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• Our solution for high-order side-channel security
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💡 Solution: Randomizing 
algebraic variables



Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1



Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Initial randomization



Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Initial randomization

Propagation of  
the randomization 


(or re-randomization) 



Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Initial randomization

Propagation of  
the randomization 


(or re-randomization) 
Leakage on 


randomized R0



Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Initial randomization

Propagation of  
the randomization 


(or re-randomization) 
Leakage on 


randomized R0

😇 No correlation 
anymore



Randomization techniques

• Randomization of the projective / Jacobian coordinates:


‣ Point   represented as    s.t.    and  


‣ Random ,             
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‣ Point   represented as    s.t.    and  
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• Randomisation of coordinates (field elements):


‣ Elements of  (integers mod ) are represented modulo   for some 


‣ Random ,          

P = (x, y) P ≡ (X : Y : Z) x = X/Z y = Y/Z

r ← 𝔽 {
X′￼:= r ⋅ X
Y′￼:= r ⋅ Y
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💡 Intuition: hard to break with common SC leakage 
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T1 ← T1 + T0
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yes no
b = 0 b = 1

 CSwap⋯

bd

 CSwap  CSwap⋯
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yes no

b0 = 0 b0 = 1

yes no

b1 = 0 b1 = 1

yes no
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👿  Requires collision attack of order d + 1 🤔 How to formally prove this high order security? 
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∈ ℤ

ki1 ← 𝗈𝗉(ki2, ki3)

Xj1 ← 𝖮𝗉(Xj2, Xj3)

Xj1 ← 𝖱(Xj1)

j1, j2, j3 ∈ {k1, …kℓk
} ∪ {1,…, ℓX}

• Leakage model:


• Noisy leakage model 


              with  a -noisy leakage function:


          


• Hiddenness assumption


f δ

SD(U; (U ∣ f(U)) ≤ δ

💡 Capture that  

hides the information on 

x ↦ f ∘ 𝖱(x)
x

Leaks  f( j1, j2, j3, Xj2, Xj3)
Leaks  f(ki2, ki3)

Leaks  f( j1, Xj1, 𝖱(Xj1))
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                     :  
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         with  uniform r.v. over  

f
𝖱 : 𝔸 → 𝔸

( f, 𝖱) ε
∀x f(𝖱(x)) ≈ε f(U)

U 𝔸

Experiments:
KL divergence between  and   
(Hamming weight + Gaussian noise model)

f(𝖱(x)) f(U)

Estimation error

Exponential 

decrease

 = field element 

randomization

𝖱  = randomization 

of projective coord.
𝖱Complete version: adapted to 

multiple muti-input operations
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Security proof

📜  Security theorem:

Our generic countermeasure is  
-leakage resilient with:
γ

γ ≤ (cst1 ⋅ δ)d+1 + cst2 ⋅ ε

Leakage resilience:


A RRAP is -leakage resilient if  a 
simulator s.t.  

γ ∃
𝖲𝗂𝗆( ) ≈γ 𝖫𝖾𝖺𝗄( ⃗k )

-noisy leakage 

functions

δ masking order d -hiddennessε
constants related 

to # operations  

Proof sketch:

1. Apply -hiddenness to replace 
re-randomized variables by 
new uniform variables 
       gap


2. Replace noisy leakage by 
random probing leakage 
     no gap 
      probability of 
        simulation failure

ε

→ cst2 ⋅ ε

→
→ (cst1 ⋅ δ)d+1



Application

• Generic algorithm applicable to any RRAP


• Several ECC scalar mult. algorithms expressed in our framework:


‣ Montgomery ladder (point level & coordinate level)


‣ Joye ladder


‣ Signed binary ladder


‣ Fixed-window scalar multiplication


• PoC smart card implementation 


‣ (signed binary ladder with XY-only co-Z coordinates)
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Performance estimations

 * Assume 12 multiplications per loop iteration  
** Neglect add / sub vs. multiplications 

[k]P = [k0]P + ⋯ + [kd]P
ISW applied to all mult.

Field element  
randomization

Jacobian coordinate 
randomization

Double randomization

Less secure than our solution 

(provided that hiddenness holds) 



Conclusion

• Formal model for regular exponentiation-like algorithms (with randomization)


• Formalisation of the hiddenness assumption 


• Generic provably secure countermeasure


• Application to several ECC scalar mult. algorithms


• Perspectives:


‣ Challenge the hiddenness assumption in practice


‣ Applications to other algorithms / randomization techniques


‣ Practical implementations and attacks


