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Side-Channel Attacks

� Attacks exploiting physical information leakage
I timing [Kocher. CRYPTO’96]
I power consumption [Kocher et al. CRYPTO’99]
I electromagnetic emanations [Gandolfi et al. CHES’01]

Leakage 
measurements Statistical

treatment

Secret key



Masking

� [Chari et al. CRYPTO’99] [Goubin-Patarin. CHES’99]

� Apply secret sharing to internal variables

� A sensitive variable x is shared into d+ 1 variables

x0 ⊕ x1 ⊕ · · · ⊕ xd = x

� Computing on each share separately



Masking Schemes
� A lot of first-order masking schemes have been published

I [Kocher et al. US Patent 1999] [Goubin-Patarin. CHES’99]
[Messerges. FSE’00] [Akkar-Giraud. CHES’01]
[Blomer et al. SAC’04] [Oswald et al. FSE’05]
[Prouff et al. CHES’06] [Prouff-Rivain. WISA’07]

� Used in current smart cards products

� Limitation: vulnerable to second-order SCA



Masking Schemes
� Increasing masking order
⇒ increasing attack order
⇒ increasing attack difficulty

� Soundness [Chari et al. CRYPTO’99]

I Noisy leakage model: Li ∼ xi +N (µ, σ2)

I Distinguishing
(
(Li)i|x = 0

)
from

(
(Li)i|x = 1

)
takes q

samples:
q ≥ cst · σd

� Higher-order masking schemes
I [Rivain-Prouff. CHES’10] [Kim et al. CHES’11]

[Carlet et al. FSE’12] [Coron et al. FSE’13]

� Limitation: no security proof against an adversary using the
whole leakage of the computation



Physically Observable Cryptography

� [Micali-Reyzin. TCC’04]

� Framework for leaking computation

� Assumption: Only Computation Leaks (OCL)

� Computation divided into subcomputations y ← C(x)

� Each subcomputation leaks a function of its input f(x)



Leakage Functions

� Leakage-Resilience model [Dziembowski-Pietrzak. STOC’08]

I bounded-range leakage functions

f : {0, 1}n → {0, 1}λ with λ� n

� Leakage model for circuits [Faust et al. EUROCRYPT’10]

I computationally bounded leakage functions: f ∈ AC0
(computable by a circuit of constant depth)

I noisy leakage functions: f(x) = x⊕ ε
with ε being some sparse error vector



Limitations
� In practice the leakage is far bigger than n bits (λ� n)

Figure: Power consumption of a DES computation.

� The leakage result from the switching activity of logic gates

I it can hardly be modeled by an AC0 function

I noise can hardly be modeled as the xor of an error vector



State of the Art
� Lack of practically relevant leakage models

� Masking widely used without formal proof

My leakage model 
looks relevant

My implementation 
is provably secure

My leakage model 
is practically relevant

My implementation 
looks secure
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Our Goal
� A step toward:

Our leakage model 
is practically relevant

Our implementation 
is provably secure
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Our Contribution

� Leakage model

I OCL assumption [Micali-Reyzin. TCC’04]

I subcomputations = elementary calculations
(a few CPU intructions, small inputs)

� New class of noisy leakage functions
I f(x) implies a bounded bias in the distribution of x



Our Contribution

� Formal security proof for a block cipher computation
I negligible entropy loss on the key (w.r.t. masking order)

� Need for a leak-free component (for mask refreshing)

x = (x0, x1, . . . , xd)︸ ︷︷ ︸⊕
i xi=x

7−→ x′ = (x′0, x
′
1, . . . , x

′
d)︸ ︷︷ ︸⊕

i x
′
i=x

with (x | x) and (x′ | x) mutually independent.
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Notion of Bias
� Bias of X given Y = y:

β(X|Y = y) = ‖P[X]− P[X|Y = y]‖

with ‖ · ‖ = Euclidean norm.

� Bias of X given Y :

β(X|Y ) =
∑
y∈Y

P[Y = y] β(X|Y = y) .

� Related to MI by:

MI(X;Y ) ≤ N

ln 2
β(X|Y ) (with N = |X |)



Model of Leaking Computation

� Every elementary calculation leaks a noisy function of its input

I noise modeled by a fresh random tape argument

� f adaptively chosen by the adversary in N (1/ψ)

β
(
X|f(X)

)
<

1

ψ

� ψ is some noise parameter

� Capture any form of noisy leakage

� Assumtpion: ψ can be set by the designer (linear in the
security parameter)
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Overview of the Proof

� Consider a SPN computation

Figure: Example of SPN round.



Overview of the Proof
� Classical implementation protected with masking

Figure: Example of SPN round protected with masking.



S-Box Computation

� [Carlet et al. FSE’12]

� Polynomial evaluation over GF(2n)

� Two types of elementary calculations:
I linear functions (additions, squares, multiplication by

coefficients)
I multiplications over GF(2n)



Linear Functions
� Given a sharing X = X0 ⊕X1 ⊕ · · · ⊕Xd

X0

�(X0)

� � �

X1

�(X1) �(Xd)

Xd

· · ·

� Apply mask-refreshing on output sharing



Linear Functions
� Given a sharing X = X0 ⊕X1 ⊕ · · · ⊕Xd

f0(X0)

X0

�(X0)

� � �

X1

�(X1) �(Xd)
f1(X1) fd(Xd)

Xd

· · ·

� Apply mask-refreshing on output sharing



Linear Functions

� For f0, f1, . . . , fd ∈ N (1/ψ), we show

β
(
X
∣∣f0(X0), f1(X1), . . . , fd(Xd)

)
≤ N

d
2

ψd+1
.

� Taking ψ ∼ N 1
2 ω we get

MI
(
X; (f0(X0), f1(X1), . . . , fd(Xd))

)
≤ 1

ωd+1

� Result in accordance with [Chari et al. CRYPTO’99]



Multiplications

� Given two sharings A =
⊕

iAi and B =
⊕

iBi

A×B =
(⊕

i
Ai

)(⊕
i
Bi

)
=
⊕

i,j
AiBj

� First step: cross-products

A0 ⇥B0 A0 ⇥B1 · · · A0 ⇥Bd

A1 ⇥B0 A1 ⇥B1 · · · A1 ⇥Bd

...
...

. . .
...

Ad ⇥B0 Ad ⇥B1 · · · Ad ⇥Bd



Multiplications

� Given two sharings A =
⊕

iAi and B =
⊕

iBi

A×B =
(⊕

i
Ai

)(⊕
i
Bi

)
=
⊕

i,j
AiBj

� First step: cross-products

A0 ⇥B0 A0 ⇥B1 · · · A0 ⇥Bd

A1 ⇥B0 A1 ⇥B1 · · · A1 ⇥Bd

...
...

. . .
...

Ad ⇥B0 Ad ⇥B1 · · · Ad ⇥Bd

f0,0(A0, B0) f0,1(A0, B1) · · · f0,d(A0, Bd)
f1,0(A1, B0) f1,1(A1, B1) · · · f1,d(A1, Bd)

...
...

. . .
...

fd,0(Ad, B0) fd,1(Ad, B1) · · · fd,d(Ad, Bd)



Multiplications

� We have A = g(X) and B = h(X) where X = s-box input

� Bias given cross-product leakages:

For fi,j ∈ N (1/ψ) we show

β
(
X|(fi,j(Ai, Bj))i,j

)
≤ 2N

3d+7
2

(λ1d+ λ0
ψ

)d+1

with λ1 ∈ [1; 2] and λ2 ∈ [1; 3].

� Taking ψ ∼ N 3
2 (λ1d+ λ0)ω we get

MI
(
X; (fi,j(Ai, Bj))i,j

)
≤ 1

ωd+1

� The noise parameter must be roughly multiplied by d



Multiplications

� Second step: refreshing

� Apply on each column and one row of

A0 ⇥B0 A0 ⇥B1 · · · A0 ⇥Bd

A1 ⇥B0 A1 ⇥B1 · · · A1 ⇥Bd

...
...

. . .
...

Ad ⇥B0 Ad ⇥B1 · · · Ad ⇥Bd

� We get a fresh (d+ 1)2-sharing of A×B

V0,0 V0,1 · · · V0,d
V1,0 V1,1 · · · V1,d

...
...

. . .
...

Vd,0 Vd,1 · · · Vd,d



Multiplications

� Third step: summing rows

Zi ← Vi,0 ⊕ Vi,1 ⊕ · · · ⊕ Vi,d
� Takes d elementary calculations (XORs) per row:

Ti,1  Vi,0 � Vi,1

Ti,2  Ti,1 � Vi,2

...

Ti,d  Ti,d�1 � Vi,d

(with Zi = Ti,d)

� Then (Z0, Z1, . . . , Zd) is a sharing of A×B
I Apply mask-refreshing



Multiplications

� Third step: summing rows

Zi ← Vi,0 ⊕ Vi,1 ⊕ · · · ⊕ Vi,d
� Takes d elementary calculations (XORs) per row:

...

Ti,1  Vi,0 � Vi,1

Ti,2  Ti,1 � Vi,2

...

Ti,d  Ti,d�1 � Vi,d

fi,d(Ti,d�1, Vi,d)

fi,1(Vi,0, Vi,1)

fi,2(Ti,1, Vi,2)

(with Zi = Ti,d)

� Then (Z0, Z1, . . . , Zd) is a sharing of A×B
I Apply mask-refreshing



Multiplications

� For fi,j ∈ N (1/ψ) we show

β
(
X|F0(Z0), F1(Z1), . . . , Fd(Zd)

)
≤ N 3d+5

2

( 2
ψ

)d+1

where Fi(Zi) =
(
fi,1(Vi,0, Vi,1), fi,2(Ti,1, Vi,2), . . . , fi,d(Ti,d−1, Vi,d)

)
� Taking ψ ∼ 2N

3
2ω we get

MI
(
X; (F0(Z0), F1(Z1), . . . , Fd(Zd))

)
≤ 1

ωd+1



Putting everything together

� Several subsequences of elementary calculations

� Each provides some leakage Lt about Xt = gt(M,K)

� Lt are mutually independent given (M,K)

MI
(
(M,K); (L1, L2, . . . , LT )

)
≤

T∑
t=1

MI(Xt;Lt) ≤
T

ωd+1
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Conclusion and Perspectives

Conclusion:

� New practically relevant leakage model

� Formal security for masking against SCA

Perspectives and open issues:

� Practical estimation of the noise parameter ψ

� Relax proof assumptions:

I fixed noise parameter

I no leak-free component



Conclusion and Perspectives

� What about efficiency?

My implementation 
runs in polynomial 

time

My implementation 
runs in 300 ms 
on a smartcard
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