RSACONFERENCE2009

Securing RSA against Fault Analysis by Double Addition Chain Exponentiation

Matthieu Rivain Oberthur Technologies & Univ. of Luxembourg 04/24/09 | Session ID: CRYP-403

Session Classification:

Agenda

RSA and Fault Analysis

A New Self-Secure Exponentiation

A New Secure RSA-CRT

Complexity Analysis

RSA and Fault Analysis

Preliminaries

- RSA signature : $s = m^d \mod N$
 - m : message
 - d : private exponent
 - N = p.q: public modulus
- RSA with CRT (4 times faster):
 - $s_p = m^{d_p} \mod p$ where $d_p = d \mod (p-1)$ $(s_p = s \mod p)$
 - $s_q = m^{d_q} \mod q$ where $d_q = d \mod (q-1)$ $(s_q = s \mod q)$

 $- s = CRT_{p,q}(s_p, s_q)$

Bellcore Fault Attack

- A fault corrupts the computation of s_p :
 - − $f(s_p) \neq m^{d_p} \mod p$
 - $s_q = m^{d_q} \mod q$
 - $f(s) = CRT_{p,q}(f(s_p), s_q)$
- The faulty signature satisfies
 - $f(s) \neq s \mod p$ and $f(s) = s \mod q$
 - (f(s) s) is a multiple of q but not of p
 - $\gcd(f(s) s, N) = q$
- N is factorized with a single faulty signature
- Other fault attacks exist on RSA without CRT

Problem

Problem: Perform an RSA computation that detects errors.

Straightforward solutions:

- Perform the computation twice
 - double the execution time
- Verify the computed signature : s^e mod N = m ?
 - e is not necessarily available
 - e may be large \rightarrow double the execution time

Problem: Perform an RSA computation that detects errors while e is not available or possibly large.

State of the Art

- Modulus extension: redundancy included in modular operations
 - $s_{Nt} = m^d \mod N \notin t$
 - $m^d \mod t = s_{Nt} \mod t$?
 - Shamir's Trick [Eurocrypt'97 Rump Session]
 - [Vigilant CHES 2008]
- Self-secure exponentiations : redundancy included in the exponentiation algorithm
 - [Giraud IEEE-TC 2006]
 - (s' = m^{d-1} mod N, s) ← MontgomeryLadder(m, d, N)
 - s'¢m mod N = s ?
 - [Boscher et al. WISTP 2007]

A New Self-Secure Exponentiation

A

Basic Principle

- Definition: A double exponentiation computes the pair of powers (m^a,m^b) from an element m and a pair of exponents (a, b).
- Basic principle:
 - use a double exponentiation algorithm to compute

 $s = m^d \mod N$ and $c = m^{\phi(N)-d} \mod N$

where $\varphi(N)$ is the Euler's totient of N

- check: s¢c mod N = 1 ?
- If no error occurs then $s \notin c \mod N = m^{\phi(N)} \mod N = 1$
- Otherwise the check fails (with high probability)
- Problem: design a **double exponentiation algorithm**

Double Addition Chains

Definition: An *addition chain* for a is a sequence x_0, x_1, \dots, x_n s.t.:

- $x_0 = 1$ and $x_n = a$
- for every k there exist i, j < k s.t. $x_k = x_i + x_j$
- An addition chain for a provides a way to compute m^a for every m:
 - Let $m_0 = m$
 - And $m_k = m_i \notin m_j$ where $x_k = x_i + x_j$
 - By induction $m_k = m^{x_k}$ and $m_n = m^a$

Definition: A *double addition chain* for (a,b) is an addition chain for b

s.t. $x_{n-1} = a$.

- provides a way to compute (m^a,m^b) for every m
- provides a **double exponentiation**

Our Goal

Goal: construct a double addition chain

- suitable for implementations constrained in memory
 - Nb. of registers for the exponentiation
 - = nb. of intermediate x_i's to store
- as short as possible
 - Nb. of multiplications in the exponentiation

= nb. of additions in the chain

Our Goal (2)

- Keep 3 temporary results: a_i, b_i and 1
 - i.e. m^{a_i} , m^{b_i} and m for the exponentiation
 - s.t. $(a_0, b_0) = (0,1)$ and $(a_n, b_n) = (a,b)$ for some n
- - $a_{i+1} = a_i + b_i \quad \text{ if } \omega_i = 0$
 - $a_{i+1} = 2 \notin a_i$ if $\omega_i = 1$
 - $-a_{i+1} = a_i + 1$ if $\omega_i = 2$
 - $b_{i+1} = a_i + b_i$ if $\omega_i = 3$
 - etc ...
- Restrict the nb. of possibilities for the $\omega_i{}^is$ to optimize the storage of ω

Our Heuristic

Principle:

- Start from the pair (a,b)
- Construct the inverse chain by applying the inverse operations
- i.e. construct a sequence (α_i, β_i) s.t.
 - $(\alpha_0, \beta_0) = (a,b)$
 - $(\alpha_n, \beta_n) = (0, 1)$ for some n
 - α_{i+1} , $\beta_{i+1} \ge \{\alpha_i \beta_i, \beta_i/2, \alpha_i 1, ...\}$

Our Heuristic (2)

We assume $a \le b$ and conserve $\alpha_i \le \beta_i$ for every i

We iterate:

- if β_i is at least twice α_i then
 - if β_i is odd then $\beta_{i+1} = (\beta_i 1)/2$
 - if β_i is even then $\beta_{i+1} = \beta_i/2$
- if β_i is lower than twice α_i then

 $- \alpha_{i+1} = \beta_i - \alpha_i$ and $\beta_{i+1} = \alpha_i$

- $\omega \leftarrow (01 \parallel \omega)$
- $\omega \leftarrow (00 \parallel \omega)$
- $\omega \leftarrow (1 \parallel \omega)$

Example

- $(\alpha_0, \beta_0) = (a,b) = (9, 20)$
- $(\alpha_1, \beta_1) = (9, 20/2) = (9, 10)$ $\omega = 00$
- $(\alpha_2, \beta_2) = (10 9, 9) = (1, 9) \quad \omega = 100$
- $(\alpha_3, \beta_3) = (1, (9-1)/2) = (1, 4) \omega = 01100$
- $(\alpha_4, \beta_4) = (1, 4/2) = (1, 2)$ $\omega = 0001100$
- $(\alpha_5, \beta_5) = (1, 2/2) = (1, 1)$ $\omega = 000001100$
- $(\alpha_6, \beta_6) = (1 1, 1) = (0, 1)$ $\omega = 1000001100$

Example (2)

- $(a_0, b_0) = (0, 1)$
- $(a_1, b_1) = (0+1, 1) = (1, 1)$ $\omega = 1\ 000001100$
- $(a_2, b_2) = (1, 2 \not c 1) = (1, 2)$ $\omega = 1 \ 00 \ 0001100$
- $(a_3, b_3) = (1, 2 \not c 2) = (1, 4)$ $\omega = 100\ 00\ 01100$
- $(a_4, b_4) = (1, 2 \not c 4 + 1) = (1, 9) \quad \omega = 10000 \ 01 \ 100$
- $(a_5, b_5) = (9, 1+9) = (9, 10)$ $\omega = 1000001 \ 1 \ 00$
- $(a_6, b_6) = (9, 2 \not c 10) = (9, 20) \quad \omega = 1000001100$
- Double Addition Chain:
 - if $\omega = (00 || \omega')$ then $b_i = 2cb_i$
 - if $\omega = (01 || \omega')$ then $b_i = 2\phi b_i + 1$
 - if $\omega = (1 || \omega')$ then $a_i = b_i; b_i = a_i + b_i$

Double Exponentiation

- $R_0 \leftarrow 0$; $R_1 \leftarrow m$; $R_2 \leftarrow m$
- $i \leftarrow 0$; $\gamma \leftarrow 1$ // γ : boolean s.t. $R_{\gamma} = m^{b_i}$ and $R_{1-\gamma} = m^{a_i}$
- while i < length(ω) do
 - if ($\omega_i = 0$) then
 - $R_{\gamma} \leftarrow (R_{\gamma})^2 \mod N$
 - if $(\omega_{i+1} = 1)$ then $R_{\gamma} \leftarrow R_{\gamma} \notin R_2 \mod N$
 - i ← i+2
 - else
 - $R_{\gamma} \leftarrow R_{\gamma} \notin R_{1-\gamma} \mod N$
 - γ ← 1-γ
 - i ← i+1
- return $(R_{1-\gamma}, R_{\gamma})$

Self-Secure Exponentiation

- $\omega \leftarrow ChainCompute(d, 2 \phi(N) d)$
- (s,c) \leftarrow DoubleExp(m, ω , N)
- if (s¢c mod N ≠ 1) then return "error"
- else return s
- NB: we use $2 \varphi(N) d$ in order to fit the constraint $a \le b$
- The chain computation may be performed off-line
 - It is unique for (d,N)

A New Secure RSA-CRT

A

Secure RSA-CRT

- $\omega_{p} \leftarrow ChainCompute(d_{p}, 2 (p-1) d_{p})$
- $(s_p, c_p) \leftarrow DoubleExp(m \mod p, \omega_p, p)$
- $\omega_q \leftarrow ChainCompute(d_q, 2(q-1) d_q)$
- $(s_q, c_q) \leftarrow DoubleExp(m \mod q, \omega_q, q)$
- $s \leftarrow CRT_{p,q}(s_p, s_q)$
- if $(s c_p \mod p \neq 1 \text{ or } s c_q \mod q \neq 1)$ then return "error"
- else return s
- Implementation security requirements:
 - The exponents integrity must be checked (e.g. with CRC) at the beginning of the chain computation (if done dynamically)
 - The message integrity must be checked (e.g. with CRC) at the beginning of each double exponentiation

Α **Complexity Analysis**

Time Complexity

- Mainly depends on the number of modular multiplications
- Multiplications-per-bit ratio : θ

	l = 512	l = 640	l = 768	l = 896	l = 1024
$\mathrm{E}\left[heta ight]$	1.65	1.66	1.66	1.66	1.66
$\sigma\left(heta ight)$	0.020	0.017	0.017	0.016	0.014

- Comparisons
 - For (insecure) square-and-multiply: $E(\theta) = 1.5$

→ overhead of 10%

- For previous self-secure exponentiations : $E(\theta) = 2$

→ gain of **18%**

Memory Complexity

- Three registers for the exponentiation (31 bits of memory)
- Chain length : n*

	l = 512	l = 640	l = 768	l = 896	l = 1024
$\mathrm{E}\left[n^{*} ight]$	$2.03 \ l$				
$\sigma\left(n^{*} ight)$	$0.015 \ l$	$0.013 \ l$	$0.011 \ l$	$0.010 \ l$	$0.010 \ l$

- The chain can be stored in a (2.2 $\not c$ 1)-bit buffer
 - − P [n* > 2.2 ¢ 1] < 2⁻⁸⁰
- Total memory consumption:
 - 5.21 bits with dynamic chain computation
 - 31 bits with pre-computed chain

Comparison

- Extended modulus countermeasures
 - (+) works with every exponentiation algorithm
 - e.g. sliding window exponentiations (faster)
 - (-) larger modulus \rightarrow slower modular multiplications
- Previous self-secure exponentiations
 - (+) no pre-computation
 - (-) more modular multiplications

Comparison (2)

Theoretical time & memory complexities for an RSA 1024 with CRT

Countermeasure	Time $(10^6 \cdot t_0)$	Memory (Kb)
Vigilant [CHES 2008] $(q = 1)$	$\{511, 484\}$	$\{2.4, 2.3\}$
Vigilant [CHES 2008] $(q = 2)$	$\{468, 444\}$	$\{2.6, 2.5\}$
Vigilant [CHES 2008] $(q = 3)$	$\{440, 417\}$	$\{3.7, \ 3.6\}$
Giraud [IEEE-TC 2006]	537	3.5
Our scheme	443	2.5 (+1.1)

- Vigilant Scheme
 - \rightarrow *q*-ary sliding widow exponentiation
 - \rightarrow {64,80}-bit modulus extension

Conclusion

- New principle to check consistency of RSA computations based on a double exponentiation
- Heuristic to construct a double addition chain
 - → double exponentiation algorithm using 3 registers and 1.651
 multiplications
- New self-secure exponentiation and RSA-CRT
- Security and complexity analyses
- Updated paper version on the IACR ePrint

RSACONFERENCE2009

A

The end! Questions ?