Higher-Order Masking Schemes for S-boxes

Matthieu Rivain
Joint work with
C. Carlet, L. Goubin, E. Prouff and M. Quisquater

FSE 2012
Washington DC, 21st March 2012
CRYPTOEXPGRTS ${ }^{\text {Da }}$
WE INNOVATE TO SECURE YOUR BUSINESS

Outline

1-Introduction
2 - Higher-Order Masking of any S-box

- General Method
- Optimal Masking of Power Functions
- Efficient Heuristics for Random S-Boxes

3- Implementation Results
4. Open Issues

Higher-Order Masking

- Countermeasure to side-channel attacks

Higher-Order Masking

- Countermeasure to side-channel attacks
- Every key-dependent variable x is shared into $d+1$ variables:

$$
x=x_{0}+x_{1}+\cdots+x_{d}
$$

Higher-Order Masking

- Countermeasure to side-channel attacks
- Every key-dependent variable x is shared into $d+1$ variables:

$$
x=x_{0}+x_{1}+\cdots+x_{d}
$$

- In this work, + is the bitwise addition

Higher-Order Masking

- Countermeasure to side-channel attacks
- Every key-dependent variable x is shared into $d+1$ variables:

$$
x=x_{0}+x_{1}+\cdots+x_{d}
$$

- In this work, + is the bitwise addition
- Attack complexity increases exponentially with d

Higher-Order Masking Schemes

- Consider a block cipher:

$$
c \leftarrow \mathrm{E}(m, k)
$$

Higher-Order Masking Schemes

- Consider a block cipher:

$$
c \leftarrow \mathrm{E}(m, k)
$$

- A dth-order masking scheme for E is an algorithm:

$$
\left(c_{0}, c_{1}, \ldots, c_{d}\right) \leftarrow \mathrm{E}^{\prime}\left(\left(m_{0}, m_{1}, \ldots, m_{d}\right),\left(k_{0}, k_{1}, \ldots, k_{d}\right)\right)
$$

Higher-Order Masking Schemes

- Consider a block cipher:

$$
c \leftarrow \mathrm{E}(m, k)
$$

- A dth-order masking scheme for E is an algorithm:

$$
\left(c_{0}, c_{1}, \ldots, c_{d}\right) \leftarrow \mathrm{E}^{\prime}\left(\left(m_{0}, m_{1}, \ldots, m_{d}\right),\left(k_{0}, k_{1}, \ldots, k_{d}\right)\right)
$$

- dth-order security : $\forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathrm{E}^{\prime}\right\}^{d}$:

$$
\mathrm{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
$$

Higher-Order Masking Schemes

- Consider a block cipher:

$$
c \leftarrow \mathrm{E}(m, k)
$$

- A dth-order masking scheme for E is an algorithm:

$$
\left(c_{0}, c_{1}, \ldots, c_{d}\right) \leftarrow \mathrm{E}^{\prime}\left(\left(m_{0}, m_{1}, \ldots, m_{d}\right),\left(k_{0}, k_{1}, \ldots, k_{d}\right)\right)
$$

- dth-order security : $\forall\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right) \in\left\{\text { intermediate var. of } \mathrm{E}^{\prime}\right\}^{d}$:

$$
\mathrm{MI}\left(\left(i v_{1}, i v_{2}, \ldots, i v_{d}\right),(m, k)\right)=0
$$

- The main issue is masking the S-box

Literature

- Software masking schemes:

	$d=1$	$d=2$	any d
AES	Many works	x	[RP10,KHL11,GPQ11]
any s-box	Many works	[SP06,RDP08]	This work

```
[SP06] = [Schramm-Paar CT-RSA'06]
[RPD08] = [Rivain-Dottax-Prouff FSE'08]
[RP10] = [Rivain-Prouff CHES'10]
[KHL11] = [Kim-Hong-Lim CHES'11]
[GPQ11] = [Genelle-Prouff-Quisquater CHES'11]
```


Literature

- Software masking schemes:

	$d=1$	$d=2$	any d
AES	Many works	x	[RP10,KHL11,GPQ11]
any s-box	Many works	[SP06,RDP08]	This work

```
[SP06] = [Schramm-Paar CT-RSA'06]
[RPD08] = [Rivain-Dottax-Prouff FSE'08]
[RP10] = [Rivain-Prouff CHES'10]
[KHL11] = [Kim-Hong-Lim CHES'11]
[GPQ11] = [Genelle-Prouff-Quisquater CHES'11]
```

- Hardware masking schemes:
- $d=1 \Rightarrow$ many works

Literature

- Software masking schemes:

	$d=1$	$d=2$	any d
AES	Many works	x	[RP10,KHL11,GPQ11]
any s-box	Many works	[SP06,RDP08]	This work

```
[SP06] = [Schramm-Paar CT-RSA'06]
[RPD08] = [Rivain-Dottax-Prouff FSE'08]
[RP10] = [Rivain-Prouff CHES'10]
[KHL11] = [Kim-Hong-Lim CHES'11]
[GPQ11] = [Genelle-Prouff-Quisquater CHES'11]
```

- Hardware masking schemes:
- $d=1 \Rightarrow$ many works
- [Ishai-Sahai-Wagner CRYPTO'03]
- any circuit, any order d

Literature

- Software masking schemes:

	$d=1$	$d=2$	any d
AES	Many works	x	$[R P 10$, KHL11,GPQ11]
any s-box	Many works	[SP06,RDP08]	This work

```
[SP06] = [Schramm-Paar CT-RSA'06]
[RPD08] = [Rivain-Dottax-Prouff FSE'08]
[RP10] = [Rivain-Prouff CHES'10]
[KHL11] = [Kim-Hong-Lim CHES'11]
[GPQ11] = [Genelle-Prouff-Quisquater CHES'11]
```

- Hardware masking schemes:
- $d=1 \Rightarrow$ many works
- [Ishai-Sahai-Wagner CRYPTO'03]
- any circuit, any order d
- [Faust et al. EUROCRYPT'10]
- generalization to further security models

Ishai-Sahai-Wagner (ISW) Scheme

- Probing model: intermediate variable $=$ wire
- Any circuits composed of NOT and AND gates

Ishai-Sahai-Wagner (ISW) Scheme

- Probing model: intermediate variable $=$ wire
- Any circuits composed of NOT and AND gates
- NOT gate encoding:

$$
\operatorname{NOT}(x)=\operatorname{NOT}\left(x_{0}\right) \oplus x_{1} \cdots \oplus x_{d}
$$

Ishai-Sahai-Wagner (ISW) Scheme

- Probing model: intermediate variable $=$ wire
- Any circuits composed of NOT and AND gates
- NOT gate encoding:

$$
\operatorname{NOT}(x)=\operatorname{NOT}\left(x_{0}\right) \oplus x_{1} \cdots \oplus x_{d}
$$

- AND gate encoding:

$$
\begin{aligned}
\operatorname{AND}(x, y)=x y & =\left(\bigoplus_{i} x_{i}\right)\left(\bigoplus_{j} y_{j}\right) \\
& =\bigoplus_{i, j} x_{i} y_{j}=\bigoplus_{i} z_{i}
\end{aligned}
$$

Ishai-Sahai-Wagner (ISW) Scheme

- Probing model: intermediate variable $=$ wire
- Any circuits composed of NOT and AND gates
- NOT gate encoding:

$$
\operatorname{NOT}(x)=\operatorname{NOT}\left(x_{0}\right) \oplus x_{1} \cdots \oplus x_{d}
$$

- AND gate encoding:

$$
\begin{aligned}
\operatorname{AND}(x, y)=x y & =\left(\bigoplus_{i} x_{i}\right)\left(\bigoplus_{j} y_{j}\right) \\
& =\bigoplus_{i, j} x_{i} y_{j}=\bigoplus_{i} z_{i}
\end{aligned}
$$

- $(d+1)^{2}$ ANDs $+2 d(d+1)$ XORs $+d(d+1) / 2$ random bits

Application to AES in Software

- [Rivain-Prouff CHES 2010]

Application to AES in Software

- [Rivain-Prouff CHES 2010]
- AES S-box: $S=\operatorname{Exp} \circ$ Af
- Af: affine transformation over $\mathrm{GF}(2)^{8}$
- Exp : $x \mapsto x^{254}$ over $\mathrm{GF}\left(2^{8}\right)$

Application to AES in Software

- [Rivain-Prouff CHES 2010]
- AES S-box: $S=\operatorname{Exp} \circ$ Af
- Af: affine transformation over $\mathrm{GF}(2)^{8}$
- Exp : $x \mapsto x^{254}$ over $\mathrm{GF}\left(2^{8}\right)$
- Masking Af is efficient:

$$
\operatorname{Af}(x)=\operatorname{Af}\left(x_{0}\right)+\operatorname{Af}\left(x_{1}\right)+\cdots+\operatorname{Af}\left(x_{d}\right) \quad(+0 \times 63 \text { iff } d \text { is odd })
$$

Application to AES in Software

- [Rivain-Prouff CHES 2010]
- AES S-box: $S=\operatorname{Exp} \circ$ Af
- Af: affine transformation over $\mathrm{GF}(2)^{8}$
- Exp : $x \mapsto x^{254}$ over $\operatorname{GF}\left(2^{8}\right)$
- Masking Af is efficient:

$$
\operatorname{Af}(x)=\operatorname{Af}\left(x_{0}\right)+\operatorname{Af}\left(x_{1}\right)+\cdots+\operatorname{Af}\left(x_{d}\right) \quad(+0 \times 63 \text { iff } d \text { is odd })
$$

- Masking Exp
- masked square: $x_{0}^{2}+x_{1}^{2}+\cdots+x_{d}^{2}=x^{2}$

Application to AES in Software

- [Rivain-Prouff CHES 2010]
- AES S-box: $S=\operatorname{Exp} \circ$ Af
- Af: affine transformation over $\mathrm{GF}(2)^{8}$
- Exp : $x \mapsto x^{254}$ over $\operatorname{GF}\left(2^{8}\right)$
- Masking Af is efficient:

$$
\operatorname{Af}(x)=\operatorname{Af}\left(x_{0}\right)+\operatorname{Af}\left(x_{1}\right)+\cdots+\operatorname{Af}\left(x_{d}\right) \quad(+0 \times 63 \text { iff } d \text { is odd })
$$

- Masking Exp
- masked square: $x_{0}^{2}+x_{1}^{2}+\cdots+x_{d}^{2}=x^{2}$
- masked multiplications : ISW on $\operatorname{GF}\left(2^{8}\right)$

Application to AES in Software

- [Rivain-Prouff CHES 2010]
- AES S-box: $S=\operatorname{Exp} \circ$ Af
- Af: affine transformation over $\mathrm{GF}(2)^{8}$
- Exp : $x \mapsto x^{254}$ over $\operatorname{GF}\left(2^{8}\right)$
- Masking Af is efficient:

$$
\operatorname{Af}(x)=\operatorname{Af}\left(x_{0}\right)+\operatorname{Af}\left(x_{1}\right)+\cdots+\operatorname{Af}\left(x_{d}\right) \quad(+0 \times 63 \text { iff } d \text { is odd })
$$

- Masking Exp
- masked square: $x_{0}^{2}+x_{1}^{2}+\cdots+x_{d}^{2}=x^{2}$
- masked multiplications : ISW on $\operatorname{GF}\left(2^{8}\right)$
- addition chain for 254 with only 4 multiplications (and 7 squares)

Outline

1. Introduction
2. Higher-Order Masking of any S-box

- General Method
- Optimal Masking of Power Functions
- Efficient Heuristics for Random S-Boxes

3 Implementation Results
4. Open Issues

General Method

- Generalization of Rivain-Prouff scheme

General Method

- Generalization of Rivain-Prouff scheme
- We consider an s-box $\mathrm{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as a polynomial function over $\operatorname{GF}\left(2^{n}\right)$:

$$
\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}
$$

General Method

- Generalization of Rivain-Prouff scheme
- We consider an s-box $\mathrm{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ as a polynomial function over $\operatorname{GF}\left(2^{n}\right)$:

$$
\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}
$$

- We evaluate this polynomial on the shared input $\left(x_{i}\right)_{i}$

General Method

- Four kinds of operations over $\operatorname{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

General Method

- Four kinds of operations over $\operatorname{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

- Masking is efficient for the 3 first kinds

General Method

- Four kinds of operations over $\operatorname{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

- Masking is efficient for the 3 first kinds
- $(x+y)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right)+\cdots+\left(x_{d}+y_{d}\right)$

General Method

- Four kinds of operations over $\operatorname{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

- Masking is efficient for the 3 first kinds
- $(x+y)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right)+\cdots+\left(x_{d}+y_{d}\right)$
- $x^{2}=x_{0}^{2}+x_{1}^{2}+\cdots+x_{d}^{2}$

General Method

- Four kinds of operations over $\operatorname{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications

- Masking is efficient for the 3 first kinds
- $(x+y)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right)+\cdots+\left(x_{d}+y_{d}\right)$
- $x^{2}=x_{0}^{2}+x_{1}^{2}+\cdots+x_{d}^{2}$
- $a \cdot x=a \cdot x_{0}+a \cdot x_{1}+\cdots+a \cdot x_{d}$

General Method

- Four kinds of operations over $\operatorname{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications \Rightarrow nonlinear multiplications

- Masking is efficient for the 3 first kinds
- $(x+y)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right)+\cdots+\left(x_{d}+y_{d}\right)$
- $x^{2}=x_{0}^{2}+x_{1}^{2}+\cdots+x_{d}^{2}$
- $a \cdot x=a \cdot x_{0}+a \cdot x_{1}+\cdots+a \cdot x_{d}$

General Method

- Four kinds of operations over $\operatorname{GF}\left(2^{n}\right)$:

1. additions
2. scalar multiplications (i.e. by constants)
3. squares
4. regular multiplications \Rightarrow nonlinear multiplications

- Masking is efficient for the 3 first kinds
- $(x+y)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right)+\cdots+\left(x_{d}+y_{d}\right)$
- $x^{2}=x_{0}^{2}+x_{1}^{2}+\cdots+x_{d}^{2}$
- $a \cdot x=a \cdot x_{0}+a \cdot x_{1}+\cdots+a \cdot x_{d}$
- nonlinear multiplication masked with ISW scheme

Masking Complexity

- Masking an operation \in \{addition, square, scalar mult. $\}$
$\Rightarrow d+1$ operations
- Masking a nonlinear multiplication
$\Rightarrow(d+1)^{2}$ mult. $+2 d(d+1)$ add. $+n d(d+1) / 2$ random bits

Masking Complexity

- Masking an operation \in \{addition, square, scalar mult. $\}$
$\Rightarrow d+1$ operations
- Masking a nonlinear multiplication
$\Rightarrow(d+1)^{2}$ mult. $+2 d(d+1)$ add. $+n d(d+1) / 2$ random bits

Definition
 The masking complexity of a (n, m) s-box is the minimal number of nonlinear multiplications required to evaluate its polynomial representation over $\mathrm{GF}\left(2^{n}\right)$.

Straightforward schemes

- Goal: evaluate $\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}$
- first solution :
- compute $\mathrm{S}(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x(\cdots)\right)\right)$
- $\Rightarrow 2^{n}-2$ nonlinear multiplications

Straightforward schemes

- Goal: evaluate $\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}$
- first solution :
- compute $\mathrm{S}(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x(\cdots)\right)\right)$
- $\Rightarrow 2^{n}-2$ nonlinear multiplications
- second solution :
- first compute $x^{2}, x^{3}, x^{4}, \ldots$ then evaluate $\mathrm{S}(x)$
- $x^{j} \leftarrow\left(x^{j / 2}\right)^{2}$ when j even, $x^{j} \leftarrow x \cdot x^{j-1}$ when j odd
- $\Rightarrow 2^{n-1}-1$ nonlinear multiplications

Straightforward schemes

- Goal: evaluate $\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}$
- first solution :
- compute $\mathrm{S}(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x(\cdots)\right)\right)$
- $\Rightarrow 2^{n}-2$ nonlinear multiplications
- second solution :
- first compute $x^{2}, x^{3}, x^{4}, \ldots$ then evaluate $\mathrm{S}(x)$
- $x^{j} \leftarrow\left(x^{j / 2}\right)^{2}$ when j even, $x^{j} \leftarrow x \cdot x^{j-1}$ when j odd
- $\Rightarrow 2^{n-1}-1$ nonlinear multiplications
- Can we do better ?

Straightforward schemes

- Goal: evaluate $\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}$
- first solution :
- compute $\mathrm{S}(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x(\cdots)\right)\right)$
- $\Rightarrow 2^{n}-2$ nonlinear multiplications
- second solution :
- first compute $x^{2}, x^{3}, x^{4}, \ldots$ then evaluate $\mathrm{S}(x)$
- $x^{j} \leftarrow\left(x^{j / 2}\right)^{2}$ when j even, $x^{j} \leftarrow x \cdot x^{j-1}$ when j odd
- $\Rightarrow 2^{n-1}-1$ nonlinear multiplications
- Can we do better ? YES, WE CAN !

Straightforward schemes

- Goal: evaluate $\mathrm{S}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{2^{n}-1} x^{2^{n}-1}$
- first solution :
- compute $\mathrm{S}(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x(\cdots)\right)\right)$
- $\Rightarrow 2^{n}-2$ nonlinear multiplications
- second solution :
- first compute $x^{2}, x^{3}, x^{4}, \ldots$ then evaluate $\mathrm{S}(x)$
- $x^{j} \leftarrow\left(x^{j / 2}\right)^{2}$ when j even, $x^{j} \leftarrow x \cdot x^{j-1}$ when j odd
- $\Rightarrow 2^{n-1}-1$ nonlinear multiplications
- Can we do better? YES, WE CAN!
- Optimal methods for power functions
- Efficient heuristic for the general case

Outline

1. Introduction
2. Higher-Order Masking of any S-box

- General Method
- Optimal Masking of Power Functions
- Efficient Heuristics for Random S-Boxes

3. Implementation Results

4 Open Issues

Optimal Masking of Power Functions

Problem

For a given $\alpha \in\left[1 ; 2^{n}-1\right]$ compute x^{α} with the least number of nonlinear multiplications.

Optimal Masking of Power Functions

Problem

For a given $\alpha \in\left[1 ; 2^{n}-1\right]$ compute x^{α} with the least number of nonlinear multiplications.

Problem

Find the shortest 2 -addition chain for α (modulo $2^{n}-1$).

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

$$
x^{3}=x \cdot x^{2}
$$

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

$$
x^{3}=x \cdot x^{2} \rightarrow x^{6}, x^{12}, x^{24}, \ldots
$$

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

$$
\begin{aligned}
& x^{3}=x \cdot x^{2} \rightarrow x^{6}, x^{12}, x^{24}, \ldots \\
& x^{5}=x \cdot x^{4}
\end{aligned}
$$

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

$$
\begin{aligned}
& x^{3}=x \cdot x^{2} \rightarrow x^{6}, x^{12}, x^{24}, \ldots \\
& \\
& x^{5}=x \cdot x^{4} \rightarrow x^{10}, x^{20}, x^{40}, \ldots
\end{aligned}
$$

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

```
- \(x^{3}=x \cdot x^{2} \rightarrow x^{6}, x^{12}, x^{24}, \ldots\)
- \(x^{5}=x \cdot x^{4} \rightarrow x^{10}, x^{20}, x^{40}, \ldots\)
- etc.
```


Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

```
- \(x^{3}=x \cdot x^{2} \rightarrow x^{6}, x^{12}, x^{24}, \ldots\)
- \(x^{5}=x \cdot x^{4} \rightarrow x^{10}, x^{20}, x^{40}, \ldots\)
- etc.
```

- with 2 nonlinear multiplications
- $x^{7}=x^{3} \cdot x^{4}$

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

```
- \(x^{3}=x \cdot x^{2} \rightarrow x^{6}, x^{12}, x^{24}, \ldots\)
- \(x^{5}=x \cdot x^{4} \rightarrow x^{10}, x^{20}, x^{40}, \ldots\)
- etc.
```

- with 2 nonlinear multiplications

$$
x^{7}=x^{3} \cdot x^{4} \rightarrow x^{14}, x^{28}, \ldots
$$

Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

```
- \(x^{3}=x \cdot x^{2} \rightarrow x^{6}, x^{12}, x^{24}, \ldots\)
- \(x^{5}=x \cdot x^{4} \rightarrow x^{10}, x^{20}, x^{40}, \ldots\)
- etc.
```

- with 2 nonlinear multiplications

```
- \(x^{7}=x^{3} \cdot x^{4} \rightarrow x^{14}, x^{28}, \ldots\)
- \(x^{11}=x^{3} \cdot x^{8}\)
```


Optimal Masking of Power Functions

- Cyclotomic class of $\alpha: C_{\alpha}=\left\{\alpha \cdot 2^{j} \bmod \left(2^{n}-1\right) ; j \leq n\right\}$
- If $\beta \in C_{\alpha}\left(\Leftrightarrow C_{\beta}=C_{\alpha}\right)$
- x^{α} can be computed from x^{β} with 0 nonlinear multiplication
- x^{α} and x^{β} have the same masking complexity
- Exhaustive search for best 2-addition chains
- $x \rightarrow x^{2}, x^{4}, x^{8}, \ldots$ (0 nonlinear multiplications)
- with 1 nonlinear multiplication

```
- \(x^{3}=x \cdot x^{2} \rightarrow x^{6}, x^{12}, x^{24}, \ldots\)
- \(x^{5}=x \cdot x^{4} \rightarrow x^{10}, x^{20}, x^{40}\)
- etc.
```

- with 2 nonlinear multiplications
- $x^{7}=x^{3} \cdot x^{4} \rightarrow x^{14}, x^{28}, \ldots$
- $x^{11}=x^{3} \cdot x^{8} \rightarrow x^{22}, x^{44}, \ldots$
- etc.

k	Cyclotomic classes in \mathcal{M}_{k}^{n}
$n=4$	
0	$C_{0}=\{0\}, C_{1}=\{1,2,4,8\}$
1	$C_{3}=\{3,6,12,9\}, C_{5}=\{5,10\}$
2	$C_{7}=\{7,14,13,11\}$
$n=6$	
0	$C_{0}=\{0\}, C_{1}=\{1,2,4,8,16,32\}$
1	$C_{3}=\{3,6,12,24,48,33\}, C_{5}=\{5,10,20,40,17,34\}, C_{9}=\{9,18,36\}$
2	$\begin{gathered} C_{7}=\{7,14,28,56,49,35\}, C_{11}=\{11,22,44,25,50,37\}, C_{13}=\{13,26,52,41,19,38\}, \\ C_{15}=\{15,30,29,27,23\}, C_{21}=\{21,42\}, C_{27}=\{27,54,45\} \end{gathered}$
3	$C_{23}=\{23,46,29,58,53,43\}, C_{31}=\{31,62,61,59,55,47\}$
$n=8$	
0	$C_{0}=\{0\}, C_{1}=\{1,2,4,8,16,32,64,128\}$
1	$\begin{aligned} C_{3}= & \{3,6,12,24,48,96,192,129\}, C_{5}=\{5,10,20,40,80,160,65,130\} \\ & C_{9}=\{9,18,36,72,144,33,66,132\}, C_{17}=\{17,34,68,136\} \end{aligned}$
2	$\begin{gathered} C_{7}=\{7,14,28,56,112,224,193,131\}, C_{11}=\{11,22,44,88,176,97,194,133\}, \\ C_{13}=\{13,26,52,104,208,161,67,134\}, C_{15}=\{15,30,60,120,240,225,195,135\} \\ C_{19}=\{19,38,76,152,49,98,196,137\}, C_{21}=\{21,42,84,168,81,162,69,138\}, \\ C_{25}=\{25,50,100,200,145,35,70,140\}, C_{27}=\{27,54,108,216,177,99,198,141\}, \\ C_{37}=\{37,74,148,41,82,164,73,146\}, C_{45}=\{45,90,180,105,210,165,75,150\}, \\ C_{51}=\{51,102,204,153\}, C_{85}=\{85,170\} \end{gathered}$
3	$C_{23}=\{23,46,92,184,113,226,197,139\}, C_{29}=\{29,58,116,232,209,163,71,142\}$, $C_{31}=\{31,62,124,248,241,227,199,143\}, C_{39}=\{39,78,156,57,114,228,201,147\}$, $C_{43}=\{43,86,172,89,178,101,202,149\}, C_{47}=\{47,94,188,121,242,229,203,151\}$, $C_{53}=\{53,106,212,169,83,166,77,154\}, C_{55}=\{55,110,220,185,115,230,205,155\}$, $C_{59}=\{59,118,236,217,179,103,206,157\}, C_{61}=\{61,122,244,233,211,167,79,158\}$, $C_{63}=\{63,126,252,249,243,231,207,159\}, C_{87}=\{87,174,93,186,117,234,213,171\}$, $C_{91}=\{91,182,109,218,181,107,214,173\}, C_{95}=\{95,190,125,250,245,235,215,175\}$, $C_{111}=\{111,222,189,123,246,237,219,183\}, C_{119}=\{119,238,221,187\}$
4	$C_{127}=\{127,254,253,251,247,239,223,191\}$

Outline

1. Introduction

2 - Higher-Order Masking of any S-box

- General Method
- Optimal Masking of Power Functions
- Efficient Heuristics for Random S-Boxes

3
Implementation Results
4. Open Issues

Cyclotomic Method

$$
\begin{aligned}
& \mathrm{S}(x)= a_{0} \\
&+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
&+a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots
\end{aligned}
$$

Cyclotomic Method

$$
\begin{aligned}
& \mathrm{S}(x)= a_{0} \\
&+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
&+a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots
\end{aligned}
$$

Cyclotomic Method

$$
\begin{aligned}
& \mathrm{S}(x)= a_{0} \\
&+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
&+a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots
\end{aligned}
$$

Cyclotomic Method

$$
\begin{aligned}
& \mathrm{S}(x)= a_{0} \\
&+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
&+a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots
\end{aligned}
$$

Cyclotomic Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
& +a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots \\
= & a_{0}+a_{1} x+a_{2} x^{2}+a_{4} x^{4}+a_{8} x^{8}+\ldots \\
& +a_{3} x^{3}+a_{6} x^{6}+a_{12} x^{12}+a_{24} x^{24}+\ldots \\
& +a_{5} x^{5}+a_{10} x^{10}+a_{20} x^{20}+a_{40} x^{40}+\ldots \\
& +\ldots
\end{aligned}
$$

Cyclotomic Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
& +a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots \\
= & a_{0}+a_{1} x+a_{2} x^{2}+a_{4} x^{4}+a_{8} x^{8}+\ldots \\
& +a_{3} x^{3}+a_{6}\left(x^{3}\right)^{2}+a_{12}\left(x^{3}\right)^{4}+a_{24}\left(x^{3}\right)^{8}+\ldots \\
& +a_{5} x^{5}+a_{10}\left(x^{5}\right)^{2}+a_{20}\left(x^{5}\right)^{4}+a_{40}\left(x^{5}\right)^{8}+\ldots \\
& +\ldots
\end{aligned}
$$

Cyclotomic Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
& +a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots \\
= & a_{0}+a_{1} x+a_{2} x^{2}+a_{4} x^{4}+a_{8} x^{8}+\ldots \\
& +a_{3} x^{3}+a_{6}\left(x^{3}\right)^{2}+a_{12}\left(x^{3}\right)^{4}+a_{24}\left(x^{3}\right)^{8}+\ldots \\
& +a_{5} x^{5}+a_{10}\left(x^{5}\right)^{2}+a_{20}\left(x^{5}\right)^{4}+a_{40}\left(x^{5}\right)^{8}+\ldots \\
& +\ldots \\
= & a_{0}+L_{1}(x)+L_{3}\left(x^{3}\right)+L_{5}\left(x^{5}\right)+\ldots
\end{aligned}
$$

where

- $L_{1}(X)=a_{1} X+a_{2} X^{2}+a_{4} X^{4}+a_{8} X^{8}+\ldots$
- $L_{3}(X)=a_{3} X+a_{6} X^{2}+a_{12} X^{4}+a_{24} X^{8}+\ldots$
- $L_{5}(X)=a_{5} X+a_{10} X^{2}+a_{20} X^{4}+a_{40} X^{8}+\ldots$
- ...

Cyclotomic Method

1. Compute one power per cyclotomic class $x, x^{3}, x^{5}, x^{7}, \ldots$

Cyclotomic Method

1. Compute one power per cyclotomic class $x, x^{3}, x^{5}, x^{7}, \ldots$
2. Evaluate the corresponding linearized polynomials $L_{1}(x)$, $L_{3}\left(x^{3}\right), L_{5}\left(x^{5}\right), L_{7}\left(x^{7}\right), \ldots$

Cyclotomic Method

1. Compute one power per cyclotomic class $x, x^{3}, x^{5}, x^{7}, \ldots$
2. Evaluate the corresponding linearized polynomials $L_{1}(x)$, $L_{3}\left(x^{3}\right), L_{5}\left(x^{5}\right), L_{7}\left(x^{7}\right), \ldots$
3. Compute the sum

$$
\mathrm{S}(x)=a_{0}+L_{1}(x)+L_{3}\left(x^{3}\right)+L_{5}\left(x^{5}\right)+L_{7}\left(x^{7}\right)+\ldots
$$

Cyclotomic Method

1. Compute one power per cyclotomic class $x, x^{3}, x^{5}, x^{7}, \ldots$
2. Evaluate the corresponding linearized polynomials $L_{1}(x)$, $L_{3}\left(x^{3}\right), L_{5}\left(x^{5}\right), L_{7}\left(x^{7}\right), \ldots$
3. Compute the sum

$$
\mathrm{S}(x)=a_{0}+L_{1}(x)+L_{3}\left(x^{3}\right)+L_{5}\left(x^{5}\right)+L_{7}\left(x^{7}\right)+\ldots
$$

Number of nonlinear multiplication

$\#\{$ cyclotomic classes $\} \backslash\left(C_{0} \cup C_{1}\right)$

Cyclotomic Method

1. Compute one power per cyclotomic class $x, x^{3}, x^{5}, x^{7}, \ldots$
2. Evaluate the corresponding linearized polynomials $L_{1}(x)$, $L_{3}\left(x^{3}\right), L_{5}\left(x^{5}\right), L_{7}\left(x^{7}\right), \ldots$
3. Compute the sum

$$
\mathrm{S}(x)=a_{0}+L_{1}(x)+L_{3}\left(x^{3}\right)+L_{5}\left(x^{5}\right)+L_{7}\left(x^{7}\right)+\ldots
$$

Number of nonlinear multiplication

$\#\{$ cyclotomic classes $\} \backslash\left(C_{0} \cup C_{1}\right)$

n	3	4	5	6	7	8	9	10
$\#$ nIm	1	3	5	11	17	33	53	105

Parity-Split Method

$$
\begin{aligned}
& \mathrm{S}(x)= a_{0} \\
&+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
&+a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots
\end{aligned}
$$

Parity-Split Method

$$
\begin{aligned}
& \mathrm{S}(x)= a_{0} \\
&+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \\
&+a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+\ldots
\end{aligned}
$$

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+a_{6} x^{6}+a_{8} x^{8}+\ldots \\
& a_{1} x+a_{3} x^{3}+a_{5} x^{5}+a_{7} x^{7}+a_{9} x^{9}+\ldots
\end{aligned}
$$

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+a_{6} x^{6}+a_{8} x^{8}+\ldots \\
& \left(a_{1}+a_{3} x^{2}+a_{5} x^{4}+a_{7} x^{6}+a_{9} x^{8}+\ldots\right) \cdot x
\end{aligned}
$$

- Nonlinear mult. : 1

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+a_{6} x^{6}+a_{8} x^{8}+\ldots \\
& \left(a_{1}+a_{3} x^{2}+a_{5} x^{4}+a_{7} x^{6}+a_{9} x^{8}+\ldots\right) \cdot x
\end{aligned}
$$

- Nonlinear mult. : 1

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{2} X+a_{4} X^{2}+a_{6} X^{3}+a_{8} X^{4}+\ldots \\
& \left(a_{1}+a_{3} X+a_{5} X^{2}+a_{7} X^{3}+a_{9} X^{4}+\ldots\right) \cdot x
\end{aligned}
$$

$$
\text { where } X=x^{2}
$$

- Nonlinear mult. : 1

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{2} X+a_{4} X^{2}+a_{6} X^{3}+a_{8} X^{4}+\ldots \\
& \left(a_{1}+a_{3} X+a_{5} X^{2}+a_{7} X^{3}+a_{9} X^{4}+\ldots\right) \cdot x
\end{aligned}
$$

$$
\text { where } X=x^{2}
$$

- Nonlinear mult. : 1

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} X^{2}+a_{8} X^{4}+\ldots+a_{2} X+a_{6} X^{3}+\ldots \\
& \left(a_{1}+a_{5} X^{2}+a_{9} X^{4}+\ldots+a_{3} x^{2}+a_{7} X^{3}+\ldots\right) \cdot x
\end{aligned}
$$

$$
\text { where } X=x^{2}
$$

- Nonlinear mult. : 1

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} X^{2}+a_{8} X^{4}+\ldots+\left(a_{2}+a_{6} X^{2}+\ldots\right) \cdot X+ \\
& \left(a_{1}+a_{5} X^{2}+a_{9} X^{4}+\ldots+\left(a_{3}+a_{7} X^{2}+\ldots\right) \cdot X\right) \cdot x
\end{aligned}
$$

$$
\text { where } X=x^{2}
$$

- Nonlinear mult. : $1+2$

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} x^{4}+a_{8} x^{8}+\ldots+\left(a_{2}+a_{6} x^{4}+\ldots\right) \cdot x^{2}+ \\
& \left(a_{1}+a_{5} x^{4}+a_{9} x^{8}+\ldots+\left(a_{3}+a_{7} x^{4}+\ldots\right) \cdot x^{2}\right) \cdot x
\end{aligned}
$$

- Nonlinear mult. : $1+2$

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} X+a_{8} X^{2}+\ldots+\left(a_{2}+a_{6} X+\ldots\right) \cdot x^{2}+ \\
& \left(a_{1}+a_{5} X+a_{9} X^{2}+\ldots+\left(a_{3}+a_{7} X+\ldots\right) \cdot x^{2}\right) \cdot x
\end{aligned}
$$

$$
\text { where } X=x^{4}
$$

- Nonlinear mult. : $1+2$

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} X+a_{8} X^{2}+\ldots+\left(a_{2}+a_{6} X+\ldots\right) \cdot x^{2}+ \\
& \left(a_{1}+a_{5} X+a_{9} X^{2}+\ldots+\left(a_{3}+a_{7} X+\ldots\right) \cdot x^{2}\right) \cdot x
\end{aligned}
$$

$$
\text { where } X=x^{4}
$$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^{r}-1$

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} X+a_{8} X^{2}+\ldots+\left(a_{2}+a_{6} X+\ldots\right) \cdot x^{2}+ \\
& \left(a_{1}+a_{5} X+a_{9} X^{2}+\ldots+\left(a_{3}+a_{7} X+\ldots\right) \cdot x^{2}\right) \cdot x
\end{aligned}
$$

$$
\text { where } X=x^{4}
$$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^{r}-1$
- and the evaluation of 2^{r+1} polynomials in $X=x^{2^{r}}$

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} X+a_{8} X^{2}+\ldots+\left(a_{2}+a_{6} X+\ldots\right) \cdot x^{2}+ \\
& \left(a_{1}+a_{5} X+a_{9} X^{2}+\ldots+\left(a_{3}+a_{7} X+\ldots\right) \cdot x^{2}\right) \cdot x
\end{aligned}
$$

where $X=x^{4}$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^{r}-1$
- and the evaluation of 2^{r+1} polynomials in $X=x^{2^{r}}$
- we derive X^{j} for $j<2^{n-r}$

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} X+a_{8} X^{2}+\ldots+\left(a_{2}+a_{6} X+\ldots\right) \cdot x^{2}+ \\
& \left(a_{1}+a_{5} X+a_{9} X^{2}+\ldots+\left(a_{3}+a_{7} X+\ldots\right) \cdot x^{2}\right) \cdot x
\end{aligned}
$$

where $X=x^{4}$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^{r}-1$
- and the evaluation of 2^{r+1} polynomials in $X=x^{2^{r}}$
- we derive X^{j} for $j<2^{n-r}$
- $2^{n-r-1}-1$ nonlinear mult.

Parity-Split Method

$$
\begin{aligned}
\mathrm{S}(x)= & a_{0}+a_{4} X+a_{8} X^{2}+\ldots+\left(a_{2}+a_{6} X+\ldots\right) \cdot x^{2}+ \\
& \left(a_{1}+a_{5} X+a_{9} X^{2}+\ldots+\left(a_{3}+a_{7} X+\ldots\right) \cdot x^{2}\right) \cdot x
\end{aligned}
$$

where $X=x^{4}$

- Nonlinear mult. : $1+2+\cdots+2^{r-1}=2^{r}-1$
- and the evaluation of 2^{r+1} polynomials in $X=x^{2^{r}}$
- we derive X^{j} for $j<2^{n-r}$
- $2^{n-r-1}-1$ nonlinear mult.

$$
\Rightarrow 2^{n-r-1}+2^{r}-2 \text { nonlinear mult. }
$$

Comparison

Number of nonlinear multiplications w.r.t. the evaluation method

| Method \} n $&{3} &{4} &{5} &{6} &{7} &{8} &{9} &{10} \\ {\hline \text { Cyclotomic }} &{1} &{3} &{5} &{11} &{17} &{33} &{53} &{105} \\ {\hline \text { Parity-Split }} &{2} &{4} &{6} &{10} &{14} &{22} &{30} &{46} \\ {\hline}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Comparison

Number of nonlinear multiplications w.r.t. the evaluation method

| Method \} n $&{3} &{4} &{5} &{6} &{7} &{8} &{9} &{10} \\ {\hline \text { Cyclotomic }} &{1} &{3} &{5} &{11} &{17} &{33} &{53} &{105} \\ {\hline \text { Parity-Split }} &{2} &{4} &{6} &{10} &{14} &{22} &{30} &{46} \\ {\hline}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

- For PRESENT $(n=4)$, we shall prefer the cyclotomic method
- For DES $(n=6)$, we shall prefer the parity-split method

Implementation Results

Method		Reference	cycles	RAM (bytes)
Second Order Masking				
1.	AES s-box	[RP10]	832	18
2.	AES s-box	[KHL11]	594	24
3.	DES s-box	Simple version in [RDP08]	1045	69
4.	DES s-box	Improved version in [RDP08]	652	39
5.	DES s-box	new scheme	7000	78
6.	PRESENT s-box	Simple Version [RDP08]	277	21
7.	PRESENT s-box	Improved Version [RDP08]	284	15
8.	PRESENT s-box	new scheme	400	31
Third Order Masking				
1.	AES s-box	[RP10]	1905	28
2.	AES s-box	[KHL11]	965	38
3.	DES s-box	new scheme	10500	108
4.	PRESENT s-box	new scheme	630	44

Open Issues

- Find more efficient methods for random s-boxes

Open Issues

- Find more efficient methods for random s-boxes
- Find faster scheme for specific s-boxes
- e.g. DES s-boxes

Open Issues

- Find more efficient methods for random s-boxes
- Find faster scheme for specific s-boxes
- e.g. DES s-boxes
- Extend the approach to smaller fields
- Mult. on $\mathrm{GF}\left(2^{4}\right)$ more efficient than on $\operatorname{GF}\left(2^{8}\right)$ in software
- Hardware masking complexity related to mult. on GF(2)

Open Issues

- Find more efficient methods for random s-boxes
- Find faster scheme for specific s-boxes
- e.g. DES s-boxes
- Extend the approach to smaller fields
- Mult. on $\mathrm{GF}\left(2^{4}\right)$ more efficient than on $\operatorname{GF}\left(2^{8}\right)$ in software
- Hardware masking complexity related to mult. on GF(2)

Open Issues

- Find more efficient methods for random s-boxes
- Find faster scheme for specific s-boxes
- e.g. DES s-boxes
- Extend the approach to smaller fields
- Mult. on $\operatorname{GF}\left(2^{4}\right)$ more efficient than on $\operatorname{GF}\left(2^{8}\right)$ in software
- Hardware masking complexity related to mult. on GF(2)
- Find families of s-boxes with good cryptographic criteria and small masking complexity

