Tutorial on white-box cryptography

Overview

* |ntroduction to white-box
cryptography
» Presentation ~1h

Matthieu Aleksei e Generating and attacking
Rivain Udovenko white-box implementations
CHES 2022 Tutorial > Practical tutorial ~2h

Leuven, 18 Sep. 2022

O

CRrRYPTOGXPERTS™ il. I I

WE INNOVATE TO SECURE YOUR BUSINESS UNIVERSITE DU
LUXEMBOURG

White-box crypto context
White-box crypto in theory

» definitions & security notions

White-box crypto in practice
» early designs & breaks
» gray-box attacks & countermeasures

» WhibOx competitions

White-box crypto context

How to protect a cryptographic key?

Well, put it in a smartcard of course!

. or any piece of secure hardware

Secure hardware is expensive (production,
integration, infrastructures...)

Long lifecycle, limited updates

Bugs, security flaws might occur
» e.g. ROCA vulnerability (October 2017)

M‘m Jasxbf high-security crypto keys
crippled by newly discovered flaw

Advantages: cheaper, faster time-to-market,
easier to update
Huge need for many contexts

» Mobile apps (SE/TEE not always available)

» loT (cheap hardware)

» Content protection, DRM

» OS / firmwares

Potential threats:
» malwares
» co-hosted applications

» users themselves

White-box adversary model
» full control of the execution environment
» analyse the code
» access the memory

» tamper with execution

General idea: hide the secret key in an
obfuscated cryptographic implementation

X

l randomness ‘)f
X \ Obfuscated
implementation
T Hardcoded
/, hidden key

Encoded data

White-box
compilation

process @//é \ E]@E
|
o
X

2 G

X
3

White-box crypto in theory

A word in a formal language P € L

execute: Lx{0,1}* — {0,1}*
(P,input) ~ output

|P|: size of Pe L

time(P): # operations for execute(P,)

Va : execute(P,x) = f(x)
P1 = PQ
Va : execute(Py,x) = execute(P, x)

Straight-line programs
» no conditional statements, no loops
» |P| =time(P)

An algorithm:

|
P — Q‘g‘ —> O(P)

Size and execution time increase
(hopefully not too much)

|
P — REF
Qa [Ek]

Specific to an encryption function F

Can be constructed from an obfuscator

k—>P=zE()S [B]

What is an adversary?

= An algorithm:

randommness
0
op) — —
1
obfuscated 1 bit of
program information

w Wig: A 1-bit O = 2 multi-bit T

[BGI+01] On the (Im)possibility of Obfuscating

Programs (CRYPTO 2001)

= Virtual Black Box (VBB) security notion

» Impossibility result: VBB cannot be achieved
for all programs (counterexample)

= Indistinguishability Obfuscation (10)

O(P) reveals nothing more than the 1/0
behavior of P

P* mputs

-k P
N hardcoded

k
\ secret key
A
@ ' "
\
\

-

> P*(O,P*) =k*
» BB access to P* reveals nothing

The impossibility result does not apply to a
given encryption algorithm

VBB AES might exist

AES,(+)

|
|
)
|
0o 0
WB-AES;, |—> g — {1 @ ®_> {1
‘
|
|

The bad news: seems very hard to achieve

Notion restricted to straight-line programs

For any (P, P») st P, = P, and |P| = | P,

Oo(Py)

—@-{o

O(P,)

g {0
D — —>1

i.e. O(Py) and O(P;) are indistinguishable

|O < Best Possible Obfuscation

For any P’

L
O(m;g \@

O(P) doesn't reveal anythlng more than the
best obfuscated program P’

P’

VBB
AES
?

Obfuscation scale

VBB
AES

further white-box
security notions

Obfuscation scale

Unbreakability: resistance to key extraction

WB-AES, | —> E sk

Basic requirement but insufficient in practice

Other security notions

» [SWPQ9] Towards Security Notions for White-Box
Cryptography (I1SC 2009)

» [DLPR13] White-Box Security Notions for
Symmetric Encryption Schemes (SAC 2013)

One-wayness: hardness of inversion

m

|

WB-AES,, | —> u %» m
c —/

Turns AES into a public-key cryptosystem
PK crypto with light-weight private operations

Incompressibility: hardness of compression

WB-AES, AES
; s AES;,
< 10 KB
> 10 GB

Makes the implementation less convenient to
share at a large scale

Password: WB implem locked by password

Toom
WB-AESk,
if (7 ==m
return \rs; (m) |—> ¢ = AESk(m)
else return L
l max proba 277
c

User password / application-dependent secret
(a.k.a binding)

Some relations

= If the underlying encryption scheme is secure:

INC

U
OW = UBK <« PWD

Some relations

= If the underlying encryption scheme is secure:

INC

U
VEE = OW = UBK <« PWD <« VEB

Some relations

= If the underlying encryption scheme is secure:

VBB

¥
INC

U
VEE = OW = UBK <« PWD <« VEB

If the underlying encryption scheme is secure:

¥
INC

U
= OW = UBK <« PWD <«

No UBK construction known for AES
no OW/INC/PWB/VBB construction either

[DLPR13] White-Box Security Notions for Symmetric Encryption
Schemes (SAC 2013)

» Perturbation-Value Hiding (PVH) = traceability

[AABM20] On the Security Goals of White-Box Cryptography
(CHES 2020)

» Authenticated encryption
» Hardware binding, application binding

[ABFJM21] Security Reductions for White-Box Key-Storage in
Mobile Payments (ASIACRYPT 2021)

» Key derivation

» Payment application

White-box crypto in practice

[CEJV02] White-Box Cryptography and an
AES Implementation (SAC 2002)

First step: network of look-up tables

Each round split in 4 sub-rounds

(zo,25,%10,%15) "’(

02
01
01
03

03
02
01
01

01
03
02
01

01
01
03
02

i

S(I’o ® ko)
5(1'5 52} k5)
S(xlo ® klO)
S(z15 @ k15)

|

Computed as
Tolzo] ® T5[x5] @ Tho[z10] ® Ths[215]
Tables T; : 8 bits — 32 bits

To[z] = S(z@ ko) x (02 01 01 03)7
Ts[z] = S(z @ ks)x (030201 01)"
Tio[r] = S(z® ki) = (01 0302 01)7
Tis[x] = S(z®kis) = (01 0103 02)7

XOR table: 8 bits — 4 bits

Tiorlzol|1] = 20 ® 21

Second step: randomize look-up tables

Each table T' is replaced by
T’ = g (o] T (]
where [, g are random encodings

For two connected tables T', R

T'=goTo

R-hoRog! = foT =he(fteT)e

Intuition: encoded tables bring no information
True for a single (bijective) table goT o
Not for the large picture
i1 NTH

mBy™! 2t

lllustration: J. Muir “A Tutorial on White-box AES" (ePrint 2013)

First break: BGE attack

» [BGEO4] Cryptanalysis of a White Box AES
Implementation (SAC 2004)

Generic attack on WB SPN ciphers

» [MGHO8] Cryptanalysis of a Generic Class of
White-Box Implementations (SAC 2008)

Collision attack & improved BGE attack

» [LRD+13] Two Attacks on a White-Box AES
Implementation (SAC 2013)

Example: collision attack

MixColumns

[: i:]

<z <z
Q'(J":j) Qg":.f) Qg’j) I Q:(;'yj) ‘ Q(()"-.‘f) Q&"d) Q;",j) I Qg'j)

collision?
lyes
02-S5p(c) ®03-5,(0)=02-55(0)®03-5,(1)
where So(z) = S(Py(z) @ ko) and S () = S(P () @ k)
[llustration: Y. De Mulder (presentation SAC 2013)

Perturbed WB-AES using MV crypto [BCDO06] (ePrint 2006)
= broken [DWP10] (INDOCRYPT 2010)

WB-AES based on wide linear encodings [XL09] (CSA 2009)
= broken [DRP12] (SAC 2012)

WB-AES based on dual AES ciphers [Kar10] (ICISC 2010)
= broken [LRD+13] (SAC 2013)

Same situation with DES

Secret design paradigm

m Industrial need

. I don't like
» home-made solutions that.. B

» mix of several obfuscation
techniques

» secret designs

Auguste Kerckhoffs

= Security evaluations by ITSEF labs

= Development of generic “gray-box” attacks
» Fault attacks, DCA

» Avoid costly reverse engineering effort

Easy fault injection in the white-box context

Plenty of efficient FA techniques (on e.g. AES)

fault
injection
.
/ round 9 130

-
MC
A\ >4
. ! . a T E

round 10 k11

Original white-box AES vulnerable to this attack

Differential Computation Analysis

m Suggested by NXP / Riscure
» Presentation at BalckHat 2015

» Best paper award CHES 2016

» Record data-dependent information at
execution = computation trace

t i bt} £ Tig T 3
Trace: J. Bos (presentation CHES 2016)

= Apply DPA techniques to computation traces

Differential Computation Analysis

predictions computation traces

S(z1 & k) A e
S(z2 @ k) a0, o b 0

S(zn @ k) |||||.||.|.|u.l||"|||||||||||I.|.||"ll.||||.I."||I|||||||||||||.|.||||.|I|||||||I||I||I"|I|.I|.

\(:ojrr(flaz‘,iV

P(':')\\\
/ RS
/

k;ék*’

/

Ay
N\
| i Lo ¥
|||I N ||I| |"||||Il||"|| |||||I||||'l'|| ||I I|| ||I ‘ ‘

DCA in presence of encodings

= DCA can break the original white-box AES
» [BHMT16] Differential Computation Analysis (CHES 2016)

= Why?
» [ABMT18] On the Ineffectiveness of Internal Encodings
(ACNS 2018)

» [RWO09] Analysis and Improvement of Differential
Computation Attacks against Internally-Encoded White-Box
Implementations (CHES 2019)

Countermeasures?

= Natural approach: use known SCA/FA
countermeasures

Countermeasures?

Pseudo

RNG

m Pseudo-randomness from m

m PRNG should be somehow secret

On-top obfuscation

C
Countermeasures hard to remove

Pseudo-randomness / redundancy hard to
detect

New paradigm: gray-box attacks
and countermeasures

Coming next...

Case study 1: masking and shuffling
WhibOx contest

Case study 2: WhibOx 2017 winner
Linear Decoding Analysis

Case study 3: WhibOx 2019 winners

Data Dependency Analysis

Case study 1: masking and shuffling

e [BRVW19] Higher-Order DCA against Standard Side-Channel
Countermeasures (COSADE 2019)

x= XD x, D - D x

/ / / m variables
[7/ Z

shares random dummy variables

»

* random shuffling

Case study 1: masking and shuffling

e [BRVW19] Higher-Order DCA against Standard Side-Channel
Countermeasures (COSADE 2019)

x e @ x2 eee
/ / / m variables
; -~
shares random dummy variables

* random shuffling

Optimal attack

complexity

(")

Case study 1: masking and shuffling

e \We obtain exponential security &
e But against a limited adversary
 Passive attack
* NoO reverse engineering
e The adversary can do more in the WB model &
e Detect / deactivate shuffling
 EXxploit data dependency

e |nject faults

Goal: confront designers and attackers
of practical white-box crypto

WhibOx contets

Goal: confront designers and attackers
of practical white-box crypto

—
N—

WhibOx
Server

Designer

WhibOx contets

Goal: confront designers and attackers
of practical white-box crypto

—
N—

WhibOx
Server

Designer Attacker

WhibOx contets

e 1st edition (2017)
 White-box AES (< 20MB /runs < 1s)
* 94 submitted implementations / 877 breaks

e Everything broken / winner survived 29 days

https://whibox.io/contests/

WhibOx contets

e 1st edition (2017)
 White-box AES (< 20MB /runs < 1s)
* 94 submitted implementations / 877 breaks
e Everything broken / winner survived 29 days
e 2nd edition (2019)
 White-box AES (< 20MB /runs < 1s)
e 27 submitted implementations / 124 breaks

e 3 survivors (broken few days after deadline)

https://whibox.io/contests/

WhibOx contets

e 1st edition (2017)

 White-box AES (< 20MB /runs < 1s)

* 94 submitted implementations / 877 breaks

e Everything broken / winner survived 29 days
e 2nd edition (2019)

 White-box AES (< 20MB /runs < 1s)

e 27 submitted implementations / 124 breaks

e 3 survivors (broken few days after deadline)
e 3rd edition (2021)

e ECDSA (< 20MB excl. GMP / runs < 3s)

e 97 submitted implementations / 898 breaks

* Everything broken is less than 48h

https://whibox.io/contests/

WhibOx contets

1st edition (2017)

 White-box AES (< 20MB /runs < 1s)

* 94 submitted implementations / 877 breaks

e Everything broken / winner survived 29 days
2nd edition (2019)

 White-box AES (< 20MB /runs < 1s)

e 27 submitted implementations / 124 breaks

e 3 survivors (broken few days after deadline)
3rd edition (2021)

e ECDSA (< 20MB excl. GMP / runs < 3s)

e 97 submitted implementations / 898 breaks

* Everything broken is less than 48h

https://whibox.io/contests/

https://whibox.io/contests/

Case study 2: WhibOx 2017 winner

 Winner: challenge #777 (a.k.a. adoring_poitras)
* From Alex Biryukov, Aleksei Udovenko

* Boolean level masking, bitslicing, error detection, dummy
operations, virtualisation, obfuscation

Case study 2: WhibOx 2017 winner

 Winner: challenge #777 (a.k.a. adoring_poitras)
* From Alex Biryukov, Aleksei Udovenko

* Boolean level masking, bitslicing, error detection, dummy
operations, virtualisation, obfuscation

e Break from Louis Goubin, Pascal Paillier, Matthieu Rivain, Junwei
Wang

e [GPRW18] How to Reveal the Secrets of an Obscure White-
Box Implementation (ePrint 2018, JCEN 2020)

e Human reverse engineering = SSA-format program (circuit)

e Circuit minimisation (detect dummy / constant / duplicate
variables & pseudo-randomness)

e 600 K gates = 280 K gates

Data dependency graph (20% of the circuit)

Data dependency graph (10% of the circuit)

Data dependency graph (5% of the circuit)

MixColumn?

Initial pseudo-
randomness?

Data dependency graph (5% of the circuit)

N Y R R T encompassing
one s-box

DT A R R encompassing
one s-box

. Assumption:
contains variables

encoding S(x @ k)

Linear Decoding Analysis

e Letsy,...,s, the variables in the window

e Record them for n executions

s g0 O
sO @ L O

EREC A

o lLetsy,..

Linear Decoding Analysis

e Record them for n executions

s gD

s@ g

g 1(n) g én)

s

e

5

., 5, the variables in the window

S0 @ k)
(x> @ k)

Si(x™ @ k)

. by assumption, we get a linear system

o lLetsy,..

Linear Decoding Analysis

e Record them for n executions

s gD

s@ g

g 1(n) g én)

s

e

5

., 5, the variables in the window

Plaintext byte

. by assumption, we get a linear system

o Letsy,..

Linear Decoding Analysis

e Record them for n executions

s gD

s@ g

g 1(n) g én)

s

e

5

., 5, the variables in the window

One output bit
of the s-box

Plaintext byte

. by assumption, we get a linear system

Linear Decoding Analysis

e Letsy,...,s, the variables in the window

e Record them for n executions One output bit

s gD

s@ g

g 1(n) g én)

of the s-box

-

SHA

(2 Unknown
m

key byte

NOIE..

~ Unknown
coefficients Plaintext byte

e by assumption, we get a linear system

LDA: generalisation

e LDA defeats WB implems based on additive sharing

 (Generalisation to encoding of higher degrees

V=>1|5|sR5|sR®5sRs]...)

LDA: generalisation

DA defeats WB implems based on additive sharing
 (Generalisation to encoding of higher degrees

V=(155Q5E®5i®5)...)

degree-2 degree-3 ©lC.
monomials monomials

LDA: generalisation

e LDA defeats WB implems based on additive sharing

 (Generalisation to encoding of higher degrees

V=555 ®5®5]...)

degree-2 degree-3 ©lC.
monomials monomials

e |Larger system

(1 1 D | - 7

vf) vé) vr(n’) . f(x(l), k)
2 2 2

p(2) p§?) () f(x®, k)

_an) vé”) v}szn/) : _f(x(”), k)_

LDA: generalisation

e LDA defeats WB implems based on additive sharing

 (Generalisation to encoding of higher degrees

V=555 ®5®5]...)

degree-2 degree-3 ©lC.
monomials monomials

e |Larger system

€1
(1 1 1) ' - }
vi? gD V! ; f&D, k) Complexity:
2 2 2 2 2 .
P v Vo x| | = O, k) Inverting a
- - S : (;) m< x m< matrix
an) vy stzn’) : SO k) = @(mZ.Sd)
C,py

LDA: mitigation

* Non-linear masking

X =X| X, D X3
e [BU18] Attacks and Countermeasures for White-box Designs
(ASIACRYPT 2018)

o [SEL21] A White-Box Masking Scheme Resisting Computational
and Algebraic Attacks (CHES 202)

LDA: mitigation

* Non-linear masking
X =X| X, D X3

e [BU18]| Attacks and Countermeasures for White-box Designs
(ASIACRYPT 2018)

o [SEL21] A White-Box Masking Scheme Resisting Computational
and Algebraic Attacks (CHES 202)

o D um my S h ufﬂ | N g main inputs dummy inputs
r1 X2 Tt $. 8
L I [_
input-shuffling| - (G 8
I — [
evaluation slots | C c| - |C ¢l - |C]
L | |
output-selection | oo -7 G
| | | % e
Y1 Y2 o Yt

N

~

main outputs

e [BU21] Dummy Shuffling against Algebraic Attacks in White-box
Implementations (EUROCRYPT 2021)

Case study 3: WhibOx 2019 winners

 Winners: challenges #100, #111, #115
* From Alex Biryukov, Aleksel Udovenko

e Linear (high-order) masking, non-linear masking,
shuffling, obfuscation, virtualisation

 Breaks from Louis Goubin, Matthieu Rivain, Junwei Wang
/ Arnolds Kikusts, Artur Pchelkin

e [GRW20] Defeating State-of-the-Art White-Box
Countermeasures with Advanced Gray-Box Attacks

(CHES 2020)

e Human reverse engineering = SSA-format program

Higher-order DCA

e From atrace/window s, ...,S,, compute
Si1®si2®“'®stt V 1§i1<i2<°"<it§n

— [-th order trace

Higher-order DCA

e From atrace/ window sy, ..., S, compute
Si1®si2®“'®stt V 1§i1<i2<°°°<itﬁn
— 1-th order trace

e Against 7-order masking + non-linear masking

xX=a-b®x ®x, P - Dx,

1
= Cor(x,x; @ --- D x,) = 5

Higher-order DCA

e From atrace/ window sy, ..., S, compute
Sl'l@Siz@'“@Stt V 1§i1<i2<°°°<itﬁn
— 1-th order trace

e Against 7-order masking + non-linear masking

xX=a-b®x ®x, P - Dx,
1
= Cor(x,x; @ --- D x,) = 5
e Against f-order masking + non-linear masking + A-shuffling

1
HO-DCA = Cor = —
24

1
Integrated HO-DCA = Cor = ——

2V/2

Higher-order DCA

e From atrace/ window sy, ..., S, compute
Sl'l@Siz@“‘@Stt V 1 Sll<12< °ee <ltSn Impa_Ct Of
non-linear
= 1-th order trace masking
e Against 7-order masking + non-linear masking , '
X=a-b®x @50 & / impact of
shuffling

1
= Cor(x,x; @ --- D x,) = 5
e Against r-order masking + non-linear mask”g + /l—shuffling,;

1
HO'DCA @ COI’ - —_—
24

Integrated HO-DCA = Cor

Higher-order DCA

e From atrace/ window sy, ..., S, compute
Sl'l@Siz@“‘@Stt V 1 Sll<12< °ee <ltSn Impa_Ct Of
non-linear
= 1-th order trace masking
e Against 7-order masking + non-linear masking , '
X=a-b®x @50 & / impact of
shuffling

1
= Cor(x,x; @ --- D x,) = 5

e Against r-order masking + non-linear mask”g + /l—shuffling,;

= Number of

1 J
HO-DCA = Cor = 2—/1 ;-' traces @(A)

Integrated HO-DCA = Cor

Higher-order DCA

From a trace / window sy, ..., S, compute

Si1®si2@'"@st, V I1<i{<ip<-<i<n |mpa.Ct of
non-linear
= t-th order trace masking
Against f-order masking + non-linear masking | ,
X:Cl-b@xl@xz@... @XZ‘ impact Of
shuffling

1
= Cor(x,x; @ --- D x,) = 5

Against 7-order masking + non-linear mask'g -+ /l—shuffling,;

= Number of

1 J
HO-DCA = Cor = 2—/1 \‘-' traces @(A)

Integrated HO-DCA = Cor

m
Size of 1-th order trace: <)
l

Higher-order DCA

From a trace / window sy, ..., S, compute

Si1®si2®“'®stt V 1§i1<i2<°°°<it§n

— [-th order trace

Against r-order masking + non-linear masking

xX=a-b®x ®x, P - Dx,

1
= Cor(x,x; @ --- D x,) = 5

Against 7-order masking + non-linear mask”g + /1—shuffling,‘

1
HO-DCA = Cor = —
24

Integrated HO-DCA = Cor

Size of t-th order trace:

impact of
non-linear
masking

impact of

~e \WINAOW Size

. masking order

shuffling

= Number of

traces O(A)

How to reduce the window size?

e , Iidea: exploit the locality of a masking gadget

How to reduce the window size?

e , Iidea: exploit the locality of a masking gadget

e Multiplication gadget (x, ..., x,) @ (V{5 ---,¥,)

(X1 XYyt X))

Y1 XY o XV
: : . .| + randomness — Z - (205 .-, 2)

e A Ay

How to reduce the window size?

e , idea: exploit the locality of a masking gadget

» Multiplication gadget (x, ..., x,) @ (V{5 ---,¥,)

(X1 XYyt X))

Y1 XY o XV
: : . .| + randomness — Z - (205 .-, 2)

e A Ay

o Set of co-operands of any x; = all the shares y,, ..., y,

How to reduce the window size?

. Idea: exploit the locality of a masking gadget

Multiplication gadget (x;, ..., x,) & (¥, ---, ;)

(X1 XYyt X))

Y1 XY o XV
: : . .| + randomness — Z - (205 .-, 2)

R
Set of co-operands of any x; = all the shares y,, ..., y,
Data-dependency HO-DCA

e Scanning all the gates of the circuit

e« Foreachgateg: s g = CoOperands(g) (might contain t shares)

» Global r-th order trace = (#-th order trace (5,))

8 Vg

e Apply DCA to global 7-th order traces

Correlation

Data-dependency HO-DCA on #100

Good key

/ guess @

0.06

0.04 | | .

0.02

0

Data-dependency HO-DCA against #100, using 767 traces
(18% of the circuit / target: 1st round s-box)

Data-dependency analysis

e Clustering technique applicable to any gray-box attack in the
white-box setting

e Principle
e Scan the gates of the circuit / DD graph
 For each g, record co-operands of g as potential window

 Apply a given gray-box attack to the recorded windows
e Possible extensions

* Include co-operands of degree d
(co-op. of co-op. of co-op. ...)

e Include incoming / outgoing gates

Conclusion

Strong WBC (VBB / UBK) hard to achieve in practice

Practical WBC relies on security through obscurity
= countermeasures & obfuscation vs. gray-box attacks

Exponential security can be obtained against some attacks
= attack window must be large enough

DDA very effective to reduce the attack window
e Open problem: how to thwart DDA attacks?

Fault attacks: to be formalised / investigated more in WB
setting

WhibOx 2021 on ECDSA = WB session next Tuesday

	White-box crypto context
	White-box crypto in theory
	White-box crypto in practice

