A Quest for Provable Security against Side-Channel Attacks

- Matthieu Rivain
- Cyber in Nancy
- July 7, 2022, Loria, Nancy

crypto algorithm

image: imag

security proof

The "black-box model"

ineeds unaffordable computing power to recover

security proof

Side-channel attacks

Lister and the second and the second

Side-channel attacks

a statistic distance and the second as the second as

Power consumption

Electromagnetic emanations

Side-channel attacks

Power consumption

Electromagnetic emanations

Power / EM trace

Execution time

Key guess

. . .

predictions

leakage traces

Key guess

. . .

predictions

correlation trace

$$\frac{(x_i - \bar{x}) \cdot (y_i - \bar{y})}{(-\bar{x})^2} \cdot \sqrt{\sum_i (y_i - \bar{y})^2}$$

leakage traces

Correlation

Leakage model $\sim Hw(S(x \oplus k)) + \mathcal{N}(\mu, \sigma)$

Prediction

$f(\mathbf{M}, \mathbf{M}) = \mathsf{Hw}(\mathsf{S}(x \oplus \hat{k}))$

Prediction

(known) byte of the plaintext

Prediction

(known) byte of the plaintext

(guess) byte of the key

Prediction

 $f(\mathbf{v},\mathbf{v},\mathbf{v})$

(known) byte of the plaintext

 $(\mathsf{Hw}(\mathsf{S}(x \oplus \hat{k})))$

high correlation for the good guess

Prediction

 $f(\mathbf{v},\mathbf{v},\mathbf{v})$

(known) byte of the plaintext

 $(\mathsf{Hw}(\mathsf{S}(x \oplus \hat{k})))$

low correlation for the wrong guess

$x = x_1 \oplus \cdots \oplus x_n$

First order masking: $x = x_1 \oplus x_2$

independent of *x* independent of *x*

\Rightarrow no correlation (DPA fails)

\downarrow jointly depend on $x \Rightarrow 2nd$ order DPA

\therefore jointly depend on $x \Rightarrow$ 3rd order DPA

\land jointly depend on $x \Rightarrow$ **3rd order** DPA

Provable security in the presence of leakage

in needs
unaffordable
computing power
to recover

security proof

Memory

Computation

Memory

Computation

 $f_i(in_i) \Rightarrow$ multivariate noisy leakage

A function is δ -noisy if (for $X \sim \mathcal{U}$): $\mathbb{E}_{v}\left[\Delta\left(X; \left(X \mid f(X) = y\right)\right)\right] \leq \delta$

A function is δ -noisy if (for $X \sim \mathcal{U}$):

$\mathbb{E}_{y}\left[\Delta\left(X; \left(X \mid f(X) = y\right)\right)\right] \leq \delta$

A function is δ -noisy if (for $X \sim \mathcal{U}$):

 $\mathbb{E}_{y}\left[\Delta\left(X; \left(X \mid f(X) = y\right)\right)\right] \leq \delta$

statistical distance between X and X and given f(X) = y

A function is δ -noisy if (for $X \sim \mathcal{U}$):

expectation on the possible leakage values

 $\mathbb{E}_{y}\left[\Delta\left(X; \left(X \mid f(X) = y\right)\right)\right] \leq \delta$

statistical distance between X and X and given f(X) = y

A function is δ -noisy if (for $X \sim \mathcal{U}$):

expectation on the possible leakage values

more noise \Rightarrow smaller δ

 $\mathbb{E}_{y} \left[\Delta \left(X; \left(X \mid f(X) = y \right) \right) \right] \leq \delta$

statistical distance between X and X and given f(X) = y

Kan the stand south the second and the second south the second south the second south the second south

Secret input

identical / indistinguishable

identical / indistinguishable

Masked computation

$x = x_1 + \cdots + x_n$

X

the shares

$x = x_1 + \cdots + x_n$

X

the shares

the shares $\overrightarrow{x} = (x_1, \dots, x_p)$ X $x = x_1 + \cdots + x_n$ (on a field \mathbb{K})

! all the shares are necessary to recover *x*

number of shares

i any n-1 shares are completely random

La contra la contra de la contra

Crypto computation modelled as an arithmetic circuit on $\ensuremath{\mathbb{K}}$

La contraction of the second of the second second of the second second second second second second second second

Crypto computation modelled as an arithmetic circuit on $\ensuremath{\mathbb{K}}$

Solution and the second second and the second s

Crypto computation modelled as an arithmetic circuit on $\ensuremath{\mathbb{K}}$

input gates addition gates multiplication gates copy gates

Crypto computation modelled as an arithmetic circuit on \mathbb{K}

input gates addition gates *multiplication gates* copy gates + random gates (\$

Line and the second second and the second second

Crypto computation modelled as an arithmetic circuit on ${\ensuremath{\mathbb K}}$

input gates addition gates multiplication gates copy gates + random gates \$ + linear functions ? output gates

gadget : small circuit computing an operation on sharings

The second of the second se

- T- Sale Star Star Big Big Big Big Big

sharewise computation \Rightarrow *n* addition gates

Linear gadget

sharewise computation \Rightarrow *n* evaluations of λ

Linear gadget

sharewise computation \Rightarrow *n* evaluations of λ

Multiplication gadget

$z = x \cdot y = \left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right) = \sum_{i,j} x_{i}y_{j}$

Multiplication gadget

 $z = x \cdot y = \left(\sum_{i} x_{i}\right) \left(\sum_{i} y_{i}\right) = \left(\sum_{i,j} x_{i}y_{j}\right)$

split into *n* shares

Multiplication gadget

 $z = x \cdot y = \left(\sum_{i} x_{i}\right) \left(\sum_{i} y_{i}\right) = \left(\sum_{i,j} x_{i}y_{j}\right)$

split into *n* shares

+ fresh randomness

Refresh gadget

Refresh gadget

La British a har a har a har a har a har a series and har a har

Refresh gadget

fresh randomness

statistical independence

 \Rightarrow

Standard circuit compiler

wire $\rightarrow n$ wires (sharing) gate \rightarrow gadget

Standard circuit compiler

wire $\rightarrow n$ wires (sharing) gate \rightarrow gadget

functional equivalence

Standard circuit compiler

wire $\rightarrow n$ wires (sharing) gate \rightarrow gadget

functional

T- ATTATION AND AND AND

equivalence

$(w_1, \ldots, w_t) =$ function of input and internal randomness

any t leakage points independent of the secrets

Region probing model

t probes per gadget (or region)

with $t = r \times |G|$

Region probing model

Region probing model

Security of sharewise gadgets

sharewise gadget \Rightarrow inherent probing security

 $\begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ & x_2y_2 & x_2y_3 \\ & & x_3y_3 \end{pmatrix} + \begin{pmatrix} x_2y_1 & x_3y_2 \\ & x_3y_1 & x_3y_2 \end{pmatrix}^{T}$

cross-products $\sum_{i,i} x_i y_j$ $\begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ & x_2y_2 & x_2y_3 \\ & & x_3y_3 \end{pmatrix} + \begin{pmatrix} x_2y_1 & x_3y_2 \\ & x_3y_1 & x_3y_2 \end{pmatrix}^{T}$

cross-products $\sum_{i,j} x_i y_j$

cross-products $\sum_{i,i} x_i y_j$ $\begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ & x_2y_2 & x_2y_3 \\ & & x_3y_3 \end{pmatrix} + \begin{pmatrix} x_2y_1 \\ & x_3y_1 & x_3y_2 \end{pmatrix} + \begin{pmatrix} -r_{1,2} \\ -r_{1,3} \end{pmatrix}$

cross-products $\sum_{i,i} x_i y_j$ $\begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ & x_2y_2 & x_2y_3 \\ & & x_3y_3 \end{pmatrix} + \begin{pmatrix} x_2y_1 & \\ & x_3y_1 & x_3y_2 \end{pmatrix} + \begin{pmatrix} -r_{1,2} \\ -r_{1,3} \end{pmatrix}$

 Z_{2} Z_3

cross-products $\sum_{i,i} x_i y_j$ $\begin{pmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ & x_2y_2 & x_2y_3 \\ & & x_3y_3 \end{pmatrix} + \begin{pmatrix} x_2y_1 & \\ & x_3y_1 & x_3y_2 \end{pmatrix} + \begin{pmatrix} -r_{1,2} \\ -r_{1,3} \end{pmatrix}$

\blacksquare probing security for gadgets \implies global (region) probing security Composition security notions

composition security notions <u>Example</u>: strong non-interference (SNI)

 t_1 internal probes *t*₂ output probes

\blacksquare probing security for gadgets \oiint global (region) probing security

composition security notions Example: strong non-interference (SNI)

 t_1 internal probes t_2 output probes

\blacksquare probing security for gadgets \oiint global (region) probing security

can be perfectly simulated from the knowledge of t_1 input shares

composition security notions Example: strong non-interference (SNI)

 t_1 internal probes t_2 output probes

SNI gadgets \Rightarrow global region probing security

\blacksquare probing security for gadgets \oiint global (region) probing security

can be perfectly simulated from the knowledge of t_1 input shares

But... wait a minute!

leakage probability

Service The service of the service the service of t

$\implies \Rightarrow \delta$ -noisy leakage can be simulated from *p*-random probing leakage

 $\Rightarrow \delta$ -noisy leakage can be simulated from p-random probing leakage Random probing leakage $\phi(w_1), \phi(w_2), \dots, \phi(w_N)$

$\Rightarrow \delta$ -noisy leakage can be simulated from *p*-random probing leakage

Random probing leakage $\phi(w_1), \phi(w_2), \dots, \phi(w_N)$

Apply f_1', \ldots, f_N'

Noisy leakage $f_1(w_1), f_2(w_2), ..., f_N(w_N)$

$\Rightarrow \delta$ -noisy leakage can be simulated from *p*-random probing leakage

Random probing leakage $\phi(w_1), \phi(w_2), \ldots, \phi(w_N)$

Apply f_1', \ldots, f_N'

Noisy leakage $f_1(w_1), f_2(w_2), \ldots, f_N(w_N)$

$$\begin{array}{c} r \text{-region probing securit}\\ \Rightarrow\\ p \text{-random probing securit}\\ \text{with } p = \Theta(r)\\ \Rightarrow\\ \delta \text{-noisy leakage securit}\\ \text{with } \delta = \Theta(p)\end{array}$$

Unifying probing and noisy models

leakage rate $\begin{cases} 1 = lot of leakage (low noise) \\ 0 = no leakage (infinite noise) \end{cases}$ the noise / leakage rate

depends on the hardware

Unifying probing and noisy models

leakage rate

- $\begin{cases} 1 = lot of leakage (low noise) \\ 0 = no leakage (infinite noise) \end{cases}$

the noise / leakage rate depends on the hardware

efficient masking schemes secure vs. constant (high) leakage rate

Secure schemes

A CONTRACT AND A TO A CONTRACT AND A

State of the art

- State-of-the-art noisy-leakage-secure schemes
 - most schemes with at least $\mathcal{O}(n^2)$ complexity
 - a few schemes with $\mathcal{O}(1)$ leakage rate, but constant not explicit
- In what follows
 - region probing security in **quasilinear complexity**
 - random probing security with explicit constant leakage rate

Security in quasilinear complexity

Quasilinear masking

A \overrightarrow{v} -sharing of x

$$\vec{x} = (x_0, x_1, \dots, x_{n-1})$$
 s

s.t. $\langle \overrightarrow{v}, \overrightarrow{x} \rangle = x$

Quasilinear masking

\overrightarrow{v} -sharing of x

$$\overrightarrow{x} = (x_0, x_1, \dots, x_{n-1})$$
 s
 $\overrightarrow{v} = (1, \omega, \omega^2, \dots, \omega^{n-1})$

¹) for $\omega \stackrel{\$}{\leftarrow} \mathbb{F}$

Quasilinear masking

\overrightarrow{v} -sharing of x

$$\overrightarrow{x} = (x_0, x_1, \dots, x_{n-1})$$
 s
 $\overrightarrow{v} = (1, \omega, \omega^2, \dots, \omega^{n-1})$

) for $\omega \stackrel{\$}{\leftarrow} \mathbb{F}$

Efficient multiplication

• Let \vec{t} such that

 $P_{\vec{t}} = P_{\vec{x}} \cdot P_{\vec{v}}$

• We get

2*n*-1 $P_{\vec{t}}(\omega) = \sum_{i=1}^{n} t_i \omega^i = x \cdot y$ i=0

Efficient multiplication

• Let \vec{t} such that

• We get

Efficient multiplication

• Let \vec{t} such that

• We get

• Compression:

 $\vec{z} = (t_0, \dots, t_{n-1}) + \omega^n \cdot (t_n, \dots, t_{2n-1})$

of the evaluations

of the evaluations

of the evaluations

of the evaluations

sharewise operations \Rightarrow probing secure

sharewise operations \Rightarrow probing secure

Probing security

§ FFT computes linear combinations of the x_i 's

Probing security

$$A] \rangle \text{ then } \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_t \end{pmatrix} \sim \mathscr{U}(\mathbb{F}^t) \overset{(q)}{=}$$

(assuming A full rank wlog)

Probing security

Lemma 2

 $\exists at most t values of \omega \in \mathbb{F} s$

s.t.
$$\vec{v} = \begin{pmatrix} \omega^0 \\ \omega^1 \\ \vdots \\ \omega^{n-1} \end{pmatrix} \in \langle \begin{bmatrix} A \end{bmatrix} \rangle$$

 $\exists \text{ at most } t \text{ values of } \omega \in \mathbb{F} \text{ s}$

s.t.
$$\vec{v} = \begin{pmatrix} \omega^0 \\ \omega^1 \\ \vdots \\ \omega^{n-1} \end{pmatrix} \in \langle [A] \rangle$$

be simulated $] \leq \frac{t}{|\mathbb{F}|} < \frac{n}{|\mathbb{F}|}$

\Rightarrow region probing security

\Rightarrow region probing security

Wrapping up:

- Gadget complexity: $\Theta(n \log n)$
- Probes per gadget: $\Theta(n)$
- Leakage rate: $\Theta(1/\log n)$

Security with constant leakage rate

1. Sample a set of leaking wires $W \leftarrow \text{LeakingWires}(\hat{C}, p)$

1. Sample a set of leaking wires $W \leftarrow \text{LeakingWires}(\hat{C}, p)$ 2. Simulate the corresponding wire values Sim : $W \mapsto \begin{cases} \text{perfect simulation} \\ \bot \text{ (abort)} \end{cases}$

1. Sample a set of leaking wires $W \leftarrow \text{LeakingWires}(\hat{C}, p)$ 2. Simulate the corresponding wire values

Sim : $W \mapsto \begin{cases} \text{perfect simulation} \\ \perp \text{ (abort)} \end{cases}$ $\delta_W = \begin{cases} 1 & \text{if Sim}(W) = \bot \\ 0 & \text{otherwise} \end{cases}$

1. Sample a set of leaking wires $W \leftarrow \text{LeakingWires}(\hat{C}, p)$ 2. Simulate the corresponding wire values $\text{Sim}: W \mapsto \begin{cases} \text{perfect simulation} \\ \bot \text{ (abort)} \end{cases}$

• Failure probability

$$f(p) = \sum_{W} \delta_{W} p^{|W|} (1-p)^{s-|W|}$$

on $\delta_W = \begin{cases} 1 & \text{if } \operatorname{Sim}(W) = \bot \\ 0 & \text{otherwise} \end{cases}$

1. Sample a set of leaking wires $W \leftarrow \text{LeakingWires}(\hat{C}, p)$ 2. Simulate the corresponding wire values

• Failure probability

$$f(p) = \sum_{W} \delta_{W} p^{|W|} (1-p)^{s-|W|} = \sum_{W} \delta_{W} p^{|W|} ($$

Sim : $W \mapsto \begin{cases} \text{perfect simulation} \\ \bot \text{ (abort)} \end{cases}$ $\delta_W = \begin{cases} 1 & \text{if } Sim(W) = \bot \\ 0 & \text{otherwise} \end{cases}$

 $\leq \sum c_i p^i$

↓↓↓

base gadget G

- - Jankinski Stalicencero

expanded gadget $G^{(2)}$

expanded gadget $G^{(2)}$

$\{G\} \to \{G^{(2)}\} \to \cdots \to \{G^{(k)}\}$

 $p \longrightarrow f(p)$

$\bigstar \quad \{G\} \to \{G^{(2)}\} \to \cdots \to \{G^{(k)}\}$

Goal: amplification of random probing security

$\bigstar \quad \{G\} \to \{G^{(2)}\} \to \cdots \to \{G^{(k)}\}$

Goal: amplification of random probing security

$\bigstar \quad \{G\} \to \{G^{(2)}\} \to \cdots \to \{G^{(k)}\}$

 $p \longrightarrow f(p) \longrightarrow f(f(p)) \longrightarrow \cdots \longrightarrow f^{(k)}(p)$
Random probing expandability (RPE)

Random probing expandability (RPE)

Random probing expandability (RPE)

Base gadgets {G} f-RPE \Rightarrow expanded gadgets { $G^{(2)}$ } $f^{(2)}$ -RPE \Rightarrow expanded gadgets { $G^{(k)}$ } $f^{(k)}$ -RPE

 $f^{(k)}(p)$ simulation security vs. p-random probing leakage

Generic constructions

$G_{\oplus}(\overrightarrow{x}, \overrightarrow{y}) = G_{\mathsf{R}}(\overrightarrow{x}) + G_{\mathsf{R}}(\overrightarrow{y})$ $G_{A}(\overrightarrow{x}) = (G_{\mathsf{R}}(\overrightarrow{x}), G_{\mathsf{R}}(\overrightarrow{x}))$

Generic constructions

$G_{\oplus}(\overrightarrow{x}, \overrightarrow{y}) = G_{\mathsf{R}}(\overrightarrow{x}) + G_{\mathsf{R}}(\overrightarrow{y})$ $G_{A}(\overrightarrow{x}) = (G_{\mathsf{R}}(\overrightarrow{x}), G_{\mathsf{R}}(\overrightarrow{x}))$

 $G_{\otimes}(\overrightarrow{x}, \overrightarrow{y}) \mapsto \begin{pmatrix} x_1 \cdot G_{\mathsf{R}}(\overrightarrow{y}) \\ x_2 \cdot G_{\mathsf{R}}(\overrightarrow{y}) \\ \vdots \\ x_n \cdot G_{\mathsf{R}}(\overrightarrow{y}) \end{pmatrix} + \text{ greedy use of randomness}$

Efficient instantiations

Efficient instantiations

Maximum tolerated leakage probability

 $p_{max} \in [0,1)$ such that $f(p_{max}) < p_{max}$

Efficient instantiations

3-share gadgets

$$G_{\mathsf{R}} : z_1 \leftarrow r_1 + x_1$$
$$z_2 \leftarrow r_2 + x_2$$
$$z_3 \leftarrow (r_1 + r_2) + x_3$$

5-share gadgets

$$G_{\mathsf{R}} : z_{1} \leftarrow (r_{1} + r_{2}) + x_{1}$$

$$z_{2} \leftarrow (r_{2} + r_{3}) + x_{2}$$

$$z_{3} \leftarrow (r_{3} + r_{4}) + x_{3}$$

$$z_{4} \leftarrow (r_{4} + r_{5}) + x_{4}$$

$$z_{5} \leftarrow (r_{5} + r_{1}) + x_{5}$$

 $\Rightarrow \mathcal{O}(|C|\kappa^{3.2}), \ p_{max} = 2^{-12}$

Provable security against side-channel attacks (Fully) bridging theory and practice

Physical assumptions

in_N *out_N* out₂ I_N $f_N(in_N)$ T

data isolation

Physical assumptions

independent noise

in_N *out_N* out_2 I_N $f_N(in_N)$ data isolation

Noise parameters

device / implementation

Performances

3-share gadgets

$$G_{\mathsf{R}} : z_1 \leftarrow r_1 + x_1$$
$$z_2 \leftarrow r_2 + x_2$$
$$z_3 \leftarrow (r_1 + r_2) + x_3$$

5-share gadgets

$$G_{\mathsf{R}} : z_{1} \leftarrow (r_{1} + r_{2}) + x_{1}$$

$$z_{2} \leftarrow (r_{2} + r_{3}) + x_{2}$$

$$z_{3} \leftarrow (r_{3} + r_{4}) + x_{3}$$

$$z_{4} \leftarrow (r_{4} + r_{5}) + x_{4}$$

$$z_{5} \leftarrow (r_{5} + r_{1}) + x_{5}$$

$\Rightarrow 0(|C|\kappa^{3.9}) p_{max} = 2^{-7.5}$

 \rightarrow improved complexity

 \rightarrow optimised implementations

 $\Rightarrow 0(|C|\kappa^{3.2}), p_{max} = 2^{-12}$

VeriSiCC Seminar 2022

- Verification and Generation of Side-Channel Countermeasures
 - September 22, 2022, Paris

https://cryptoexperts.com/verisicc/seminaire-2022.html

- Differential Power Analysis. CRYPTO 1999
- Counteract Power-Analysis Attacks. CRYPTO 1999

- Observable Cryptography. TCC 2004

• **Differential Power Analysis** — Paul C. Kocher, Joshua Jaffe, Benjamin Jun:

• Masking / soundness of masking with noise — Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, Pankaj Rohatgi: Towards Sound Approaches to

• Masking applied to DES — Louis Goubin, Jacques Patarin: DES and Differential Power Analysis (The "Duplication" Method). CHES 1999

• Probing model / ISW scheme — Yuval Ishai, Amit Sahai, David A. Wagner: Private Circuits: Securing Hardware against Probing Attacks. CRYPTO 2003

• "Only computation leaks" model — Silvio Micali, Leonid Reyzin: Physically

References

- Unifying probing and noisy models Alexandre Duc, Stefan Attacks to Noisy Leakage. EUROCRYPT 2014
- Masking. CCS 2016
- Amit Sahai: Private Circuits: A Modular Approach. CRYPTO 2018

• Noisy leakage model — Emmanuel Prouff, Matthieu Rivain: Masking against Side-Channel Attacks: A Formal Security Proof. EUROCRYPT 2013

Dziembowski, Sebastian Faust: Unifying Leakage Models: From Probing

• Composition security for masking — Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, Rébecca Zucchini: Strong Non-Interference and Type-Directed Higher-Order

Random probing expansion strategy — Prabhanjan Ananth, Yuval Ishai,

References

• Quasilinear masking

- Quasilinear Masking. IACR TCHES 2021

• Random probing expandability

- EUROCRYPT 2021

• Dahmun Goudarzi, Antoine Joux, Matthieu Rivain: How to Securely Compute with Noisy Leakage in Quasilinear Complexity. ASIACRYPT 2018

• Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, Damien Vergnaud: Probing Security through Input-Output Separation and Revisited

 Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, Abdul Rahman Taleb: Random Probing Security: Verification, Composition, Expansion and New Constructions. CRYPTO 2020

• Sonia Belaïd, Matthieu Rivain, Abdul Rahman Taleb: On the Power of Expansion: More Efficient Constructions in the Random Probing Model.

 IronMask tool — Sonia Belaïd, Darius Mercadier, Matthieu Rivain, Abdul Rahman Taleb: IronMask: Versatile Verification of Masking Security. IEEE S&P 2022