Masking against Side-Channel Attacks: a Formal Security Proof

Matthieu Rivain Joint work with Emmanuel Prouff

EUROCRYPT 2013 - May 27th

Outline

- 1 Introduction and Previous Works
- 2 Our Contribution
- **3** Model of Leaking Computation
- **4** Overview of the Proof
- **5** Conclusion and Perspectives

Outline

1 Introduction and Previous Works **3** Model of Leaking Computation

Side-Channel Attacks

- Attacks exploiting physical information leakage
 - timing [Kocher. CRYPTO'96]
 - ▶ power consumption [Kocher et al. CRYPTO'99]
 - ▶ electromagnetic emanations [Gandolfi et al. CHES'01]

- [Chari et al. CRYPTO'99] [Goubin-Patarin. CHES'99]
- Apply secret sharing to internal variables
- A sensitive variable x is shared into d + 1 variables

$$x_0 \oplus x_1 \oplus \cdots \oplus x_d = x$$

Computing on each share separately

Masking Schemes

- A lot of *first-order* masking schemes have been published
 - [Kocher et al. US Patent 1999] [Goubin-Patarin. CHES'99]
 [Messerges. FSE'00] [Akkar-Giraud. CHES'01]
 [Blomer et al. SAC'04] [Oswald et al. FSE'05]
 [Prouff et al. CHES'06] [Prouff-Rivain. WISA'07]
- Used in current smart cards products
- Limitation: vulnerable to second-order SCA

Masking Schemes

- Increasing masking order
 - ⇒ increasing attack order
 - \Rightarrow increasing attack difficulty
- Soundness [Chari et al. CRYPTO'99]
 - Noisy leakage model: $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
 - ▶ Distinguishing $((L_i)_i | x = 0)$ from $((L_i)_i | x = 1)$ takes q samples:

$$q \geq cst \cdot \sigma^d$$

- Higher-order masking schemes
 - [Rivain-Prouff. CHES'10] [Kim et al. CHES'11] [Carlet et al. FSE'12] [Coron et al. FSE'13]
- Limitation: no security proof against an adversary using the whole leakage of the computation

Physically Observable Cryptography

- [Micali-Reyzin. TCC'04]
- Framework for leaking computation
- Assumption: Only Computation Leaks (OCL)
- Computation divided into subcomputations $y \leftarrow C(x)$
- Each subcomputation leaks a function of its input f(x)

Leakage Functions

Leakage-Resilience model [Dziembowski-Pietrzak. STOC'08]

bounded-range leakage functions

$$f: \{0,1\}^n \to \{0,1\}^\lambda \qquad \text{with} \ \lambda \ll n$$

- Leakage model for circuits [Faust et al. EUROCRYPT'10]
 - ► computationally bounded leakage functions: f ∈ AC⁰ (computable by a circuit of constant depth)
 - ▶ noisy leakage functions: $f(x) = x \oplus \varepsilon$ with ε being some sparse error vector

Limitations

In practice the leakage is far bigger than n bits $(\lambda \gg n)$

Figure: Power consumption of a DES computation.

The leakage result from the switching activity of logic gates

- \blacktriangleright it can hardly be modeled by an \mathcal{AC}^0 function
- noise can hardly be modeled as the xor of an error vector

State of the Art

- Lack of practically relevant leakage models
- Masking widely used without formal proof

• A step toward:

Outline

Introduction and Previous Works
 Our Contribution
 Model of Leaking Computation
 Overview of the Proof
 Conclusion and Perspectives

Our Contribution

Leakage model

- ▶ OCL assumption [Micali-Reyzin. TCC'04]
- subcomputations = elementary calculations (a few CPU intructions, small inputs)
- New class of noisy leakage functions
 - f(x) implies a *bounded bias* in the distribution of x

Our Contribution

Formal security proof for a block cipher computation

- negligible entropy loss on the key (w.r.t. masking order)
- Need for a *leak-free component* (for mask refreshing)

$$\underbrace{\mathbf{x} = (x_0, x_1, \dots, x_d)}_{\bigoplus_i x_i = x} \quad \longmapsto \quad \underbrace{\mathbf{x}' = (x'_0, x'_1, \dots, x'_d)}_{\bigoplus_i x'_i = x}$$

with $(\pmb{x} \mid x)$ and $(\pmb{x}' \mid x)$ mutually independent.

Introduction and Previous Works
 Our Contribution
 Model of Leaking Computation
 Overview of the Proof
 Conclusion and Perspectives

Notion of Bias

• Bias of X given Y = y:

$$\beta(X|Y = y) = \|P[X] - P[X|Y = y]\|$$

with $\|\cdot\|=$ Euclidean norm.

Bias of X given Y:

$$\beta(X|Y) = \sum_{y \in \mathcal{Y}} \mathbf{P}[Y = y] \ \beta(X|Y = y) \ .$$

Related to MI by:

$$\operatorname{MI}(X;Y) \leq \frac{N}{\ln 2}\beta(X|Y) \quad \text{(with } N = |\mathcal{X}|\text{)}$$

Model of Leaking Computation

- Every elementary calculation leaks a *noisy function* of its input
 - noise modeled by a fresh random tape argument
- f adaptively chosen by the adversary in $\mathcal{N}(1/\psi)$

$$\beta\big(X|f(X)\big) < \frac{1}{\psi}$$

- ψ is some *noise parameter*
- Capture any form of noisy leakage
- Assumtpion: ψ can be set by the designer (linear in the security parameter)

Outline

Introduction and Previous Works
 Our Contribution
 Model of Leaking Computation
 Overview of the Proof
 Conclusion and Perspectives

Overview of the Proof

Consider a SPN computation

Figure: Example of SPN round.

Overview of the Proof

Classical implementation protected with masking

Figure: Example of SPN round protected with masking.

S-Box Computation

[Carlet et al. FSE'12]

- Polynomial evaluation over GF(2ⁿ)
- Two types of elementary calculations:
 - linear functions (additions, squares, multiplication by coefficients)
 - multiplications over $GF(2^n)$

Linear Functions

• Given a sharing $X = X_0 \oplus X_1 \oplus \cdots \oplus X_d$

Apply mask-refreshing on output sharing

Linear Functions

• Given a sharing $X = X_0 \oplus X_1 \oplus \cdots \oplus X_d$

Apply mask-refreshing on output sharing

Linear Functions

• For
$$f_0, f_1, \ldots, f_d \in \mathcal{N}(1/\psi)$$
, we show

$$\beta(X|f_0(X_0), f_1(X_1), \dots, f_d(X_d)) \le \frac{N^{\frac{d}{2}}}{\psi^{d+1}}.$$

• Taking
$$\psi \sim N^{\frac{1}{2}} \omega$$
 we get

$$\operatorname{MI}(X; \ (f_0(X_0), f_1(X_1), \dots, f_d(X_d))) \leq \frac{1}{\omega^{d+1}}$$

Result in accordance with [Chari et al. CRYPTO'99]

• Given two sharings $A = \bigoplus_i A_i$ and $B = \bigoplus_i B_i$

$$A \times B = \left(\bigoplus_{i} A_{i}\right) \left(\bigoplus_{i} B_{i}\right) = \bigoplus_{i,j} A_{i} B_{j}$$

First step: cross-products

 $\begin{array}{ccccccc} A_0 \times B_0 & A_0 \times B_1 & \cdots & A_0 \times B_d \\ A_1 \times B_0 & A_1 \times B_1 & \cdots & A_1 \times B_d \\ \vdots & \vdots & \ddots & \vdots \\ A_d \times B_0 & A_d \times B_1 & \cdots & A_d \times B_d \end{array}$

• Given two sharings $A = \bigoplus_i A_i$ and $B = \bigoplus_i B_i$

$$A \times B = \left(\bigoplus_{i} A_{i}\right) \left(\bigoplus_{i} B_{i}\right) = \bigoplus_{i,j} A_{i} B_{j}$$

First step: cross-products

- We have A = g(X) and B = h(X) where X = s-box input
- Bias given cross-product leakages: For f_{i,j} ∈ N(1/ψ) we show $\beta \left(X | (f_{i,j}(A_i, B_j))_{i,j} \right) \le 2N^{\frac{3d+7}{2}} \left(\frac{\lambda_1 d + \lambda_0}{\psi} \right)^{d+1}$ with $\lambda_1 \in [1; 2]$ and $\lambda_2 \in [1; 3]$.
 Taking $\psi \sim N^{\frac{3}{2}} (\lambda_1 d + \lambda_0) \omega$ we get $MI(X; (f_{i,j}(A_i, B_j))_{i,j}) \le \frac{1}{\omega^{d+1}}$
- The noise parameter must be roughly multiplied by d

- Second step: refreshing
- Apply on each column and one row of

$A_0 \times B_0$	$A_0 \times B_1$		$A_0 \times B_d$
$A_1 \times B_0$	$A_1 \times B_1$	•••	$A_1 \times B_d$
:	÷	·	÷
$A_d \times B_0$	$A_d \times B_1$		$A_d \times B_d$

- We get a fresh $(d+1)^2$ -sharing of $A \times B$

Third step: summing rows

$$Z_i \leftarrow V_{i,0} \oplus V_{i,1} \oplus \cdots \oplus V_{i,d}$$

Takes d elementary calculations (XORs) per row:

$$\begin{split} T_{i,1} &\leftarrow V_{i,0} \oplus V_{i,1} \\ T_{i,2} &\leftarrow T_{i,1} \oplus V_{i,2} \\ \vdots \\ T_{i,d} &\leftarrow T_{i,d-1} \oplus V_{i,d} \end{split}$$

(with $Z_i = T_{i,d}$)

- Then (Z_0, Z_1, \ldots, Z_d) is a sharing of $A \times B$
 - Apply mask-refreshing

Third step: summing rows

$$Z_i \leftarrow V_{i,0} \oplus V_{i,1} \oplus \cdots \oplus V_{i,d}$$

• Takes *d* elementary calculations (XORs) per row:

$$T_{i,1} \leftarrow V_{i,0} \oplus V_{i,1}$$

$$T_{i,2} \leftarrow T_{i,1} \oplus V_{i,2}$$

$$\vdots$$

$$f_{i,1}(V_{i,0}, V_{i,1})$$

$$\vdots$$

$$f_{i,2}(T_{i,1}, V_{i,2})$$

$$T_{i,d} \leftarrow T_{i,d-1} \oplus V_{i,d}$$

$$f_{i,d}(T_{i,d-1}, V_{i,d})$$
(with $Z_i = T_{i,d}$)

• Then (Z_0, Z_1, \ldots, Z_d) is a sharing of $A \times B$

Apply mask-refreshing

• For $f_{i,j} \in \mathcal{N}(1/\psi)$ we show

$$\beta \left(X | F_0(Z_0), F_1(Z_1), \dots, F_d(Z_d) \right) \le N^{\frac{3d+5}{2}} \left(\frac{2}{\psi} \right)^{d+1}$$

where $F_i(Z_i) = \left(f_{i,1}(V_{i,0}, V_{i,1}), f_{i,2}(T_{i,1}, V_{i,2}), \dots, f_{i,d}(T_{i,d-1}, V_{i,d}) \right)$
= Taking $\psi \sim 2N^{\frac{3}{2}} \omega$ we get

$$\mathrm{MI}(X; (F_0(Z_0), F_1(Z_1), \dots, F_d(Z_d))) \leq \frac{1}{\omega^{d+1}}$$

Putting everything together

- Several subsequences of elementary calculations
- Each provides some leakage L_t about $X_t = g_t(M, K)$
- L_t are mutually independent given (M, K)

$$\mathrm{MI}((M,K);(L_1,L_2,\ldots,L_T)) \leq \sum_{t=1}^T \mathrm{MI}(X_t;L_t) \leq \frac{T}{\omega^{d+1}}$$

Outline

Introduction and Previous Works
 Our Contribution
 Model of Leaking Computation
 Overview of the Proof
 Conclusion and Perspectives

Conclusion and Perspectives

Conclusion:

- New practically relevant leakage model
- Formal security for masking against SCA

Perspectives and open issues:

- $\hfill \ensuremath{\,\,^{\circ}}$ Practical estimation of the noise parameter ψ
- Relax proof assumptions:
 - fixed noise parameter
 - no leak-free component

Conclusion and Perspectives

What about efficiency?

