
Securing RSA against Fault
Analysis by Double Addition
Chain Exponentiation

Matthieu Rivain
Oberthur Technologies & Univ. of Luxembourg
04/24/09 | Session ID: CRYP-403

Session Classification:

2

Agenda

A New Self-Secure Exponentiation

RSA and Fault Analysis

A New Secure RSA-CRT

Complexity Analysis

RSA and Fault
Analysis

4

Preliminaries

• RSA signature : s = md mod N
– m : message
– d : private exponent

– N = p.q : public modulus

• RSA with CRT (4 times faster):
– sp = mdp mod p where dp = d mod (p-1) (sp = s mod p)

– sq = mdq mod q where dq = d mod (q-1) (sq = s mod q)
– s = CRTp,q(sp,sq)

5

Bellcore Fault Attack

• A fault corrupts the computation of sp :
– f(sp) ≠ mdp mod p
– sq = mdq mod q
– f(s) = CRTp,q(f(sp),sq)

• The faulty signature satisfies
– f(s) ≠ s mod p and f(s) = s mod q
– (f(s) – s) is a multiple of q but not of p
– gcd(f(s) – s, N) = q

• N is factorized with a single faulty signature

• Other fault attacks exist on RSA without CRT

6

Problem

Problem: Perform an RSA computation that detects errors.

Straightforward solutions:
• Perform the computation twice

– double the execution time

• Verify the computed signature : se mod N = m ?
– e is not necessarily available
– e may be large à double the execution time

Problem: Perform an RSA computation that detects errors
while e is not available or possibly large.

7

State of the Art

• Modulus extension: redundancy included in modular
operations

• sNt = md mod N¢t
• md mod t = sNt mod t ?

– Shamir’s Trick [Eurocrypt’97 Rump Session]
– [Vigilant CHES 2008]

• Self-secure exponentiations : redundancy included in
the exponentiation algorithm
– [Giraud IEEE-TC 2006]

• (s’ = md-1 mod N, s) ß MontgomeryLadder(m, d, N)
• s’¢m mod N = s ?

– [Boscher et al. WISTP 2007]

A New Self-Secure
Exponentiation

9

Basic Principle

• Definition: A double exponentiation computes the pair of powers
(ma,mb) from an element m and a pair of exponents (a, b).

• Basic principle:
– use a double exponentiation algorithm to compute

s = md mod N and c = mϕ(Ν)−d mod N
where ϕ(N) is the Euler’s totient of N

– check: s¢c mod N = 1 ?

• If no error occurs then s¢c mod N = mϕ(Ν) mod N = 1

• Otherwise the check fails (with high probability)

• Problem: design a double exponentiation algorithm

10

Double Addition Chains

Definition: An addition chain for a is a sequence x0, x1, · · · , xn s.t. :
• x0 = 1 and xn = a
• for every k there exist i, j < k s.t. xk = xi + xj

• An addition chain for a provides a way to compute ma for every m:
– Let m0 = m
– And mk = mi ¢ mj where xk = xi + xj

– By induction mk = mxk and mn = ma

Definition: A double addition chain for (a,b) is an addition chain for b
s.t. xn-1 = a.

• provides a way to compute (ma,mb) for every m
• provides a double exponentiation

11

Our Goal

Goal: construct a double addition chain

– suitable for implementations constrained in
memory

• Nb. of registers for the exponentiation

= nb. of intermediate xi’s to store

– as short as possible
• Nb. of multiplications in the exponentiation

= nb. of additions in the chain

12

Our Goal (2)

• Keep 3 temporary results: ai, bi and 1
– i.e. mai, mbi and m for the exponentiation
– s.t. (a0, b0) = (0,1) and (an, bn) = (a,b) for some n

• Construct a chain ω s.t.
– ai+1= ai + bi if ωi = 0
– ai+1 = 2 ¢ ai if ωi = 1
– ai+1 = ai + 1 if ωi = 2
– bi+1 = ai + bi if ωi = 3
– etc …

• Restrict the nb. of possibilities for the ωi’s to optimize the
storage of ω

13

Our Heuristic

Principle:
• Start from the pair (a,b)

• Construct the inverse chain by applying the inverse
operations

• i.e. construct a sequence (αi, βi) s.t.
– (α0, β0) = (a,b)

– (αn, βn) = (0, 1) for some n
– αi+1, βi+1 2 {αi-βi, βi/2, αi-1, …}

14

Our Heuristic (2)

We assume a≤b and conserve αi≤βi for every i

We iterate:
• if βi is at least twice αi then

– if βi is odd then βi+1 = (βi-1)/2 ωß (01 || ω)
– if βi is even then βi+1 = βi /2 ωß (00 || ω)

• if βi is lower than twice αi then

– αi+1 = βi- αi and βi+1 = αi ωß (1 || ω)

15

Example

• (α0, β0) = (a,b) = (9, 20)
• (α1, β1) = (9, 20/2) = (9, 10) ω = 00

• (α2, β2) = (10 – 9, 9) = (1, 9) ω = 100
• (α3, β3) = (1, (9 – 1)/2) = (1, 4) ω = 01100

• (α4, β4) = (1, 4/2) = (1, 2) ω = 0001100
• (α5, β5) = (1, 2/2) = (1, 1) ω = 000001100

• (α6, β6) = (1 – 1, 1) = (0, 1) ω = 1000001100

16

Example (2)

• (a0, b0) = (0,1)
• (a1, b1) = (0+1, 1) = (1, 1) ω = 1 000001100
• (a2, b2) = (1, 2¢1) = (1, 2) ω = 1 00 0001100
• (a3, b3) = (1, 2¢2) = (1, 4) ω = 100 00 01100
• (a4, b4) = (1, 2¢4+1) = (1, 9) ω = 10000 01 100
• (a5, b5) = (9, 1+9) = (9, 10) ω = 1000001 1 00
• (a6, b6) = (9, 2¢10) = (9, 20) ω = 10000011 00

• Double Addition Chain:
– if ω = (00 || ω’) then bi = 2¢bi

– if ω = (01 || ω’) then bi = 2¢bi+1
– if ω = (1 || ω’) then ai = bi ; bi = ai+bi

17

Double Exponentiation

• R0 ß 0 ; R1 ß m ; R2 ß m
• i ß 0 ; γ ß 1 // γ : boolean s.t. Rγ = mbi and R1-γ = mai

• while i < length(ω) do
– if (ωi = 0) then

• Rγ ß (Rγ)
2 mod N

• if (ωi+1 = 1) then Rγ ß Rγ¢R2 mod N
• i ß i+2

– else
• Rγ ß Rγ¢ R1-γ mod N
• γß 1- γ
• i ß i+1

• return (R1-γ , Rγ)

18

Self-Secure Exponentiation

• ω ß ChainCompute(d, 2 ϕ(N) – d)
• (s,c) ß DoubleExp(m, ω, N)
• if (s¢c mod N ≠ 1) then return “error”
• else return s

• NB: we use 2 ϕ(N) – d in order to fit the constraint a≤b
• The chain computation may be performed off-line

– It is unique for (d,N)

A New Secure
RSA-CRT

20

Secure RSA-CRT

• ωp ß ChainCompute(dp, 2 (p-1) – dp)
• (sp, cp) ß DoubleExp(m mod p, ωp, p)
• ωq ß ChainCompute(dq, 2 (q-1) – dq)
• (sq, cq) ß DoubleExp(m mod q, ωq, q)
• s ß CRTp,q(sp, sq)
• if (s¢cp mod p ≠ 1 or s¢cq mod q ≠ 1) then return “error”
• else return s

• Implementation security requirements:
– The exponents integrity must be checked (e.g. with CRC) at the beginning of

the chain computation (if done dynamically)
– The message integrity must be checked (e.g. with CRC) at the beginning of

each double exponentiation

Complexity Analysis

22

Time Complexity

• Mainly depends on the number of modular multiplications

• Multiplications-per-bit ratio : θ

• Comparisons
– For (insecure) square-and-multiply : E(θ) = 1.5

à overhead of 10%

– For previous self-secure exponentiations : E(θ) = 2
à gain of 18%

23

Memory Complexity

• Three registers for the exponentiation (3 l bits of memory)
• Chain length : n*

• The chain can be stored in a (2.2 ¢ l)-bit buffer
– P [n* > 2.2 ¢ l] < 2-80

• Total memory consumption:
– 5.2 l bits with dynamic chain computation

– 3 l bits with pre-computed chain

24

Comparison

• Extended modulus countermeasures
– (+) works with every exponentiation algorithm

– e.g. sliding window exponentiations (faster)
– (-) larger modulus à slower modular multiplications

• Previous self-secure exponentiations
– (+) no pre-computation
– (-) more modular multiplications

25

Comparison (2)

Theoretical time & memory complexities
for an RSA 1024 with CRT

• Vigilant Scheme
à q-ary sliding widow exponentiation
à {64,80}-bit modulus extension

26

Conclusion

• New principle to check consistency of RSA
computations based on a double exponentiation

• Heuristic to construct a double addition chain
àdouble exponentiation algorithm using 3 registers and 1.65 l

multiplications

• New self-secure exponentiation and RSA-CRT

• Security and complexity analyses

• Updated paper version on the IACR ePrint

The end!
Questions ?

