
Tutorial on white-box cryptography

Matthieu

Rivain

Aleksei

Udovenko

CHES 2022 Tutorial

Leuven, 18 Sep. 2022

• Introduction to white-box
cryptography

‣ Presentation ~1h

• Generating and attacking
white-box implementations

‣ Practical tutorial ~2h

Overview

Overview of the presentation

� White-box crypto context

� White-box crypto in theory
� definitions & security notions

� White-box crypto in practice
� early designs & breaks

� gray-box attacks & countermeasures

� WhibOx competitions

White-box crypto context

How to protect a cryptographic key?

How to protect a cryptographic key?

Well, put it in a smartcard of course!

... or any piece of secure hardware

But...

� Secure hardware is expensive (production,
integration, infrastructures...)

� Long lifecycle, limited updates

� Bugs, security flaws might occur
� e.g. ROCA vulnerability (October 2017)

Security in pure software

� Advantages: cheaper, faster time-to-market,
easier to update

� Huge need for many contexts� Mobile apps (SE/TEE not always available)

� IoT (cheap hardware)

� Content protection, DRM

� OS / firmwares

Protecting keys in software?

� Potential threats:
� malwares

� co-hosted applications

� users themselves

� White-box adversary model
� full control of the execution environment

� analyse the code

� access the memory

� tamper with execution

White-box cryptography

General idea: hide the secret key in an
obfuscated cryptographic implementation

White-box crypto in theory

What is a program?

� A word in a formal language P ∈ L
execute ∶ L × {0,1}∗ → {0,1}∗(P, input) � output

(Universal Turing Machine)

� �P �: size of P ∈ L
� time(P): # operations for execute(P, ⋅)

What is a program?

� P ≡ f (P implements f)

∀x ∶ execute(P,x) = f(x)
� P1 ≡ P2 (functional equivalence)

∀x ∶ execute(P1, x) = execute(P2, x)
� Straight-line programs

� no conditional statements, no loops

� �P � = time(P)

What is an obfuscator?

� An algorithm:

P

randomness

O(P)⌘ P

� Size and execution time increase
(hopefully not too much)

What is a white-box compiler?

k

key

randomness

[Ek]⌘ Ek(·)

encryption program

� Specific to an encryption function E

� Can be constructed from an obfuscator

k → P ≡ Ek(⋅) O�→ [Ek]

What is an adversary?

� An algorithm:

O(P)

obfuscated
program

randomness

(
0

1

1 bit of
information

� Wlg: � 1-bit] ⇒ � multi-bit]

[BGI+01] On the (Im)possibility of Obfuscating

Programs (CRYPTO 2001)

� Virtual Black Box (VBB) security notion

� Impossibility result: VBB cannot be achieved
for all programs (counterexample)

� Indistinguishability Obfuscation (IO)

VBB security notion

8 O(P)

adversary
(
0

1

9 P S

simulator

(
0

1
x

P (x)
'

� O(P) reveals nothing more than the I/O
behavior of P

Impossibility result

P
⇤ inputs

hardcoded
secret key

k
⇤

k P

k
?
= k

⇤

P (k⇤,?)
?
= k

⇤output k⇤

output k⇤ output 0

yes no

yes no

� P ∗(0, P ∗) = k∗
� BB access to P ∗ reveals nothing

The good news

� The impossibility result does not apply to a
given encryption algorithm

� VBB AES might exist

WB-AESk

(
0

1
' S

(
0

1

AESk(·)

m c

� The bad news: seems very hard to achieve

Indistinguishability Obfuscation (IO)

� Notion restricted to straight-line programs

� For any (P1, P2) st P1 ≡ P2 and �P1� = �P2�
'O(P1)

(
0

1
O(P2)

(
0

1

� i.e. O(P1) and O(P2) are indistinguishable

Why is IO meaningful?

� IO⇔ Best Possible Obfuscation

� For any P ′:

O(P)

(
0

1
' S

(
0

1

P
0P ⌘

� O(P) doesn’t reveal anything more than the
best obfuscated program P ′

simple
AES

VBB
AES

iO
AES

?

Obfuscation scale

simple
AES

VBB
AES

iO
AES

?

Obfuscation scale

further white-box

security notions

White-box security notions

� Unbreakability: resistance to key extraction

WB-AESk k

� Basic requirement but insu�cient in practice

� Other security notions� [SWP09] Towards Security Notions for White-Box

Cryptography (ISC 2009)

� [DLPR13] White-Box Security Notions for

Symmetric Encryption Schemes (SAC 2013)

One-wayness

� One-wayness: hardness of inversion

WB-AESk

m

c

m

� Turns AES into a public-key cryptosystem

� PK crypto with light-weight private operations

Incompressibility

� Incompressibility: hardness of compression

WB-AESk

> 10 GB

AESk
< 10 KB

� Makes the implementation less convenient to
share at a large scale

Password

� Password: WB implem locked by password

WB-AESk,⇡

if (⇡̂ == ⇡)
return AESk(m)

else return ?

⇡̂ m

c

c = AESk(m)

max proba 2�|⇡|

� User password / application-dependent secret
(a.k.a binding)

Some relations

� If the underlying encryption scheme is secure:

VBB�

INC⇓

VBB ⇒

OW ⇒ UBK ⇐ PWD

⇐ VBB

� No UBK construction known for AES

⇒ no OW/INC/PWB/VBB construction either

Some relations

� If the underlying encryption scheme is secure:

VBB�

INC⇓
VBB ⇒ OW ⇒ UBK ⇐ PWD ⇐ VBB

� No UBK construction known for AES

⇒ no OW/INC/PWB/VBB construction either

Some relations

� If the underlying encryption scheme is secure:

VBB�
INC⇓

VBB ⇒ OW ⇒ UBK ⇐ PWD ⇐ VBB

� No UBK construction known for AES

⇒ no OW/INC/PWB/VBB construction either

Some relations

� If the underlying encryption scheme is secure:

VBB�
INC⇓

VBB ⇒ OW ⇒ UBK ⇐ PWD ⇐ VBB

� No UBK construction known for AES

⇒ no OW/INC/PWB/VBB construction either

Further white-box notions
� [DLPR13] White-Box Security Notions for Symmetric Encryption

Schemes (SAC 2013)� Perturbation-Value Hiding (PVH) ⇒ traceability

� [AABM20] On the Security Goals of White-Box Cryptography

(CHES 2020)� Authenticated encryption

� Hardware binding, application binding

� [ABFJM21] Security Reductions for White-Box Key-Storage in

Mobile Payments (ASIACRYPT 2021)� Key derivation

� Payment application

White-box crypto in practice

Original white-box AES

� [CEJV02] White-Box Cryptography and an

AES Implementation (SAC 2002)

� First step: network of look-up tables

� Each round split in 4 sub-rounds

(x0, x5, x10, x15)�
�����
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

�����
⊗
�����
S(x0 ⊕ k0)
S(x5 ⊕ k5)
S(x10 ⊕ k10)
S(x15 ⊕ k15)

�����

Original white-box AES

� Computed as

T0[x0]⊕ T5[x5]⊕ T10[x10]⊕ T15[x15]
� Tables Ti ∶ 8 bits→ 32 bits

T0[x] = S(x⊕ k0) × (02 01 01 03)T
T5[x] = S(x⊕ k5) × (03 02 01 01)T
T10[x] = S(x⊕ k10) × (01 03 02 01)T
T15[x] = S(x⊕ k15) × (01 01 03 02)T

� XOR table: 8 bits→ 4 bits

Txor[x0��x1] = x0 ⊕ x1

Original white-box AES

� Second step: randomize look-up tables

� Each table T is replaced by

T
′ = g ○ T ○ f−1

where f, g are random encodings

� For two connected tables T , R

T ′ = g ○ T ○ f−1
R′ = h ○R ○ g−1 ⇒ R

′ ○T ′ = h○(R○T)○f−1

Original white-box AES

� Intuition: encoded tables bring no information

� True for a single (bijective) table g ○ T ○ f−1
� Not for the large picture

Illustration: J. Muir “A Tutorial on White-box AES” (ePrint 2013)

Many breaks

� First break: BGE attack� [BGE04] Cryptanalysis of a White Box AES

Implementation (SAC 2004)

� Generic attack on WB SPN ciphers� [MGH08] Cryptanalysis of a Generic Class of

White-Box Implementations (SAC 2008)

� Collision attack & improved BGE attack� [LRD+13] Two Attacks on a White-Box AES

Implementation (SAC 2013)

Example: collision attack

02 ⋅ S0(↵)⊕ 03 ⋅ S1(0) = 02 ⋅ S0(0)⊕ 03 ⋅ S1(�)
where S0(x) = S(P0(x)⊕ k0) and S1(x) = S(P1(x)⊕ k1)

Illustration: Y. De Mulder (presentation SAC 2013)

Patches and variants

� Perturbed WB-AES using MV crypto [BCD06] (ePrint 2006)

⇒ broken [DWP10] (INDOCRYPT 2010)

� WB-AES based on wide linear encodings [XL09] (CSA 2009)

⇒ broken [DRP12] (SAC 2012)

� WB-AES based on dual AES ciphers [Kar10] (ICISC 2010)

⇒ broken [LRD+13] (SAC 2013)

� Same situation with DES

Secret design paradigm

� Industrial need

� home-made solutions

� mix of several obfuscation
techniques

� secret designs

� Security evaluations by ITSEF labs

� Development of generic “gray-box” attacks
� Fault attacks, DCA

� Avoid costly reverse engineering e↵ort

Fault attacks

� Easy fault injection in the white-box context

� Plenty of e�cient FA techniques (on e.g. AES)

MC

SB SR

k10

k11

fault
injection

round 9

round 10

� Original white-box AES vulnerable to this attack

Di↵erential Computation Analysis

� Suggested by NXP / Riscure� Presentation at BalckHat 2015

� Best paper award CHES 2016

� Record data-dependent information at
execution ⇒ computation trace

Trace: J. Bos (presentation CHES 2016)

� Apply DPA techniques to computation traces

Di↵erential Computation Analysis
computation traces

...

predictions

S(x1 � k)

S(x2 � k)

...
S(xN � k)

correlation

⇢(· , ·)

k 6= k⇤ k = k⇤

DCA in presence of encodings

� DCA can break the original white-box AES� [BHMT16] Di↵erential Computation Analysis (CHES 2016)

� Why?� [ABMT18] On the Ine↵ectiveness of Internal Encodings

(ACNS 2018)

� [RW09] Analysis and Improvement of Di↵erential

Computation Attacks against Internally-Encoded White-Box

Implementations (CHES 2019)

Countermeasures?

� Natural approach: use known SCA/FA
countermeasures

AESk

m

c

)
AESk

masking,
shu✏ing, ...

m

c

RNG

)
RNG

AESk

masking,
shu✏ing, ...

AESk

masking,
shu✏ing, ...

m

error

detection

c

Countermeasures?

Pseudo

RNG

AESk

masking,
shu✏ing, ...

AESk

masking,
shu✏ing, ...

m

error

detection

c

� Pseudo-randomness from m

� PRNG should be somehow secret

Countermeasures?

Pseudo

RNG

AESk

masking,
shu✏ing, ...

AESk

masking,
shu✏ing, ...

m

error

detection

c

On-top obfuscation

� Countermeasures hard to remove

� Pseudo-randomness / redundancy hard to
detect

New paradigm: gray-box attacks
and countermeasures

Coming next...

• Case study 1: masking and shuffling

• WhibOx contest

• Case study 2: WhibOx 2017 winner

• Linear Decoding Analysis

• Case study 3: WhibOx 2019 winners

• Data Dependency Analysis

Case study 1: masking and shuffling
• [BRVW19] Higher-Order DCA against Standard Side-Channel

Countermeasures (COSADE 2019)

Case study 1: masking and shuffling
• [BRVW19] Higher-Order DCA against Standard Side-Channel

Countermeasures (COSADE 2019)

! ?x

Optimal attack
complexity

≥ (m
t)

Case study 1: masking and shuffling

• We obtain exponential security "

• But against a limited adversary

• Passive attack

• No reverse engineering

• The adversary can do more in the WB model !

• Detect / deactivate shuffling

• Exploit data dependency

• Inject faults

Goal: confront designers and attackers

of practical white-box crypto

WhibOx contets

WhibOx
Server

aes.c
K

Designer

Goal: confront designers and attackers

of practical white-box crypto

WhibOx contets

WhibOx
Server

aes.c
K

K

Designer Attacker

Goal: confront designers and attackers

of practical white-box crypto

K

WhibOx contets

• 1st edition (2017)

• White-box AES (< 20MB / runs < 1s)

• 94 submitted implementations / 877 breaks

• Everything broken / winner survived 29 days

• 2nd edition (2019)

• White-box AES (< 20MB / runs < 1s)

• 27 submitted implementations / 124 breaks

• 3 survivors (broken few days after deadline)

• 3rd edition (2021)

• ECDSA (< 20MB excl. GMP / runs < 3s)

• 97 submitted implementations / 898 breaks

• Everything broken is less than 48h

• https://whibox.io/contests/

WhibOx contets

https://whibox.io/contests/

• 1st edition (2017)

• White-box AES (< 20MB / runs < 1s)

• 94 submitted implementations / 877 breaks

• Everything broken / winner survived 29 days

• 2nd edition (2019)

• White-box AES (< 20MB / runs < 1s)

• 27 submitted implementations / 124 breaks

• 3 survivors (broken few days after deadline)

• 3rd edition (2021)

• ECDSA (< 20MB excl. GMP / runs < 3s)

• 97 submitted implementations / 898 breaks

• Everything broken is less than 48h

• https://whibox.io/contests/

WhibOx contets

https://whibox.io/contests/

• 1st edition (2017)

• White-box AES (< 20MB / runs < 1s)

• 94 submitted implementations / 877 breaks

• Everything broken / winner survived 29 days

• 2nd edition (2019)

• White-box AES (< 20MB / runs < 1s)

• 27 submitted implementations / 124 breaks

• 3 survivors (broken few days after deadline)

• 3rd edition (2021)

• ECDSA (< 20MB excl. GMP / runs < 3s)

• 97 submitted implementations / 898 breaks

• Everything broken is less than 48h

• https://whibox.io/contests/

WhibOx contets

https://whibox.io/contests/

• 1st edition (2017)

• White-box AES (< 20MB / runs < 1s)

• 94 submitted implementations / 877 breaks

• Everything broken / winner survived 29 days

• 2nd edition (2019)

• White-box AES (< 20MB / runs < 1s)

• 27 submitted implementations / 124 breaks

• 3 survivors (broken few days after deadline)

• 3rd edition (2021)

• ECDSA (< 20MB excl. GMP / runs < 3s)

• 97 submitted implementations / 898 breaks

• Everything broken is less than 48h

• https://whibox.io/contests/

WhibOx contets

https://whibox.io/contests/

• Winner: challenge #777 (a.k.a. adoring_poitras)

• From Alex Biryukov, Aleksei Udovenko

• Boolean level masking, bitslicing, error detection, dummy

operations, virtualisation, obfuscation

• Break from Louis Goubin, Pascal Paillier, Matthieu Rivain, Junwei

Wang

• [GPRW18] How to Reveal the Secrets of an Obscure White-

Box Implementation (ePrint 2018, JCEN 2020)

• Human reverse engineering SSA-format program (circuit)

• Circuit minimisation (detect dummy / constant / duplicate

variables & pseudo-randomness)

• 600 K gates 280 K gates

⇒

⇒

Case study 2: WhibOx 2017 winner

• Winner: challenge #777 (a.k.a. adoring_poitras)

• From Alex Biryukov, Aleksei Udovenko

• Boolean level masking, bitslicing, error detection, dummy

operations, virtualisation, obfuscation

• Break from Louis Goubin, Pascal Paillier, Matthieu Rivain, Junwei

Wang

• [GPRW18] How to Reveal the Secrets of an Obscure White-

Box Implementation (ePrint 2018, JCEN 2020)

• Human reverse engineering SSA-format program (circuit)

• Circuit minimisation (detect dummy / constant / duplicate

variables & pseudo-randomness)

• 600 K gates 280 K gates

⇒

⇒

Case study 2: WhibOx 2017 winner

Data dependency graph (20% of the circuit)

Data dependency analysis

Data dependency graph (10% of the circuit)

Data dependency analysis

Data dependency graph (5% of the circuit)

Data dependency analysis

Data dependency graph (5% of the circuit)

Data dependency analysis

Initial pseudo-

randomness?

S-boxes?

MixColumn?

Large window

encompassing

one s-box

Data dependency analysis

Large window

encompassing

one s-box

Data dependency analysis

Assumption:

contains variables

encoding S(x ⊕ k)

Linear Decoding Analysis

s(1)
1 s(1)

2 ⋯ s(1)
m

s(2)
1 s(2)

2 ⋯ s(2)
m

⋮ ⋮ ⋱ ⋮
s(n)
1 s(n)

2 ⋯ s(n)
m

×

c1
c2
⋮
cn

=

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

• Let the variables in the window

• Record them for executions

s1, …, sm

n

Linear Decoding Analysis

s(1)
1 s(1)

2 ⋯ s(1)
m

s(2)
1 s(2)

2 ⋯ s(2)
m

⋮ ⋮ ⋱ ⋮
s(n)
1 s(n)

2 ⋯ s(n)
m

×

c1
c2
⋮
cm

=

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

• Let the variables in the window

• Record them for executions

s1, …, sm

n

• # by assumption, we get a linear system

Linear Decoding Analysis

s(1)
1 s(1)

2 ⋯ s(1)
m

s(2)
1 s(2)

2 ⋯ s(2)
m

⋮ ⋮ ⋱ ⋮
s(n)
1 s(n)

2 ⋯ s(n)
m

×

c1
c2
⋮
cm

=

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

• Let the variables in the window

• Record them for executions

s1, …, sm

n

• # by assumption, we get a linear system

Plaintext byte

Linear Decoding Analysis

s(1)
1 s(1)

2 ⋯ s(1)
m

s(2)
1 s(2)

2 ⋯ s(2)
m

⋮ ⋮ ⋱ ⋮
s(n)
1 s(n)

2 ⋯ s(n)
m

×

c1
c2
⋮
cm

=

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

• Let the variables in the window

• Record them for executions

s1, …, sm

n

• # by assumption, we get a linear system

One output bit

of the s-box

Plaintext byte

Linear Decoding Analysis

s(1)
1 s(1)

2 ⋯ s(1)
m

s(2)
1 s(2)

2 ⋯ s(2)
m

⋮ ⋮ ⋱ ⋮
s(n)
1 s(n)

2 ⋯ s(n)
m

×

c1
c2
⋮
cm

=

Sj(x(1) ⊕ k)
Sj(x(2) ⊕ k)

⋮
Sj(x(n) ⊕ k)

• Let the variables in the window

• Record them for executions

s1, …, sm

n

• # by assumption, we get a linear system

One output bit

of the s-box

Plaintext byte

Unknown

key byte

Unknown

coefficients

LDA: generalisation

• LDA defeats WB implems based on additive sharing

• Generalisation to encoding of higher degrees

⃗v = (1 | ⃗s | ⃗s ⊗ ⃗s | ⃗s ⊗ ⃗s ⊗ ⃗s |…)

LDA: generalisation

• LDA defeats WB implems based on additive sharing

• Generalisation to encoding of higher degrees

⃗v = (1 | ⃗s | ⃗s ⊗ ⃗s | ⃗s ⊗ ⃗s ⊗ ⃗s |…)
degree-2

monomials
degree-3

monomials
etc.

LDA: generalisation

• LDA defeats WB implems based on additive sharing

• Generalisation to encoding of higher degrees

v(1)
1 v(1)

2 ⋯ v(1)
m′

v(2)
1 v(2)

2 ⋯ v(2)
m′

⋮ ⋮ ⋱ ⋮
v(n)

1 v(n)
2 ⋯ v(n)

m′

×

c1..
c2..
⋮..

cm′

=

f(x(1), k)
f(x(2), k)

⋮
f(x(n), k)

⃗v = (1 | ⃗s | ⃗s ⊗ ⃗s | ⃗s ⊗ ⃗s ⊗ ⃗s |…)
degree-2

monomials
degree-3

monomials
etc.

• Larger system

LDA: generalisation

• LDA defeats WB implems based on additive sharing

• Generalisation to encoding of higher degrees

v(1)
1 v(1)

2 ⋯ v(1)
m′

v(2)
1 v(2)

2 ⋯ v(2)
m′

⋮ ⋮ ⋱ ⋮
v(n)

1 v(n)
2 ⋯ v(n)

m′

×

c1..
c2..
⋮..

cm′

=

f(x(1), k)
f(x(2), k)

⋮
f(x(n), k)

⃗v = (1 | ⃗s | ⃗s ⊗ ⃗s | ⃗s ⊗ ⃗s ⊗ ⃗s |…)
degree-2

monomials
degree-3

monomials
etc.

• Larger system

Complexity:
Inverting a

 matrix md × md

⇒ +(m2.8d)

LDA: mitigation
• Non-linear masking

• [BU18] Attacks and Countermeasures for White-box Designs

(ASIACRYPT 2018)

• [SEL21] A White-Box Masking Scheme Resisting Computational

and Algebraic Attacks (CHES 202)

• Use dummy shuffling

• [BU21] Dummy Shuffling against Algebraic Attacks in White-box
Implementations (EUROCRYPT 2021)

x = x1 ⋅ x2 ⊕ x3

LDA: mitigation
• Non-linear masking

• [BU18] Attacks and Countermeasures for White-box Designs

(ASIACRYPT 2018)

• [SEL21] A White-Box Masking Scheme Resisting Computational

and Algebraic Attacks (CHES 202)

• Dummy shuffling

• [BU21] Dummy Shuffling against Algebraic Attacks in White-box
Implementations (EUROCRYPT 2021)

x = x1 ⋅ x2 ⊕ x3

• Winners: challenges #100, #111, #115

• From Alex Biryukov, Aleksei Udovenko

• Linear (high-order) masking, non-linear masking,

shuffling, obfuscation, virtualisation

• Breaks from Louis Goubin, Matthieu Rivain, Junwei Wang
/ Arnolds Kikusts, Artur Pchelkin

• [GRW20] Defeating State-of-the-Art White-Box

Countermeasures with Advanced Gray-Box Attacks
(CHES 2020)

• Human reverse engineering SSA-format program⇒

Case study 3: WhibOx 2019 winners

Higher-order DCA
• From a trace / window compute

 -th order trace

• Against -order masking + non-linear masking

• Against -order masking + non-linear masking + -shuffling

 HO-DCA

 Integrated HO-DCA

• Size of -th order trace:

s1, …, sm

si1 ⊕ si2 ⊕ ⋯ ⊕ stt ∀ 1 ≤ i1 < i2 < ⋯ < it ≤ n

⇒ t
t

x = a ⋅ b ⊕ x1 ⊕ x2 ⊕ ⋯ ⊕ xt

⇒ Cor(x, x1 ⊕ ⋯ ⊕ xt) = 1
2

t λ

⇒ Cor = 1
2λ

⇒ Cor = 1
2 λ

t (m
t) ≈ mt

Higher-order DCA
• From a trace / window compute

 -th order trace

• Against -order masking + non-linear masking

• Against -order masking + non-linear masking + -shuffling

 HO-DCA

 Integrated HO-DCA

• Size of -th order trace:

s1, …, sm

si1 ⊕ si2 ⊕ ⋯ ⊕ stt ∀ 1 ≤ i1 < i2 < ⋯ < it ≤ n

⇒ t
t

x = a ⋅ b ⊕ x1 ⊕ x2 ⊕ ⋯ ⊕ xt

⇒ Cor(x, x1 ⊕ ⋯ ⊕ xt) = 1
2

t λ

⇒ Cor = 1
2λ

⇒ Cor = 1
2 λ

t (m
t) ≈ mt

Higher-order DCA
• From a trace / window compute

 -th order trace

• Against -order masking + non-linear masking

• Against -order masking + non-linear masking + -shuffling

 HO-DCA

 Integrated HO-DCA

• Size of -th order trace:

s1, …, sm

si1 ⊕ si2 ⊕ ⋯ ⊕ stt ∀ 1 ≤ i1 < i2 < ⋯ < it ≤ n

⇒ t
t

x = a ⋅ b ⊕ x1 ⊕ x2 ⊕ ⋯ ⊕ xt

⇒ Cor(x, x1 ⊕ ⋯ ⊕ xt) = 1
2

t λ

⇒ Cor = 1
2λ

⇒ Cor = 1
2 λ

t (m
t) ≈ mt

Higher-order DCA
• From a trace / window compute

 -th order trace

• Against -order masking + non-linear masking

• Against -order masking + non-linear masking + -shuffling

 HO-DCA

 Integrated HO-DCA

• Size of -th order trace:

s1, …, sm

si1 ⊕ si2 ⊕ ⋯ ⊕ stt ∀ 1 ≤ i1 < i2 < ⋯ < it ≤ n

⇒ t
t

x = a ⋅ b ⊕ x1 ⊕ x2 ⊕ ⋯ ⊕ xt

⇒ Cor(x, x1 ⊕ ⋯ ⊕ xt) = 1
2

t λ

⇒ Cor = 1
2λ

⇒ Cor = 1
2 λ

t (m
t)

impact of
shuffling

impact of
non-linear
masking

Higher-order DCA
• From a trace / window compute

 -th order trace

• Against -order masking + non-linear masking

• Against -order masking + non-linear masking + -shuffling

 HO-DCA

 Integrated HO-DCA

• Size of -th order trace:

s1, …, sm

si1 ⊕ si2 ⊕ ⋯ ⊕ stt ∀ 1 ≤ i1 < i2 < ⋯ < it ≤ n

⇒ t
t

x = a ⋅ b ⊕ x1 ⊕ x2 ⊕ ⋯ ⊕ xt

⇒ Cor(x, x1 ⊕ ⋯ ⊕ xt) = 1
2

t λ

⇒ Cor = 1
2λ

⇒ Cor = 1
2 λ

t (m
t)

impact of
shuffling

impact of
non-linear
masking

 Number of
traces

⇒
+(λ)

Higher-order DCA
• From a trace / window compute

 -th order trace

• Against -order masking + non-linear masking

• Against -order masking + non-linear masking + -shuffling

 HO-DCA

 Integrated HO-DCA

• Size of -th order trace:

s1, …, sm

si1 ⊕ si2 ⊕ ⋯ ⊕ stt ∀ 1 ≤ i1 < i2 < ⋯ < it ≤ n

⇒ t
t

x = a ⋅ b ⊕ x1 ⊕ x2 ⊕ ⋯ ⊕ xt

⇒ Cor(x, x1 ⊕ ⋯ ⊕ xt) = 1
2

t λ

⇒ Cor = 1
2λ

⇒ Cor = 1
2 λ

t (m
t)

impact of
shuffling

impact of
non-linear
masking

 Number of
traces

⇒
+(λ)

Higher-order DCA
• From a trace / window compute

 -th order trace

• Against -order masking + non-linear masking

• Against -order masking + non-linear masking + -shuffling

 HO-DCA

 Integrated HO-DCA

• Size of -th order trace:

s1, …, sm

si1 ⊕ si2 ⊕ ⋯ ⊕ stt ∀ 1 ≤ i1 < i2 < ⋯ < it ≤ n

⇒ t
t

x = a ⋅ b ⊕ x1 ⊕ x2 ⊕ ⋯ ⊕ xt

⇒ Cor(x, x1 ⊕ ⋯ ⊕ xt) = 1
2

t λ

⇒ Cor = 1
2λ

⇒ Cor = 1
2 λ

t (m
t) window size

masking order

impact of
shuffling

impact of
non-linear
masking

 Number of
traces

⇒
+(λ)

 Size ⇒ +(mt)

How to reduce the window size?
• # idea: exploit the locality of a masking gadget

• Multiplication gadget

 randomness

• Set of co-operands of any all the shares

• Data-dependency HO-DCA

• Scanning all the gates of the circuit

• For each gate : (might contain shares)

• Global -th order trace = -th order trace ()

• Apply DCA to global -th order traces

(x1, …, xt) ⊗ (y1, …, yt)
x1y1 x1y2 ⋯ x1yt
x2y1 x2y2 ⋯ x2yt

⋮ ⋮ ⋱ ⋮
xty1 xty2 ⋯ xtyt

+ → ∑ → (z1, …, zt)

xi ⇒ y1, …, yn

g ⃗sg = CoOperands(g) t

t (t ⃗sg)∀g

t

How to reduce the window size?
• # idea: exploit the locality of a masking gadget

• Multiplication gadget

 randomness

• Set of co-operands of any all the shares

• Data-dependency HO-DCA

• Scanning all the gates of the circuit

• For each gate : (might contain shares)

• Global -th order trace = -th order trace ()

• Apply DCA to global -th order traces

(x1, …, xt) ⊗ (y1, …, yt)
x1y1 x1y2 ⋯ x1yt
x2y1 x2y2 ⋯ x2yt

⋮ ⋮ ⋱ ⋮
xty1 xty2 ⋯ xtyt

+ → ∑ → (z1, …, zt)

xi ⇒ y1, …, yn

g ⃗sg = CoOperands(g) t

t (t ⃗sg)∀g

t

How to reduce the window size?
• # idea: exploit the locality of a masking gadget

• Multiplication gadget

 randomness

• Set of co-operands of any all the shares

• Data-dependency HO-DCA

• Scanning all the gates of the circuit

• For each gate : (might contain shares)

• Global -th order trace = -th order trace ()

• Apply DCA to global -th order traces

(x1, …, xt) ⊗ (y1, …, yt)
x1y1 x1y2 ⋯ x1yt
x2y1 x2y2 ⋯ x2yt

⋮ ⋮ ⋱ ⋮
xty1 xty2 ⋯ xtyt

+ → ∑ → (z1, …, zt)

xi ⇒ y1, …, yn

g ⃗sg = CoOperands(g) t

t (t ⃗sg)∀g

t

How to reduce the window size?
• # idea: exploit the locality of a masking gadget

• Multiplication gadget

 randomness

• Set of co-operands of any all the shares

• Data-dependency HO-DCA

• Scanning all the gates of the circuit

• For each gate : (might contain shares)

• Global -th order trace = -th order trace ()

• Apply DCA to global -th order traces

(x1, …, xt) ⊗ (y1, …, yt)
x1y1 x1y2 ⋯ x1yt
x2y1 x2y2 ⋯ x2yt

⋮ ⋮ ⋱ ⋮
xty1 xty2 ⋯ xtyt

+ → ∑ → (z1, …, zt)

xi ⇒ y1, …, yn

g ⃗sg = CoOperands(g) t

t (t ⃗sg)∀g

t

Data-dependency HO-DCA against #100, using 767 traces

(18% of the circuit / target: 1st round s-box)

Data-dependency HO-DCA on #100

Good key
guess !

Data-dependency analysis

• Clustering technique applicable to any gray-box attack in the
white-box setting

• Principle

• Scan the gates of the circuit / DD graph

• For each , record co-operands of as potential window

• Apply a given gray-box attack to the recorded windows

• Possible extensions

• Include co-operands of degree  
(co-op. of co-op. of co-op. …)

• Include incoming / outgoing gates

g g

d

Conclusion

• Strong WBC (VBB / UBK) hard to achieve in practice

• Practical WBC relies on security through obscurity  
 countermeasures & obfuscation vs. gray-box attacks

• Exponential security can be obtained against some attacks 
 attack window must be large enough

• DDA very effective to reduce the attack window

• Open problem: how to thwart DDA attacks?

• Fault attacks: to be formalised / investigated more in WB
setting

• WhibOx 2021 on ECDSA WB session next Tuesday

⇒

⇒

⇒

	White-box crypto context
	White-box crypto in theory
	White-box crypto in practice

