
High Order Side-Channel Security for

Elliptic-Curve Implementations

Sonia Belaïd and Matthieu Rivain

CHES 2023, September 13, Prague

Roadmap

• Case study: SCA on Montgomery ladder & countermeasures

• Our solution for high-order side-channel security

• Formal model and security proof

• Application and performances

Case study: Montgomery ladder

Case study: Montgomery ladder

Algebraic variables (EC points)

Case study: Montgomery ladder

Algebraic variables (EC points)

Index variables (scalar bits)

Case study: Montgomery ladder

Algebraic variables (EC points)

Index variables (scalar bits)

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Case study: Montgomery ladder

Algebraic variables (EC points)

Index variables (scalar bits)

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Leakage on R0 = [7]P

Case study: Montgomery ladder

Algebraic variables (EC points)

Index variables (scalar bits)

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Leakage on R0 = [7]P

Compute correlation  
with [0]P, …, [15]P

Case study: Montgomery ladder

Algebraic variables (EC points)

Index variables (scalar bits)

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Leakage on R0 = [7]P

Compute correlation  
with [0]P, …, [15]P

 Best correlation for ⇒ [7]P

 ⇒ (kn−1, …, kn−3) = (0,1,1,1)

Case study: Montgomery ladder

Algebraic variables (EC points)

Index variables (scalar bits)

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Leakage on R0 = [7]P

Compute correlation  
with [0]P, …, [15]P

 Best correlation for ⇒ [7]P

 ⇒ (kn−1, …, kn−3) = (0,1,1,1)

Classic DPA Attack

Case study: Montgomery ladder

Algebraic variables (EC points)

Index variables (scalar bits)

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Leakage on R0 = [7]P

Compute correlation  
with [0]P, …, [15]P

 Best correlation for ⇒ [7]P

 ⇒ (kn−1, …, kn−3) = (0,1,1,1)

Classic DPA Attack

💡 Solution: Randomizing
algebraic variables

Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Initial randomization

Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Initial randomization

Propagation of  
the randomization

(or re-randomization)

Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Initial randomization

Propagation of  
the randomization

(or re-randomization)
Leakage on

randomized R0

Case study: Montgomery ladder

kn−1 = 0 kn−2 = 1 kn−3 = 1 kn−4 = 1

Initial randomization

Propagation of  
the randomization

(or re-randomization)
Leakage on

randomized R0

😇 No correlation
anymore

Randomization techniques

• Randomization of the projective / Jacobian coordinates:

‣ Point represented as s.t. and

‣ Random ,

• Randomisation of coordinates (field elements):

‣ Elements of (integers mod) are represented modulo for some

‣ Random ,

P = (x, y) P ≡ (X : Y : Z) x = X/Z y = Y/Z

r ← 𝔽 {
X′￼:= r ⋅ X
Y′￼:= r ⋅ Y
Z′￼:= r ⋅ Z

⟹ (X′￼: Y′￼: Z′￼) ≡ P

𝔽p p hp h

r ← [0,h) x′￼:= x + r ⋅ p (mod hp) ⟹ x′￼ ≡ x (mod p)

Randomization techniques

• Randomization of the projective / Jacobian coordinates:

‣ Point represented as s.t. and

‣ Random ,

• Randomisation of coordinates (field elements):

‣ Elements of (integers mod) are represented modulo for some

‣ Random ,

P = (x, y) P ≡ (X : Y : Z) x = X/Z y = Y/Z

r ← 𝔽 {
X′￼:= r ⋅ X
Y′￼:= r ⋅ Y
Z′￼:= r ⋅ Z

⟹ (X′￼: Y′￼: Z′￼) ≡ P

𝔽p p hp h

r ← [0,h) x′￼:= x + r ⋅ p (mod hp) ⟹ x′￼ ≡ x (mod p)

Randomization techniques

• Randomization of the projective / Jacobian coordinates:

‣ Point represented as s.t. and

‣ Random ,

• Randomisation of coordinates (field elements):

‣ Elements of (integers mod) are represented modulo for some

‣ Random ,

P = (x, y) P ≡ (X : Y : Z) x = X/Z y = Y/Z

r ← 𝔽 {
X′￼:= r ⋅ X
Y′￼:= r ⋅ Y
Z′￼:= r ⋅ Z

⟹ (X′￼: Y′￼: Z′￼) ≡ P

𝔽p p hp h

r ← [0,h) x′￼:= x + r ⋅ p (mod hp) ⟹ x′￼ ≡ x (mod p)

💡 Intuition: hard to break with common SC leakage

ki ki−1

Back to Montgomery ladder

ki ki−1

Average over  
several

executions

Back to Montgomery ladder

ki ki−1

Average over  
several

executions

Diff

no peaks

peaks

ki = ki−1

ki ≠ ki−1

Back to Montgomery ladder

🔍 leakage diff. at
manipulation of bits / register

addresses

ki ≠ ki−1 ⇒

“Address-bit DPA Attack”

ki

Back to Montgomery ladder

Precomputed

template for ki = 0

Precomputed

template for ki = 1

ki

Back to Montgomery ladder

Precomputed

template for ki = 0

Precomputed

template for ki = 1

matching?

ki

Back to Montgomery ladder

Maximum likelihood ⇒ ki

Template Attack

Precomputed

template for ki = 0

Precomputed

template for ki = 1

matching?

ki

Back to Montgomery ladder

Maximum likelihood ⇒ ki

Template Attack

Precomputed

template for ki = 0

Precomputed

template for ki = 1

⚠ Single trace attack

matching?

ki

Back to Montgomery ladder

Maximum likelihood ⇒ ki

Template Attack

Precomputed

template for ki = 0

Precomputed

template for ki = 1

⚠ Single trace attack

matching?

💡 Solution: Randomizing
the scalar

• Scalar blinding:

 with the order of the EC

• Scalar splitting:

k′￼ ← k + r ⋅ |E(𝔽p) | ⟹ [k]P = [k′￼]P

|E(𝔽p) |

{Q1 = [k − r]P
Q2 = [r]P

⟹ [k]P = Q1 + Q2

Scalar randomization

• Scalar blinding:

 with the order of the EC

• Scalar splitting:

k′￼ ← k + r ⋅ |E(𝔽p) | ⟹ [k]P = [k′￼]P

|E(𝔽p) |

{Q1 = [k − r]P
Q2 = [r]P

⟹ [k]P = Q1 + Q2

Scalar randomization

• Scalar blinding:

 with the order of the EC

• Scalar splitting:

k′￼ ← k + r ⋅ |E(𝔽p) | ⟹ [k]P = [k′￼]P

|E(𝔽p) |

{Q1 = [k − r]P
Q2 = [r]P

⟹ [k]P = Q1 + Q2

Scalar randomization

⚠ Still vulnerable to single trace attack

Scalar randomization

• Boolean masking:

‣ Masking the scalar for random bit

‣ Masked CSwap:

(b0, b1) := (b ⊕ r, r) r ← {0,1}

{
𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

Scalar randomization

• Boolean masking:

‣ Masking the scalar for random bit

‣ Masked CSwap:

(b0, b1) := (b ⊕ r, r) r ← {0,1}

{
𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

 Relabel {T0 := Rb

T1 := R1−b

 If then

T1 ← T1 + T0
T0 ← 2 ⋅ T0

(b = 1) 𝖲𝗐𝖺𝗉(T0, T1)

Scalar randomization

• Boolean masking:

‣ Masking the scalar for random bit

‣ Masked CSwap:

(b0, b1) := (b ⊕ r, r) r ← {0,1}

{
𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

 Relabel {T0 := Rb

T1 := R1−b

 If then

T1 ← T1 + T0
T0 ← 2 ⋅ T0

(b = 1) 𝖲𝗐𝖺𝗉(T0, T1)

 :

 1.

 2.

 3.

𝖢𝖲𝗐𝖺𝗉(T0, T1, b)
(S0, S1) ← (T0, T1)
T0 = Sb
T1 = S1−b

Conditional swap

Scalar randomization

• Boolean masking:

‣ Masking the scalar for random bit

‣ Masked CSwap:

(b0, b1) := (b ⊕ r, r) r ← {0,1}

{
𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

 Relabel {T0 := Rb

T1 := R1−b

 If then

T1 ← T1 + T0
T0 ← 2 ⋅ T0

(b = 1) 𝖲𝗐𝖺𝗉(T0, T1)

 :

 1.

 2.

 3.

𝖢𝖲𝗐𝖺𝗉(T0, T1, b)
(S0, S1) ← (T0, T1)
T0 = Sb
T1 = S1−b

Conditional swap

☝ Only operation
manipulating b = ki

Scalar randomization

• Boolean masking:

‣ Masking the scalar for random bit

‣ Masked CSwap:

(b0, b1) := (b ⊕ r, r) r ← {0,1}

{
𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

 Relabel {T0 := Rb

T1 := R1−b

 If then

T1 ← T1 + T0
T0 ← 2 ⋅ T0

(b = 1) 𝖲𝗐𝖺𝗉(T0, T1)

 :

 1.

 2.

 3.

𝖢𝖲𝗐𝖺𝗉(T0, T1, b)
(S0, S1) ← (T0, T1)
T0 = Sb
T1 = S1−b

Conditional swap

☝ Only operation
manipulating b = ki

😺 2nd-order attack on masked scalar bits

 Leakage + Leakage depends on  
 2nd-order address-bit / template attack

2nd-order masking:

 3rd-order attack 3rd-order masking … -th order attack

(b0) (b1) b
⟹

b = b0 ⊕ b1 ⊕ b2

𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b2)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

⇒ ⇒ ⇒ d

What can go wrong now?!

😺 2nd-order attack on masked scalar bits

 Leakage + Leakage depends on  
 2nd-order address-bit / template attack

🐭 2nd-order masking:

 3rd-order attack 3rd-order masking … -th order attack

(b0) (b1) b
⟹

b = b0 ⊕ b1 ⊕ b2

𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b2)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

⇒ ⇒ ⇒ d

What can go wrong now?!

😺 2nd-order attack on masked scalar bits

 Leakage + Leakage depends on  
 2nd-order address-bit / template attack

🐭 2nd-order masking:

😼 3rd-order attack 🐭 3rd-order masking … 😿 -th order attack

(b0) (b1) b
⟹

b = b0 ⊕ b1 ⊕ b2

𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b2)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

⇒ ⇒ ⇒ d

What can go wrong now?!

😺 2nd-order attack on masked scalar bits

 Leakage + Leakage depends on  
 2nd-order address-bit / template attack

🐭 2nd-order masking:

😼 3rd-order attack 🐭 3rd-order masking … 😿 -th order attack

(b0) (b1) b
⟹

b = b0 ⊕ b1 ⊕ b2

𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b2)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

⇒ ⇒ ⇒ d

What can go wrong now?!

exponentially hard in d

😺 2nd-order attack on masked scalar bits

 Leakage + Leakage depends on  
 2nd-order address-bit / template attack

🐭 2nd-order masking:

😼 3rd-order attack 🐭 3rd-order masking … 😿 -th order attack

(b0) (b1) b
⟹

b = b0 ⊕ b1 ⊕ b2

𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b2)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

⇒ ⇒ ⇒ d

What can go wrong now?!

exponentially hard in d

😇 High order security

😇 Linear complexity in

(only for swaps)
d

😺 2nd-order attack on masked scalar bits

 Leakage + Leakage depends on  
 2nd-order address-bit / template attack

🐭 2nd-order masking:

😼 3rd-order attack 🐭 3rd-order masking … 😿 -th order attack

(b0) (b1) b
⟹

b = b0 ⊕ b1 ⊕ b2

𝖢𝖲𝗐𝖺𝗉(T0, T1, b0)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b1)
𝖢𝖲𝗐𝖺𝗉(T0, T1, b2)

⟺ 𝖢𝖲𝗐𝖺𝗉(T0, T1, b)

⇒ ⇒ ⇒ d

What can go wrong now?!

exponentially hard in d

😇 High order security

😇 Linear complexity in

(only for swaps)
d

😈 But 2nd order “collision”
leakage remains

Collision attacks

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

iteration i iteration i − 1b

Collision attacks

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

iteration i iteration i − 1b

Leakage on before CSwap

(result of doubling)

T0
Leakage on after CSwap

(left input of add, input of doubling)
T0

Collision attacks

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

iteration i iteration i − 1b

Leakage on before CSwap

(result of doubling)

T0
Leakage on after CSwap

(left input of add, input of doubling)
T0

 (before CSwap) = (after CSwap) ?T0 T0

Collision attacks

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

iteration i iteration i − 1b

Leakage on before CSwap

(result of doubling)

T0
Leakage on after CSwap

(left input of add, input of doubling)
T0

 (before CSwap) = (after CSwap) ?T0 T0

yes no
b = 0 b = 1

Collision attacks

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

T1 ← T1 + T0
T0 ← 2 ⋅ T0

iteration i iteration i − 1b0

Leakage on before CSwap

(result of doubling)

T0
Leakage on after CSwap

(left input of add, input of doubling)
T0

 (before CSwap) = (after CSwap) ?T0 T0

yes no
b = 0 b = 1

 CSwap⋯

bd

 CSwap CSwap⋯

😈 Works whatever the
masking order d

Our solution

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

b0

 CSwap⋯

bd

 RR

$

 RR

$

 CSwap

b1

 RR

$

Our solution

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

b0

 CSwap⋯

bd

 RR

$

 RR

$

 Rerandomize:

 (for some randomization)

T0 ← 𝖱(T0)
T1 ← 𝖱(T1)

𝖱

 CSwap

b1

 RR

$

Our solution

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

b0

 CSwap⋯

bd

 RR

$

 RR

$

 Rerandomize:

 (for some randomization)

T0 ← 𝖱(T0)
T1 ← 𝖱(T1)

𝖱

 CSwap

b1

 RR

$

Collision?

yes no

b0 = 0 b0 = 1

Our solution

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

b0

 CSwap⋯

bd

 RR

$

 RR

$

 Rerandomize:

 (for some randomization)

T0 ← 𝖱(T0)
T1 ← 𝖱(T1)

𝖱

 CSwap

b1

 RR

$

Collision? Collision? Collision?⋯
yes no

b0 = 0 b0 = 1

yes no

b1 = 0 b1 = 1

yes no

b1 = 0 b1 = 1

Our solution

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

b0

 CSwap⋯

bd

 RR

$

 RR

$

 Rerandomize:

 (for some randomization)

T0 ← 𝖱(T0)
T1 ← 𝖱(T1)

𝖱

 CSwap

b1

 RR

$

Collision? Collision? Collision?⋯
yes no

b0 = 0 b0 = 1

yes no

b1 = 0 b1 = 1

yes no

b1 = 0 b1 = 1

👿 Requires collision attack of order d + 1

Our solution

T1 ← T1 + T0
T0 ← 2 ⋅ T0

 CSwap

b0

 CSwap⋯

bd

 RR

$

 RR

$

 Rerandomize:

 (for some randomization)

T0 ← 𝖱(T0)
T1 ← 𝖱(T1)

𝖱

 CSwap

b1

 RR

$

Collision? Collision? Collision?⋯
yes no

b0 = 0 b0 = 1

yes no

b1 = 0 b1 = 1

yes no

bd = 0 bd = 1

👿 Requires collision attack of order d + 1 🤔 How to formally prove this high order security?

Formal model

• Computation model: “Randomized Regular
Algebraic Program” (RRAP)

• Two types of variables

• Algebraic variables

• Index variables

• Three types of operations

•

•

•

with

• Capture regular algorithms for ECC / RSA / pairings

X1, …XℓX
∈ 𝔸

k1, …, kℓk
∈ ℤ

ki1 ← 𝗈𝗉(ki2, ki3)

Xj1 ← 𝖮𝗉(Xj2, Xj3)

Xj1 ← 𝖱(Xj1)

j1, j2, j3 ∈ {k1, …kℓk
} ∪ {1,…, ℓX}

Formal model

• Computation model: “Randomized Regular
Algebraic Program” (RRAP)

• Two types of variables

• Algebraic variables

• Index variables

• Three types of operations

•

•

•

with

• Capture regular algorithms for ECC / RSA / pairings

X1, …XℓX
∈ 𝔸

k1, …, kℓk
∈ ℤ

ki1 ← 𝗈𝗉(ki2, ki3)

Xj1 ← 𝖮𝗉(Xj2, Xj3)

Xj1 ← 𝖱(Xj1)

j1, j2, j3 ∈ {k1, …kℓk
} ∪ {1,…, ℓX}

• Leakage model:

• Noisy leakage model

 with a -noisy leakage function:

• Hiddenness assumption

f δ

SD(U; (U ∣ f(U)) ≤ δ

Formal model

• Computation model: “Randomized Regular
Algebraic Program” (RRAP)

• Two types of variables

• Algebraic variables

• Index variables

• Three types of operations

•

•

•

with

• Capture regular algorithms for ECC / RSA / pairings

X1, …XℓX
∈ 𝔸

k1, …, kℓk
∈ ℤ

ki1 ← 𝗈𝗉(ki2, ki3)

Xj1 ← 𝖮𝗉(Xj2, Xj3)

Xj1 ← 𝖱(Xj1)

j1, j2, j3 ∈ {k1, …kℓk
} ∪ {1,…, ℓX}

• Leakage model:

• Noisy leakage model

 with a -noisy leakage function:

• Hiddenness assumption

f δ

SD(U; (U ∣ f(U)) ≤ δ

Leaks f(j1, j2, j3, Xj2, Xj3)
Leaks f(ki2, ki3)

Leaks f(j1, Xj1, 𝖱(Xj1))

Formal model

• Computation model: “Randomized Regular
Algebraic Program” (RRAP)

• Two types of variables

• Algebraic variables

• Index variables

• Three types of operations

•

•

•

with

• Capture regular algorithms for ECC / RSA / pairings

X1, …XℓX
∈ 𝔸

k1, …, kℓk
∈ ℤ

ki1 ← 𝗈𝗉(ki2, ki3)

Xj1 ← 𝖮𝗉(Xj2, Xj3)

Xj1 ← 𝖱(Xj1)

j1, j2, j3 ∈ {k1, …kℓk
} ∪ {1,…, ℓX}

• Leakage model:

• Noisy leakage model

 with a -noisy leakage function:

• Hiddenness assumption

f δ

SD(U; (U ∣ f(U)) ≤ δ

💡 Capture that

hides the information on

x ↦ f ∘ 𝖱(x)
x

Leaks f(j1, j2, j3, Xj2, Xj3)
Leaks f(ki2, ki3)

Leaks f(j1, Xj1, 𝖱(Xj1))

Hiddenness assumption

 📜 Hiddenness assumption  
 (simple version)

• Let a (noisy) leakage function

• Let a rand. operation

• The pair is -hiding if

 :

 with uniform r.v. over

f
𝖱 : 𝔸 → 𝔸

(f, 𝖱) ε
∀x f(𝖱(x)) ≈ε f(U)

U 𝔸

Hiddenness assumption

 📜 Hiddenness assumption  
 (simple version)

• Let a (noisy) leakage function

• Let a rand. operation

• The pair is -hiding if

 :

 with uniform r.v. over

f
𝖱 : 𝔸 → 𝔸

(f, 𝖱) ε
∀x f(𝖱(x)) ≈ε f(U)

U 𝔸

Complete version: adapted to
multiple muti-input operations

Hiddenness assumption

 📜 Hiddenness assumption  
 (simple version)

• Let a (noisy) leakage function

• Let a rand. operation

• The pair is -hiding if

 :

 with uniform r.v. over

f
𝖱 : 𝔸 → 𝔸

(f, 𝖱) ε
∀x f(𝖱(x)) ≈ε f(U)

U 𝔸

Experiments:
KL divergence between and  
(Hamming weight + Gaussian noise model)

f(𝖱(x)) f(U)

 = field element

randomization

𝖱 = randomization

of projective coord.
𝖱Complete version: adapted to

multiple muti-input operations

Hiddenness assumption

 📜 Hiddenness assumption  
 (simple version)

• Let a (noisy) leakage function

• Let a rand. operation

• The pair is -hiding if

 :

 with uniform r.v. over

f
𝖱 : 𝔸 → 𝔸

(f, 𝖱) ε
∀x f(𝖱(x)) ≈ε f(U)

U 𝔸

Experiments:
KL divergence between and  
(Hamming weight + Gaussian noise model)

f(𝖱(x)) f(U)

Estimation error

Exponential

decrease

 = field element

randomization

𝖱 = randomization

of projective coord.
𝖱Complete version: adapted to

multiple muti-input operations

Security proof

Leakage resilience:

A RRAP is -leakage resilient if a
simulator s.t.

γ ∃
𝖲𝗂𝗆() ≈γ 𝖫𝖾𝖺𝗄(⃗k)

Security proof

📜 Security theorem:

Our generic countermeasure is  
-leakage resilient with:
γ

γ ≤ (cst1 ⋅ δ)d+1 + cst2 ⋅ ε

Leakage resilience:

A RRAP is -leakage resilient if a
simulator s.t.

γ ∃
𝖲𝗂𝗆() ≈γ 𝖫𝖾𝖺𝗄(⃗k)

Security proof

📜 Security theorem:

Our generic countermeasure is  
-leakage resilient with:
γ

γ ≤ (cst1 ⋅ δ)d+1 + cst2 ⋅ ε

Leakage resilience:

A RRAP is -leakage resilient if a
simulator s.t.

γ ∃
𝖲𝗂𝗆() ≈γ 𝖫𝖾𝖺𝗄(⃗k)

-noisy leakage

functions

δ masking order d -hiddennessε

Security proof

📜 Security theorem:

Our generic countermeasure is  
-leakage resilient with:
γ

γ ≤ (cst1 ⋅ δ)d+1 + cst2 ⋅ ε

Leakage resilience:

A RRAP is -leakage resilient if a
simulator s.t.

γ ∃
𝖲𝗂𝗆() ≈γ 𝖫𝖾𝖺𝗄(⃗k)

-noisy leakage

functions

δ masking order d -hiddennessε
constants related

to # operations

Security proof

📜 Security theorem:

Our generic countermeasure is  
-leakage resilient with:
γ

γ ≤ (cst1 ⋅ δ)d+1 + cst2 ⋅ ε

Leakage resilience:

A RRAP is -leakage resilient if a
simulator s.t.

γ ∃
𝖲𝗂𝗆() ≈γ 𝖫𝖾𝖺𝗄(⃗k)

-noisy leakage

functions

δ masking order d -hiddennessε
constants related

to # operations

Proof sketch:

1. Apply -hiddenness to replace
re-randomized variables by
new uniform variables 
 gap

2. Replace noisy leakage by
random probing leakage 
 no gap 
 probability of 
 simulation failure

ε

→ cst2 ⋅ ε

→
→ (cst1 ⋅ δ)d+1

Application

• Generic algorithm applicable to any RRAP

• Several ECC scalar mult. algorithms expressed in our framework:

‣ Montgomery ladder (point level & coordinate level)

‣ Joye ladder

‣ Signed binary ladder

‣ Fixed-window scalar multiplication

• PoC smart card implementation

‣ (signed binary ladder with XY-only co-Z coordinates)

Performance estimations

 * Assume 12 multiplications per loop iteration  
** Neglect add / sub vs. multiplications

Performance estimations

 * Assume 12 multiplications per loop iteration  
** Neglect add / sub vs. multiplications

Field element  
randomization

Performance estimations

 * Assume 12 multiplications per loop iteration  
** Neglect add / sub vs. multiplications

Field element  
randomization

Jacobian coordinate 
randomization

Performance estimations

 * Assume 12 multiplications per loop iteration  
** Neglect add / sub vs. multiplications

Field element  
randomization

Jacobian coordinate 
randomization

Double randomization

Performance estimations

 * Assume 12 multiplications per loop iteration  
** Neglect add / sub vs. multiplications

[k]P = [k0]P + ⋯ + [kd]P

Field element  
randomization

Jacobian coordinate 
randomization

Double randomization

Performance estimations

 * Assume 12 multiplications per loop iteration  
** Neglect add / sub vs. multiplications

[k]P = [k0]P + ⋯ + [kd]P
ISW applied to all mult.

Field element  
randomization

Jacobian coordinate 
randomization

Double randomization

Performance estimations

 * Assume 12 multiplications per loop iteration  
** Neglect add / sub vs. multiplications

[k]P = [k0]P + ⋯ + [kd]P
ISW applied to all mult.

Field element  
randomization

Jacobian coordinate 
randomization

Double randomization

Less secure than our solution

(provided that hiddenness holds)

Conclusion

• Formal model for regular exponentiation-like algorithms (with randomization)

• Formalisation of the hiddenness assumption

• Generic provably secure countermeasure

• Application to several ECC scalar mult. algorithms

• Perspectives:

‣ Challenge the hiddenness assumption in practice

‣ Applications to other algorithms / randomization techniques

‣ Practical implementations and attacks

