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Higher-Order Masking

� Countermeasure to side-channel attacks

� Every key-dependent variable x is shared into d+ 1 variables:

x = x0 + x1 + · · ·+ xd

� In this work, + is the bitwise addition

� Attack complexity increases exponentially with d
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Higher-Order Masking Schemes

� Consider a block cipher:
c← E(m, k)

� A dth-order masking scheme for E is an algorithm:

(c0, c1, . . . , cd)← E′
(
(m0,m1, . . . ,md), (k0, k1, . . . , kd)

)
� dth-order security :
∀(iv1, iv2, . . . , ivd) ∈ {intermediate var. of E′}d :

MI
(
(iv1, iv2, . . . , ivd), (m, k)

)
= 0

� The main issue is masking the S-box
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Literature

� Software masking schemes:

d = 1 d = 2 any d

AES Many works x [RP10,KHL11,GPQ11]

any s-box Many works [SP06,RDP08] This work

[SP06] = [Schramm-Paar CT-RSA’06]
[RPD08] = [Rivain-Dottax-Prouff FSE’08]
[RP10] = [Rivain-Prouff CHES’10]
[KHL11] = [Kim-Hong-Lim CHES’11]
[GPQ11] = [Genelle-Prouff-Quisquater CHES’11]

� Hardware masking schemes:
I d = 1 ⇒ many works

I [Ishai-Sahai-Wagner CRYPTO’03]
� any circuit, any order d

I [Faust et al. EUROCRYPT’10]
� generalization to further security models
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Ishai-Sahai-Wagner (ISW) Scheme

� Probing model: intermediate variable = wire

� Any circuits composed of NOT and AND gates

� NOT gate encoding:

NOT(x) = NOT(x0)⊕ x1 · · · ⊕ xd
� AND gate encoding:

AND(x, y) = xy =
(⊕

i
xi
)(⊕

j
yj
)

=
⊕

i,j
xiyj =

⊕
i
zi

I (d+ 1)2 ANDs + 2d(d+ 1) XORs
+ d(d+ 1)/2 random bits
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Application to AES in Software

� [Rivain-Prouff CHES 2010]

� AES S-box: S = Exp ◦ Af
I Af: affine transformation over GF(2)8

I Exp : x 7→ x254 over GF(28)

� Masking Af is efficient:

Af(x) = Af(x0) + Af(x1) + · · ·+ Af(xd) (+0x63 iff d is odd)

� Masking Exp
I masked square: x20 + x21 + · · ·+ x2d = x2

I masked multiplications : ISW on GF(28)
I addition chain for 254 with only 4 multiplications (and 7

squares)

Higher-Order Masking Schemes for S-boxes



Application to AES in Software

� [Rivain-Prouff CHES 2010]

� AES S-box: S = Exp ◦ Af
I Af: affine transformation over GF(2)8

I Exp : x 7→ x254 over GF(28)

� Masking Af is efficient:

Af(x) = Af(x0) + Af(x1) + · · ·+ Af(xd) (+0x63 iff d is odd)

� Masking Exp
I masked square: x20 + x21 + · · ·+ x2d = x2

I masked multiplications : ISW on GF(28)
I addition chain for 254 with only 4 multiplications (and 7

squares)

Higher-Order Masking Schemes for S-boxes



Application to AES in Software

� [Rivain-Prouff CHES 2010]

� AES S-box: S = Exp ◦ Af
I Af: affine transformation over GF(2)8

I Exp : x 7→ x254 over GF(28)

� Masking Af is efficient:

Af(x) = Af(x0) + Af(x1) + · · ·+ Af(xd) (+0x63 iff d is odd)

� Masking Exp
I masked square: x20 + x21 + · · ·+ x2d = x2

I masked multiplications : ISW on GF(28)
I addition chain for 254 with only 4 multiplications (and 7

squares)

Higher-Order Masking Schemes for S-boxes



Application to AES in Software

� [Rivain-Prouff CHES 2010]

� AES S-box: S = Exp ◦ Af
I Af: affine transformation over GF(2)8

I Exp : x 7→ x254 over GF(28)

� Masking Af is efficient:

Af(x) = Af(x0) + Af(x1) + · · ·+ Af(xd) (+0x63 iff d is odd)

� Masking Exp
I masked square: x20 + x21 + · · ·+ x2d = x2

I masked multiplications : ISW on GF(28)
I addition chain for 254 with only 4 multiplications (and 7

squares)

Higher-Order Masking Schemes for S-boxes



Application to AES in Software

� [Rivain-Prouff CHES 2010]

� AES S-box: S = Exp ◦ Af
I Af: affine transformation over GF(2)8

I Exp : x 7→ x254 over GF(28)

� Masking Af is efficient:

Af(x) = Af(x0) + Af(x1) + · · ·+ Af(xd) (+0x63 iff d is odd)

� Masking Exp
I masked square: x20 + x21 + · · ·+ x2d = x2

I masked multiplications : ISW on GF(28)

I addition chain for 254 with only 4 multiplications (and 7
squares)

Higher-Order Masking Schemes for S-boxes



Application to AES in Software

� [Rivain-Prouff CHES 2010]

� AES S-box: S = Exp ◦ Af
I Af: affine transformation over GF(2)8

I Exp : x 7→ x254 over GF(28)

� Masking Af is efficient:

Af(x) = Af(x0) + Af(x1) + · · ·+ Af(xd) (+0x63 iff d is odd)

� Masking Exp
I masked square: x20 + x21 + · · ·+ x2d = x2

I masked multiplications : ISW on GF(28)
I addition chain for 254 with only 4 multiplications (and 7

squares)

Higher-Order Masking Schemes for S-boxes



Outline

1 � Introduction

2 � Higher-Order Masking of any S-box
� General Method
� Optimal Masking of Power Functions
� Efficient Heuristics for Random S-Boxes

3 � Implementation Results

4 � Open Issues

Higher-Order Masking Schemes for S-boxes



General Method

� Generalization of Rivain-Prouff scheme

� We consider an s-box S : {0, 1}n → {0, 1}m as a polynomial
function over GF(2n):

S(x) = a0 + a1x+ a2x
2 + · · ·+ a2n−1x

2n−1

� We evaluate this polynomial on the shared input (xi)i
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General Method

� Four kinds of operations over GF(2n):
1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

⇒ nonlinear multiplications

� Masking is efficient for the 3 first kinds

I (x+ y) = (x0 + y0) + (x1 + y1) + · · ·+ (xd + yd)
I x2 = x20 + x21 + · · ·+ x2d
I a · x = a · x0 + a · x1 + · · ·+ a · xd

� nonlinear multiplication masked with ISW scheme
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Masking Complexity

� Masking an operation ∈ {addition, square, scalar mult.}
⇒ d+ 1 operations

� Masking a nonlinear multiplication

⇒ (d+ 1)2 mult. + 2d(d+ 1) add. + nd(d+ 1)/2 random bits

Definition

The masking complexity of a (n,m) s-box is the minimal number
of nonlinear multiplications required to evaluate its polynomial
representation over GF(2n).
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Straightforward schemes

� Goal: evaluate S(x) = a0 + a1x+ a2x
2 + · · ·+ a2n−1x

2n−1

� first solution :
I compute S(x) = a0 + x(a1 + x(a2 + x(· · · )))
I ⇒ 2n − 2 nonlinear multiplications

� second solution :
I first compute x2, x3, x4, .... then evaluate S(x)
I xj ← (xj/2)2 when j even, xj ← x · xj−1 when j odd
I ⇒ 2n−1 − 1 nonlinear multiplications

� Can we do better ?

YES, WE CAN !
I Optimal methods for power functions
I Efficient heuristic for the general case
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Optimal Masking of Power Functions

Problem

For a given α ∈ [1; 2n − 1] compute xα with the least number of
nonlinear multiplications.

⇔
Problem

Find the shortest 2-addition chain for α (modulo 2n − 1).
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Optimal Masking of Power Functions

� Cyclotomic class of α : Cα = {α · 2j mod (2n − 1); j ≤ n}

� If β ∈ Cα (⇔ Cβ = Cα)

I xα can be computed from xβ with 0 nonlinear multiplication
I xα and xβ have the same masking complexity

� Exhaustive search for best 2-addition chains

I x → x2, x4, x8, ... (0 nonlinear multiplications)
I with 1 nonlinear multiplication

� x3 = x · x2

→ x6, x12, x24, ...
� x5 = x · x4

→ x10, x20, x40, ...

� etc.

I with 2 nonlinear multiplications
� x7 = x3 · x4

→ x14, x28, ...
� x11 = x3 · x8

→ x22, x44, ...

� etc.
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k Cyclotomic classes in Mn
k

n = 4
0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 14, 13, 11}

n = 6
0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32}
1 C3 = {3, 6, 12, 24, 48, 33}, C5 = {5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
2 C7 = {7, 14, 28, 56, 49, 35}, C11 = {11, 22, 44, 25, 50, 37}, C13 = {13, 26, 52, 41, 19, 38},

C15 = {15, 30, 29, 27, 23}, C21 = {21, 42}, C27 = {27, 54, 45}
3 C23 = {23, 46, 29, 58, 53, 43}, C31 = {31, 62, 61, 59, 55, 47}

n = 8
0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 C3 = {3, 6, 12, 24, 48, 96, 192, 129}, C5 = {5, 10, 20, 40, 80, 160, 65, 130},

C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 = {17, 34, 68, 136}
2 C7 = {7, 14, 28, 56, 112, 224, 193, 131}, C11 = {11, 22, 44, 88, 176, 97, 194, 133},

C13 = {13, 26, 52, 104, 208, 161, 67, 134}, C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C19 = {19, 38, 76, 152, 49, 98, 196, 137}, C21 = {21, 42, 84, 168, 81, 162, 69, 138},

C25 = {25, 50, 100, 200, 145, 35, 70, 140}, C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}, C45 = {45, 90, 180, 105, 210, 165, 75, 150},

C51 = {51, 102, 204, 153}, C85 = {85, 170}
3 C23 = {23, 46, 92, 184, 113, 226, 197, 139}, C29 = {29, 58, 116, 232, 209, 163, 71, 142},

C31 = {31, 62, 124, 248, 241, 227, 199, 143}, C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C43 = {43, 86, 172, 89, 178, 101, 202, 149}, C47 = {47, 94, 188, 121, 242, 229, 203, 151},
C53 = {53, 106, 212, 169, 83, 166, 77, 154}, C55 = {55, 110, 220, 185, 115, 230, 205, 155},
C59 = {59, 118, 236, 217, 179, 103, 206, 157}, C61 = {61, 122, 244, 233, 211, 167, 79, 158},
C63 = {63, 126, 252, 249, 243, 231, 207, 159}, C87 = {87, 174, 93, 186, 117, 234, 213, 171},
C91 = {91, 182, 109, 218, 181, 107, 214, 173}, C95 = {95, 190, 125, 250, 245, 235, 215, 175},

C111 = {111, 222, 189, 123, 246, 237, 219, 183}, C119 = {119, 238, 221, 187}
4 C127 = {127, 254, 253, 251, 247, 239, 223, 191}
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Cyclotomic Method

S(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7

+ a8x
8 + a9x

9 + a10x
10 + a11x

11 + a12x
12 + . . .

= a0 + a1x+ a2x
2 + a4x

4 + a8x
8 + . . .

+ a3x
3 + a6x

6 + a12x
12 + a24x

24 + . . .

+ a5x
5 + a10x

10 + a20x
20 + a40x

40 + . . .

+ . . .

= a0 + L1(x) + L3(x
3) + L5(x

5) + . . .

where
I L1(X) = a1X + a2X

2 + a4X
4 + a8X

8 + . . .
I L3(X) = a3X + a6X

2 + a12X
4 + a24X

8 + . . .
I L5(X) = a5X + a10X

2 + a20X
4 + a40X

8 + . . .
I ...
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Cyclotomic Method
1. Compute one power per cyclotomic class x, x3, x5, x7, ...

2. Evaluate the corresponding linearized polynomials L1(x),
L3(x

3), L5(x
5), L7(x

7), ...

3. Compute the sum
S(x) = a0 + L1(x) + L3(x

3) + L5(x
5) + L7(x

7) + . . .

Number of nonlinear multiplication
=

#{cyclotomic classes}\(C0 ∪ C1)

n 3 4 5 6 7 8 9 10
# nlm 1 3 5 11 17 33 53 105
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Parity-Split Method

S(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7

+ a8x
8 + a9x

9 + a10x
10 + a11x

11 + a12x
12 + . . .

where X = x2

� Nonlinear mult. : 1

� and the evaluation of 2r+1 polynomials in X = x2
r

I we derive Xj for j < 2n−r

I 2n−r−1 − 1 nonlinear mult.

⇒ 2n−r−1 + 2r − 2 nonlinear mult.
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r

I we derive Xj for j < 2n−r

I 2n−r−1 − 1 nonlinear mult.

⇒ 2n−r−1 + 2r − 2 nonlinear mult.
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Comparison

Number of nonlinear multiplications w.r.t. the evaluation method

Method \ n 3 4 5 6 7 8 9 10
Cyclotomic 1 3 5 11 17 33 53 105
Parity-Split 2 4 6 10 14 22 30 46

� For PRESENT (n = 4), we shall prefer the cyclotomic method

� For DES (n = 6), we shall prefer the parity-split method
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Implementation Results

Method Reference cycles RAM (bytes)

Second Order Masking

1. AES s-box [RP10] 832 18
2. AES s-box [KHL11] 594 24

3. DES s-box Simple version in [RDP08] 1045 69
4. DES s-box Improved version in [RDP08] 652 39
5. DES s-box new scheme 7000 78

6. PRESENT s-box Simple Version [RDP08] 277 21
7. PRESENT s-box Improved Version [RDP08] 284 15
8. PRESENT s-box new scheme 400 31

Third Order Masking

1. AES s-box [RP10] 1905 28
2. AES s-box [KHL11] 965 38

3. DES s-box new scheme 10500 108

4. PRESENT s-box new scheme 630 44
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Open Issues

� Find more efficient methods for random s-boxes

� Find faster scheme for specific s-boxes
I e.g. DES s-boxes

� Extend the approach to smaller fields
I Mult. on GF(24) more efficient than on GF(28) in software
I Hardware masking complexity related to mult. on GF(2)

� Find families of s-boxes with good cryptographic criteria and
small masking complexity

Higher-Order Masking Schemes for S-boxes



Open Issues

� Find more efficient methods for random s-boxes

� Find faster scheme for specific s-boxes
I e.g. DES s-boxes

� Extend the approach to smaller fields
I Mult. on GF(24) more efficient than on GF(28) in software
I Hardware masking complexity related to mult. on GF(2)

� Find families of s-boxes with good cryptographic criteria and
small masking complexity

Higher-Order Masking Schemes for S-boxes



Open Issues

� Find more efficient methods for random s-boxes

� Find faster scheme for specific s-boxes
I e.g. DES s-boxes

� Extend the approach to smaller fields
I Mult. on GF(24) more efficient than on GF(28) in software
I Hardware masking complexity related to mult. on GF(2)

� Find families of s-boxes with good cryptographic criteria and
small masking complexity

Higher-Order Masking Schemes for S-boxes



Open Issues

� Find more efficient methods for random s-boxes

� Find faster scheme for specific s-boxes
I e.g. DES s-boxes

� Extend the approach to smaller fields
I Mult. on GF(24) more efficient than on GF(28) in software
I Hardware masking complexity related to mult. on GF(2)

� Find families of s-boxes with good cryptographic criteria and
small masking complexity

Higher-Order Masking Schemes for S-boxes



Open Issues

� Find more efficient methods for random s-boxes

� Find faster scheme for specific s-boxes
I e.g. DES s-boxes

� Extend the approach to smaller fields
I Mult. on GF(24) more efficient than on GF(28) in software
I Hardware masking complexity related to mult. on GF(2)

� Find families of s-boxes with good cryptographic criteria and
small masking complexity

Higher-Order Masking Schemes for S-boxes


	Introduction
	Higher-Order Masking of any S-box
	General Method
	Optimal Masking of Power Functions
	Efficient Heuristics for Random S-Boxes

	Implementation Results
	Open Issues

