplus_{i} y_{i} = x^{254}\right]$ **9.**  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (z_i)_i)$ 



Algorithmic description:

**Input:** shares  $x_i$  s.t.  $\bigoplus_i x_i = x$ **Output:** shares  $y_i$  s.t.  $\bigoplus_i y_i = x^{254}$ **1.**  $(z_i)_i \leftarrow (x_i^2)_i$  $\left[\bigoplus_{i} z_{i} = x^{2}\right]$ **2.** RefreshMasks $((z_i)_i)$ **3.**  $(y_i)_i \leftarrow \mathsf{SecMult}((z_i)_i, (x_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{3}\right]$  $\left[\bigoplus_{i} w_{i} = x^{12}\right]$ **4.**  $(w_i)_i \leftarrow (y_i^4)_i$ **5.** RefreshMasks $((w_i)_i)$ **6.**  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{15}\right]$  $\left[\bigoplus_{i} y_{i} = x^{240}\right]$ **7.**  $(y_i)_i \leftarrow (y_i^{16})_i$ 8.  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{252}\right]$ 9.  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (z_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{254}\right]$ 



Algorithmic description:

**Input:** shares  $x_i$  s.t.  $\bigoplus_i x_i = x$ **Output:** shares  $y_i$  s.t.  $\bigoplus_i y_i = x^{254}$ **1.**  $(z_i)_i \leftarrow (x_i^2)_i$  $\left[\bigoplus_{i} z_{i} = x^{2}\right]$ **2.** RefreshMasks $((z_i)_i)$ **3.**  $(y_i)_i \leftarrow \mathsf{SecMult}((z_i)_i, (x_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{3}\right]$  $\left[\bigoplus_{i} w_{i} = x^{12}\right]$ 4.  $(w_i)_i \leftarrow (y_i^4)_i$ **5.** RefreshMasks $((w_i)_i)$ **6.**  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{15}\right]$  $\left[\bigoplus_{i} y_{i} = x^{240}\right]$ **7.**  $(y_i)_i \leftarrow (y_i^{16})_i$ 8.  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (w_i)_i)$  $\left[\bigoplus_{i} y_{i} = x^{252}\right]$  $\left[\bigoplus_{i} y_{i} = x^{254}\right]$ 9.  $(y_i)_i \leftarrow \mathsf{SecMult}((y_i)_i, (z_i)_i)$ 



### Masking the Whole AES

 Linear operations of encryption/key schedule (ShiftRows, MixColumns, RotWord) processed on every share independently

$$\Lambda\left(\bigoplus_{i} x_{i}\right) = \bigoplus_{i} \Lambda(x_{i})$$



### Masking the Whole AES

 Linear operations of encryption/key schedule (ShiftRows, MixColumns, RotWord) processed on every share independently

$$\Lambda\left(\bigoplus_{i} x_{i}\right) = \bigoplus_{i} \Lambda(x_{i})$$

 Key addition performed by adding each key-share to one single state-share

$$\left(\bigoplus_{i} s_{i}\right) \oplus \left(\bigoplus_{i} k_{i}\right) = \bigoplus_{i} (s_{i} \oplus k_{i})$$



### dth-order security

# $\forall (iv_1, iv_2, \dots, iv_d) \in \{ \text{intermediate var. of } \mathcal{E}' \}^d : \\ \mathrm{MI} \big( (iv_1, iv_2, \dots, iv_d), (m, k) \big) = 0$

CHES 2010 - Provably Secure Higher-Order Masking of AES



### dth-order security

 $\forall (iv_1, iv_2, \dots, iv_d) \in \{ \text{intermediate var. of } \mathcal{E}' \}^d : \\ \mathrm{MI} \big( (iv_1, iv_2, \dots, iv_d), (m, k) \big) = 0$ 

 Algorithm split into several transformations applied to one/two dth-order masked value(s)



### dth-order security

### $orall (iv_1, iv_2, \dots, iv_d) \in \{\text{intermediate var. of } \mathcal{E}'\}^d$ :

$$\mathrm{MI}\big((iv_1, iv_2, \dots, iv_d), (m, k)\big) = 0$$

- Algorithm split into several transformations applied to one/two dth-order masked value(s)
- Every transformation is *locally* secure
  - all transformations are linear (straightforward security) except the field multiplication



### dth-order security

### $\forall (iv_1, iv_2, \dots, iv_d) \in \{\text{intermediate var. of } \mathcal{E}'\}^d$ :

 $\mathrm{MI}\big((iv_1, iv_2, \dots, iv_d), (m, k)\big) = 0$ 

- Algorithm split into several transformations applied to one/two dth-order masked value(s)
- Every transformation is *locally* secure
  - all transformations are linear (straightforward security) except the field multiplication
  - field multiplication secured using ISW scheme
  - improved security proof for ISW scheme

 $\cdot \ d/2 \ \rightarrow \ d$ 


## Security

#### dth-order security

#### $\forall (iv_1, iv_2, \dots, iv_d) \in \{\text{intermediate var. of } \mathcal{E}'\}^d$ :

 $\mathrm{MI}\big((iv_1, iv_2, \dots, iv_d), (m, k)\big) = 0$ 

- Algorithm split into several transformations applied to one/two dth-order masked value(s)
- Every transformation is *locally* secure
  - all transformations are linear (straightforward security) except the field multiplication
  - field multiplication secured using ISW scheme
  - improved security proof for ISW scheme

 $d/2 \rightarrow d$ 

 Local security for every transformation implies global security for the whole algorithm



# Implementation Results (8051)

| Method                     | K cycles | ms (31MHz) | RAM (bytes) | ROM (bytes) |  |  |  |
|----------------------------|----------|------------|-------------|-------------|--|--|--|
| Unprotected Implementation |          |            |             |             |  |  |  |
| Na.                        | 3        | 0.1        | 32          | 1150        |  |  |  |
| First-Order Masking        |          |            |             |             |  |  |  |
| [Messerges FSE'00]         | 10       | 0.3        | 256+35      | 1553        |  |  |  |
| [Oswald+ FSE'05]           | 77       | 2.5        | 42          | 3195        |  |  |  |
| Our scheme (d=1)           | 129      | 4          | 73          | 3153        |  |  |  |
| Second-Order Masking       |          |            |             |             |  |  |  |
| [Schramm+ CT-RSA'06]       | 594      | 19         | 512+90      | 2336        |  |  |  |
| [Rivain+ FSE'08]           | 672      | 22         | 256+86      | 2215        |  |  |  |
| Our scheme (d=2)           | 271      | 9          | 79          | 3845        |  |  |  |
| Third-Order Masking        |          |            |             |             |  |  |  |
| Our scheme (d=3)           | 470      | 15         | 103         | 4648        |  |  |  |

CHES 2010 - Provably Secure Higher-Order Masking of AES



# Implementation Results (8051)

| Method                     | K cycles | ms (31MHz) | RAM (bytes) | ROM (bytes) |  |  |
|----------------------------|----------|------------|-------------|-------------|--|--|
| Unprotected Implementation |          |            |             |             |  |  |
| Na.                        | 3        | 0.1        | 32          | 1150        |  |  |
| First-Order Masking        |          |            |             |             |  |  |
| [Messerges FSE'00]         | 10       | 0.3        | 256+35      | 1553        |  |  |
| [Oswald+ FSE'05]           | 77       | 2.5        | 42          | 3195        |  |  |
| Our scheme (d=1)           | 129      | 4          | 73          | 3153        |  |  |
| Second-Order Masking       |          |            |             |             |  |  |
| [Schramm+ CT-RSA'06]       | 594      | 19         | 512+90      | 2336        |  |  |
| [Rivain+ FSE'08]           | 672      | 22         | 256+86      | 2215        |  |  |
| Our scheme (d=2)           | 271      | 9          | 79          | 3845        |  |  |
| Third-Order Masking        |          |            |             |             |  |  |
| Our scheme (d=3)           | 470      | 15         | 103         | 4648        |  |  |

• Interpolation:  $30d^2 + 50d + 50$  K cycles

- $\blacktriangleright \ d=4$ : 730 Kc / 24 ms
- $\blacktriangleright~d=5$ : 1050 Kc / 34 ms

CHES 2010 - Provably Secure Higher-Order Masking of AES



## Outline

Introduction

 Higher-Order Masking
 ISW Scheme (CRYPTO'03)

 Our Scheme

 Masking the S-box
 Masking the Whole AES
 Security
 Implementation Results

## **3** Conclusion



### Conclusion

- First masking scheme for software implementations of AES with provable security at any order
- Based on the work [Ishai-Sahai-Wagner CRYPTO'03]
- Generalization: secure field multiplication in software
- Improved security proof  $(d/2 \rightarrow d)$ , significant in practice
- On-going work:
  - $\blacktriangleright$  generalization to any S-box/SPN
  - $\blacktriangleright$  formal security model for  $d{\sf th}{\sf -order}$  secure implementations

