Post-Quantum Signatures from
Threshold Computation in the Head

Matthieu Rivain

Joint work with Thibauld Feneuil

NIST 5th PQC Standardization Conference

Washington DC, 1

CRYPTOCXPERTS"

1 April, 2024

S

WE INNOVATE TO SECURE YOUR BUSINESS

Roadmap

* MPC-in-the-Head paradigm
* Threshold Computation in the Head

> Original framework (Asiacrypt 2023)
https://ia.cr/2022/1407

> Improved framework (preprint)
https://ia.cr/2023/1573

https://ia.cr/2022/1407
https://ia.cr/2023/1573

One-way function

F:xw—y

E.g. AES, MQ system,
Syndrome decoding

One-way function : Multiparty computation (MPC)

o Input sharing [[x]]

: —> : :
F:x y = m Joint evaluation of:
E.g. AES, MQ system, i' < . Accept if F(x) =y

| \) B :
>yndrome decoding . Y “0= {Reject TFO)#y

One-way function 1 Multiparty computation (MPC)

o Input sharing [[x]]

b : {
Fix Y L M Joint evaluation of:
E.g. AES, MQ system .' Y v . Accept if F(x) =

! i : " > @ — "
Syndrome decoding | | '\&/ g(x) {Reject FF) £y |

Zero-knowledge proof

—
' . OK you
er

Prover Verifi know x

MPC-in-the-Head paradigm

One-way function 1 Multiparty computation (MPC)

o Input sharing [[x]]

X > -
Fix Y L M Joint evaluation of:
E.g. AES, MQ system, '. Py ; Accept if F(x) =

v\x‘/ ’ 800 = {Reject if F(x) #y -

Syndrome decoding

!
3
[

Signature scheme ‘, ‘/i Zero-knowledge proof

/ msg
—_
’ . OK you
er

Hash
Prover Verifi know x

function

signature

MPC-in-the-Head paradigm

One-way function | Multiparty computation (MPC)
: o Input sharing [[x]]
F:xe—y | g 7
: Joint evaluation of:
E.g. AES, MQ system, : A ‘e _ [Accept it F(x) =y
Syndrome decoding : 8x) = Reject if F(x)#y
MPC-in-the-Head transform
Signature scheme | Zero-knowledge proof

/ msg

! X
Hash . ' . . Y
. "/ V
function OK you
! er

Prover Verifi know x

signature

® Jointly compute
IxT, IxT, o(x) = <(Accept it F(x) =y
@ - X | Reject it F(x) #y
® /-private

® Semi-honest model

@ - a
[[X]]5 ‘\‘\/ [[X]]3
@
[[x]]4

[x]] is a linear secret sharing of x

[x]1l, [x]l,

N

Public
%’ domain _Q‘

o T
WLI) [BYIE

@
[[X]]4

[x]] is a linear secret sharing of x

Jointly compute

g(x) = <

| Reject
£-private
Semi-honest model

Broadcast model

(Accept if F(x) =y

it F(x) £y

Prover Verifier

1) Generate and commit shares Com”([[x]],)

Lxll = (I, - [xTly) Com([Ix]ly)

Prover Verifier

(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[[x]h N /f [[X]]z
Lxly o I)—Q‘ IxI;

[[x]]4

Prover

Com”([[x]],)

CoilolopN([x1ly)

send broadcast

Lally, ..., [ally

Verifier

(1) Generate and commit shares

[x]] = ([[x]]]a ceey [[x]]N)

@ Run MPC in their head

[x N // [x1,

Lxlly o I)Q' I

[[x]]4

Prover

Com”([[x]],)

CO;pN([x1ly)

send broadcast

Lally, ..., [ally

@ Choose a random set of parties
[C{l,...,N}, st |I|=7.

Verifier

(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CO£I.l.pN([xIly)

@ Run MPC in their head

o — send broadcast
| [ally, ... [ally
> | @ Choose a random set of parties
7 IC{l,..,N}, st |I|=7.
<
® i
(Lx1; P ies
@ Open parties in [>

Prover Verifier

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

®

@ Open parties in [

Prover

Com”([[x]],)

CO;I.l.pN([x1ly)

send broadcast

Lally, ..., [ally

(Ixl;s 29 ier

@ Choose a random set of parties
[C{l,...,N}, st |I|=7.

® Check Vie I
- Commitments Com”i([[x]],)

- MPC computation [[a]]; = ¢([[x],)
Check g(y,) = Accept

Verifier

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[[x1, \ / [x1,

- ./V \. L

[[X]]4

@ Open parties in [

Prover

(1) Generate and commit shares

Com”([[x]],)

Co%r.lof)N ([xI)

(xl;s p)ier

Additive sharing:
x = xlly + - + [x]ly

hoose a random set of parties
[C {L,...,N},s.t. [I|=7¢.

® Check Vi e [
- Commitments Com”i([[x]],)

- MPC computation [[a]l; = ¢([x]];)
Check g(y, a) = Accept

Verifier

MPCitH transform: with additive sharing

(1) Generate and commit shares Com”1([[x],)

[xIl = (LxIly, -, [xDly)

CoglopN([xTy)

©

Generated using a GGM seed tree [KKW18]:

root seed

) leaf seeds

\
[x]l N

MPCitH transform: with additive sharing

Sharing / MPC protocol
(N — 1)-private

@ Open parties in I

Prover Verifier

MPCitH transform: with additive sharing

Sharing / MPC protocol
(N — 1)-private

1, X / [x1l,
Sl I).

® Il

@ Open parties in [

MPCitH transtorm: with additive sharing

1, X / [x1l,
Sl I).

® Il

@ Open parties in [

Sharing / MPC protocol
(N — 1)-private

1
= soundness error &~ —

N

MPCitH transtorm: with additive sharing

Only log, N seeds to be revealed:

root seed

CHCOHCOCOCIO OO0 \‘1 leaf seeds
[[x]]N

MPCitH transform: with threshold sharing

a.k.a. Threshold Computation in the Head (TCitH)

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x N // [x1,

[Ty .('/ I)Q x5
ﬂx]]4

@ Open parties in [

Prover

Com”([[x]],)

CO;I.{pN([x1ly)

send broadcast

Lally, ..., [ally

(Ixl;s 29 ier

@ Choose a random set of parties
[C{l,...,N}, st |I|=7.

® Check Vie I
- Commitments Com”i([[x]],)

- MPC computation [[a]]; = ¢([[x],)
Check g(y,) = Accept

Verifier

MPCitH transform: with threshold sharing

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

Shamir secret sharing:
for PX) :=x+r - X+ - +rf-X’/ﬂ

x1l \ / [x1l
e

Il
- o—

[[x]]4

Prover Verifier

MPCitH transform: with threshold sharing

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

Shamir secret sharing:
for PX) :=x+r - X+ - +rf-X’/ﬂ

x1l \ / [x1l
e

Il
- o—

[[x]]4

= {-privacy

Prover Verifier

MPCitH transform: with threshold sharing

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

Shamir secret sharing:
for PX) :=x+r - X+ - +rf-X’/ﬂ

x1l \ / [x1l
e

Il
- o—

[[x]]4

= {-privacy
Weuse £ < N (e.g.C =1)

Prover Verifier

MPCitH transform: with threshold sharing

(1) Generate and commit shares Com”1([[x],)

[xIl = (LxIly, -, [xDly)

O

CoglopN([xTy)

Committed using a Merkle tree:

lxlly MxI, <

(D | (D | G0 | GNID | (HND | (ND | D (NS | (NND | (NS | GHNND | GNND | b |

root = commitment

MPCitH transtorm: with threshold sharing

Sharing / MPC protocol ¢-private

@ Open parties in [

MPCitH transtorm: with threshold sharing

Sharing / MPC protocol ¢-private

®

@ Open parties in [

MPCitH transform: with threshold sharing

Sharing / MPC protocol ¢-private

= soundness error &~ (N — £)/N

@

®

@ Open parties in [

MPCitH transform: with threshold sharing

Sharing / MPC protocol ¢-private

= soundness error &~ (N — £)/N

1
- Much better! ~ W &

D 1, 4

@ Open parties in [

MPCitH transform: with threshold sharing

Sharing / MPC protocol ¢-private

= soundness error &~ (N — £)/N

I). Much better! ~ é &

D 1, 4

@ Open parties in I , broadcasted sharings =

Reed-Solomon codewords

MPCitH transtorm: with threshold sharing

Only log, N labels to be revealed:
Ixll; [xIly e [xly

/

Ut
__/_

root = commitment

MPCitH
+ seed trees

TCitH

(original framework)

+ hypercube =1
S d : + : -+ N
oundness error ~ N p ~ N P 5

Prover runtime

Verifier runtime

Size of tree

MPCitH
+ seed trees

TCitH

(original framework)

+ hypercube ¢ =1
S d : + : . N
oundness error ~ N p ~ N P 5

Prover runtime

Verifier runtime

Size of tree

MPCitH

+ seed trees
+ hypercube [AGHHJY]

TCitH

(original framework)
=1

Soundness error

Ly

L, (N
NP\

Prover runtime

Party emulation
Symmetric crypto: OTR

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime

Size of tree

MPCitH
+ seed trees
+ hypercube

TCitH

(original framework)
=1

Soundness error

Ly

L, (N
NP\

Prover runtime

Party emulation

Symmetric crypto: O

Verifier runtime

Party emulation@
Symmetric gpeoto: O(N)

fewer party
emulations

Size of tree

MPCitH
+ seed trees
+ hypercube

TCitH

(original framework)
£ =1

Soundness error

L

L, (N
NP\

Prover runtime

Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime

Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree

MPCitH
+ seed trees
+ hypercube

TCitH

(original framework)
£ =1

Soundness error

L

L, (N
NP\

Prover runtime

Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime

Party emulationd
Symmetric crypto: O(N

Party emulation

POLO: ;;(Iog N)

Symmetric

Size of tree

fewer party
emulations

MPCitH
+ seed trees
+ hypercube

TCitH
(original framework)
=1

Soundness error

Ly

L, (N
NP\

Prover runtime

Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime

Party emulations: log.
Symmetric crypto

Party emulations: 1
Symmetric crypt

Size of tree

% much less
symmetric crypto

MPCitH
+ seed trees
+ hypercube

TCitH

(original framework)
£ =1

Soundness error

L

L, (N
NP\

Prover runtime

Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime

Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree

128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

MPCitH
+ seed trees
+ hypercube

TCitH

(original framework)
£ =1

Soundness error

L

L, (N
NP\

Prover runtime

Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime

Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree

128-bit security:/~2KB
256-bit security: %« 8KB

128-bit securityf ~4KB
256-bit securitvn~16KB

MPCitH
+ seed trees
+ hypercube

TCitH

(original framework)
£ =1

Soundness error

Ly

L, (N
NP\

Prover runtime

Party emulations: log N +1
Symmetric crypto: O(N)

Party emulations: 2
Symmetric crypto: O(N)

Verifier runtime

Party emulations: log N
Symmetric crypto: O(N)

Party emulations: 1
Symmetric crypto: O(log N)

Size of tree

128-bit security: ~2KB
256-bit security: ~8KB

128-bit security: ~4KB
256-bit security: ~16KB

TCitH vs. (additive-sharing) MPCitH

MPCitH

Soundn

What can we do to avoid

Prover

these limitations?

Verifier

CitH with GGM trees

Size ¢

Number of parties

Step 1: Generate a
replicated secret sharing [ISN89]

X=r+rn+- - +ry

(D | D | D | (D | (D | GND | GHND | G | G |

J(

J(

J(

J(

J(

)

ry+r+

+ Iy

Step 1: Generate a
replicated secret sharing [ISN89]

X=r+rn+- - +ry

OO OOl COUUuUILTD
r1+l/'2+ e L) +rN — x

OOOOOOOOOOOO0OOO — Party 1
OAOOOOOOOOOOOOOD — Party 2

OOOOOOOOOOOOOOOM — Party N

Step 1: Generate a Step 2: Convert it into a
replicated secret sharing [ISN89] Shamir’s secret sharing [CDIO5]

X=r+rn+- - +ry

OO OOl COUUuUILTD
r1+l/'2+ e L) +rN — x

OOOOOOOOOOOO0OOO — Party 1
OAOOOOOOOOOOOOOD — Party 2

OOOOOOOOOOOOOOOM — Party N

Let P(X) = Z.rj-Pj(X)

with P(X)=1-(1/e)-X

Step 1: Generate a Step 2: Convert it into a

replicated secret sharing [ISN89] Shamir’s secret sharing [CDI05]

X=r+rn+- - +ry

Let P(X) = Z.rij(X)
J

with P(X)=1-(1/e)-X

v [IX]] — (P(el)a aP(eN)) is a
valid Shamir’s secret sharing of x

OO OOl COUUuUILTD
rl_l_l/'z_l_ e L) +rN — x

OOOOOOOOOOOO0OOO — Party 1
OAOOOOOOOOOOOOOD — Party 2

OOOOOOOOOOOOOOOM — Party N

Step 1: Generate a
replicated secret sharing [ISN89]

X=r+rn+- - +ry

(0| G0 | N | N0 (NN | (D | G0 | (N0 | NS NS | NS | (N | (NN | D | GNEB | B¢

+ Iy

OO

) = Party 1

D(x(OOOOOOOOOOOOO — Party 2

OOOOOOOOOOOOOOOM — Party N

Step 2: Convert it into a
Shamir’s secret sharing [CDI05]

Let P(X) = Z.rij(X)
J

with P(X)=1-(1/e)-X

J Xl = (P(ey), ..., Pley)) is a
valid Shamir’s secret sharing of x

= X

Party 1 can compute
[x], =) rP(e,)
J#i
(since Py(e;) = 0)

tH ith Gtes

Step 2: Convert it into a

Step 1: Generate a
replicated secret sharing [ISN89] Shamir’s secret sharing [CDI05]
X=r+nrn+- --+ry
Let P(X) = Z_rij(X)

J
with P(X) =1~ (1/e)- X

/7 \ ¢ [[x] = (P(ey), ..., P(ey)) is a

) valid Shamir’s secret sharing of x

)
+ rN = X
(JC) — Party 1
(JO) - Party 2 [xll; = Z r;Pi(e;)
J#

|w — Party N (since P(e;) = 0)

Party 1 can compute

Step 1: Generate a Step 2: Convert it into a

replicated secret sharing [ISN89] Shamir’s secret sharing [CDI05]
X=r+rn+- - +ry

Let P(X) = Z.rij(X)
J

with P(X)=1-(1/e)-X

J Xl = (P(ey), ..., Pley)) is a
valid Shamir’s secret sharing of x
)| D | D | D | D | (D | G0 | D | D | G o |

e
+rN — X

ry+r+
OO OO0 — Party 1 Farty it can compute

OAOOOOOOOOOOOOOD — Party 2 [x1; = Y r,Pfe)
: j#i

OOOOOOOOOOOOOOOM — Party N (since Py(e;) = 0)

X Canbe
adapted to 7 > 1

Step 1: Generate a Step 2: Convert it into a

replicated secret sharing [ISN89] Shamir’s secret sharing [CDI05]
X=r+rn+- - +ry

Let P(X) = Z.rij(X)
J

with P(X)=1-(1/e)-X

J Il = (Pley), ..., Pley)) is a
valid Shamir’s secret sharing of x
)| D | D | D | D | (D | G0 | D | D | G o |

e
+rN — X

ry+r+
OO OO0 — Party 1 Farty it can compute

OAOOOOOOOOOOOOOD — Party 2 [l = Y r:Pe)
: j#i
OOOOOOOOOM — Party N (since Pe;) = 0)

A Size of
GGM tree

(D D D | D | D |
X Canbe
adapted to 7 > 1

Step 1: Generate a Step 2: Convert it into a

replicated secret sharing [ISN89] Shamir’s secret sharing [CDI05]
X=r+rn+- - +ry

Let P(X) = Z_rij(X)
J

with P(X) =1-(l/¢) - X

C XD = (P(ey), ..., Pley)) s a
valid Shamir’s secret sharing of x
)| D | D | D | D | (D | G0 | D | D | G o |

e
+rN — X

ry+r+
OO OO0 — Party 1 Farty it can compute

OAOOOOOOOOOOOOOD — Party 2 [x1; = Y riPe)
: j#i

OOOOOOOOOOOOOOOM — Party N (since Py(e;) = 0)

© Good soundness
(only valid sharings)

% Can be

A Size of
GGM tree

adapted to 7 > 1

Step 1: Generate a Step 2: Convert it into a

replicated secret sharing [ISN89] Shamir’s secret sharing [CDIO5]
X=r+r+-- +ry

Let P(X) = Z_rij(X)
J

with P(X) =1-(l/¢) - X

C XD = (P(ey), ..., Pley)) s a
valid Shamir’s secret sharing of x
)| D | D | D | D | (D | G0 | D | D | G o |

e
+rN — X

ry+r+
OO OO0 — Party 1 Farty it can compute

OFROOOOOOOOOO0O0O0O0 - Party2 k= Y rPe)
: i
OOOOOOOOOOOOOOOM — Party N (since Py(e;) = 0)

A Size of © Good soundness @
GGM tree (only valid sharings)

% Can be

adapted to 7 > 1

Additive MPCitH

TCitH (GGM tree)

Traditional (ms)

Hypercube (ms)

TCitH (ms)

Saving

Party emulations
/ repetition

N

1 +log, N

2

Additive MPCitH

TCitH (GGM tree)

Traditional (ms)

Hypercube (ms)

TCitH (ms)

Saving

Party emulations
/ repetition

N

1 +log, N

2

Additive MPCitH

TCitH (GGM tree)

Traditional (ms)

Hypercube (ms)

TCitH (ms)

Saving

Party emulations
/ repetition

N

1 +log, N

2

<§e Party emulations = 1 + [

B Butonlyif |F| >N

log, N

log, ||

|

Additive MPCitH

TCitH (GGM tree)

Traditional (ms)

Hypercube (ms)

TCitH (ms)

Saving

Party emulations
/ repetition

N

1 +log, N

2

<§e Party emulations = 1 + [

B Butonlyif |F| >N

log, N

log, ||

|

4

-

2

if |F| >N

L1+10g2N it |F| =2

Additive MPCitH

TCitH (GGM tree)

Traditional (ms) | Hypercube (ms) TCitH (ms) Saving
Party emulations | [log, N 1
/ repetition N 1+ 10g2 N + log, | F]|

AlMer 4.53 3.22 3.22 -0 %
Biscuit 17.71 4.65 4.24 -16 %
MIRA 384.26 20.11 9.89 51 %
MiRitH-la 54.15 6.60 5.42 -18 %
MiRitH-Ib 89.50 8.66 6.66 23 %
MQOM-31 96.41 11.27 8.74 21 %
MQOM-251 44 .11 7.56 5.97 21 %

RYDE 12.41 4.65 4.65 -0 %
SDitH-256 78.37 7.23 5.31 27 %
SDitH-251 19.15 7.53 6.44 -14 %

e Comparison based on a generic MPCitH library (()libmpcith)

* Code for MPC protocols fetched from the submission packages

Speedups for MPCitH candidates

ae)
ing
rryem| @ Nice speedups, but could
/ repe
A we also improve the sizes? %
Bisc 5 %
MIR %
MiRit : o . 3 %
wrll & Let's use the multiplication p=
MQO %
MQO homomorphism %
RYL %
SDitH- %
SDitH-25 7. : 0. 242 -14 %

e Comparison based on a generic MPCitH library (()libmpcith)

* Code for MPC protocols fetched from the submission packages

Using multiplication homomorphism

e Shamir's secret sharing satisfies:

@ - [yl = [x - y] 2

Using multiplication homomorphism

e Shamir's secret sharing satisfies:

L)@ - [y19 = [x - y) oo

e Simple protocol to verity polynomial constraints

» wvalid & fiiw)=0, ..., f,(w)=0

> parties locally compute

[edl = [vD +) ;- f(IwD)

J=1

Using multiplication homomorphism

e Shamir's secret sharing satisfies:

[- [y1“ = [x - y]

e Simple protocol to verity po
» wvalid & fi(w) =0, .

> parties locally compute

Ledl = [v] +

(2d)

ynomial constraints

o> (W)

randomness
from the verifier

Using multiplication homomorphism

e Shamir's secret sharing satisfies:

[- [y1“ = [x - y]

e Simple protocol to verity po
» wvalid & fi(w) =0, .

> parties locally compute

(2d)

ynomial constraints

o> (W)

pre-committed randomness
sharing of O from the verifier

Using multiplication homomorphism

e Shamir's secret sharing satisfies:

L)@ - [y19 = [x - y) oo

e Simple protocol to verity polynomial constraints

- wvalid & fi(w) =0, ..., f,(w)

> parties locally compute

check a =0 pre-committed randomness
false positive proba 1/|[F| sharing of O from the veritier

Using multiplication homomorphism

e Shamir's secret sharing satisfies:

L)@ - [y19 = [x - y) oo

e Simple protocol to verity polynomial constraints

- wvalid & fi(w) =0, ..., f,(w)

> parties locally compute

[edl = [vD +) ;- f(IwD)

J=1

e Tweaking MPCitH-based candidates = smaller signatures

Original Size Our Variant Saving

Biscuit 4758 B 4048 B -15 %
MIRA 5640 B 5340 B 5%
MiRitH-la 5 665B 4694 B -17 %
MiRitH-lb 6298 B 5245 B -17 %
MQOM-31 6 328 B 4027 B -37 %
MQOM-251 65/5B 4257 B -35%
RYDE 5956 B 52818B -11 %
SDitH 8241 B / 335B 27 %
MQ over GF(4) 38 609 B 3858B -55 %
SD over GF(2) 11160 B / 354 B -34 %
SD over GF(2) 12 066 B 6974 B -42 %

*N =256

Original Size Our Variant Saving
Biscuit 4758 B 3431 B
MIRA 5640 B 4314 B
MiRitH-la 5665B 38/3B
MiRitH-lb 6 298 B 4 250 B
MQOM-31 6 328 B 3567 B
MQOM-251 65/5B 3418 B
RYDE 5956 B 4274 B
SDitH 8 241 B 56/3B
MQ over GF(4) 8 609 B 3301B

SD over GF(2) 11160 B / 354 B -34 %

SD over GF(2) 12 066 B 69/4 B -42 %

*N=1256 *N =2048

Shorter signatures for candicates

Two very recent works :

e Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy,
Scholl. One Tree to Rule Them All: Optimizing GGM Trees and
OWFs for Post-Quantum Signatures. https://ia.cr/2024/490

> General techniques to reduce the size of GGM trees

> Apply to TCitH-GGM (gain of ~500 B at 128-bit security)

e Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support

Decomposition in the Head: Shorter Signatures from Rank SD and
MinRank. https://ia.cr/2024/541

> New MPC protocols for TCitH / VOLEitH signatures based on
MinRank & Rank SD

https://ia.cr/2024/490
https://ia.cr/2024/541

Other results

* Improvements for TCitH-MT
> Degree-enforcing commitment scheme

> Packed secret sharing

® Other applications

> Post-quantum ring signatures

> For any one-way function
> |o| < 10kB (~ 5 kB with MQ) for |ring]| = 2%°
> ZKP for lattices

> Smallest with MPCitH paradigm
> Competitive to lattice-based ZKP

> Improvement of Ligero for general arithmetic circuits

e Connections to VOLEitH and Ligero proof systems

Thank you for listening J\

Original TCitH Improved TCitH
framework framework
(Asiacrypt’23) (preprint)

References

[AGHJY23] Aguilar Melchor, Gama, Howe, Hiilsing, Joseph, Yue: “The Return of the SDitH"
(EUROCRYPT 2023)

[BBMORRRS24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl: “One
Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures”
https://ia.cr/2024/490

[BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. "Dual Support Decomposition in the
Head: Shorter Signatures from Rank SD and MinRank” https://ia.cr/2024/541

[CDIO0S] Cramer, Damgard, Ishai: “Share conversion, pseudorandom secret-sharing and
applications to secure computation” (TCC 2005)

[FR22] Thibauld Feneuil, Matthieu Rivain: "Threshold Linear Secret Sharing to the Rescue of
MPC-in-the-Head" https://ia.cr/2022/1407 (ASIACRYPT 2023)

[FR23] Thibauld Feneuil, Matthieu Rivain: "Threshold Computation in the Head: Improved

Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" https://ia.cr/
2023/1573

[ISN89] Ito, Saito, Nishizeki: “Secret sharing scheme realizing general access structure”
(Electronics and Communications in Japan 1989)

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with
Applications to Post-Quantum Signatures" (CCS 2018)

https://ia.cr/2024/490
https://ia.cr/2024/541
https://ia.cr/2022/1407
https://ia.cr/2023/1573
https://ia.cr/2023/1573

Application of Shamir’s
secret sharing with

MPCitH with additive
sharing, e.g.
[KKW18,BN20,DOT21]

Original TCitH
framework
[FR23b]

Merkle tree commitments

+ GGM variant

General TCitH + packed secret sharing

framework
(this work)

VOLEitH = TCitH with
s =¢ =1 and large field
embedding

+ non-linear round functions
+ degree-enforcing MT commitment

TCitH with T} e, =
optimised version of the
Ligero concrete scheme

VOLE-in-the-Head
[BBDG 23]

Ligero
[AHIV17,AHIV23]

TCitH-GGM VOLEitH
N — 256 Size |Comput. Field|| Size |Computat. Field
AlMer [CCH™23 4352 B| 19x GF(2°) ||3938 B GF(2'%®)
Biscuit [BKPV23 4048 B | 19x GF(16%) |/ 3682 B| GF(16%*°)
MIRA [ABB™23d 5340 B | 19x GF(16%) || 4770 B| GF(16**'%)
MiRitH-Ia [ABB*23b 4694 B [19x GF(16%) | 4226 B| GF(162%16)
MiRitH-Ib [ABB™23b] 5245 B | 19x GF(16%) | 4690 B| GF(16**'°)
MQOM (over Fa51) [FR23a| | 4257 B | 19x GF(251)| 3858 B| GF(251%°)
MQOM (over F31) [FR23a| | 4027 B |19x GF(31%) || 3660 B| GF(31°*')
8
RYDE [ABBT23c 5281 B 115: g 5((;31)) 4720 B| GF(2'*®)
SDitH (over Fa51) [AFGT23|| 7335 B | 19x GF(251) || 6450 B| GF(251'°)
SDitH (over Fas6) [AFG™23|| 7335 B | 19x GF(256) || 6450 B | GF(256'°)
TCitH-GGM VOLEitH
N — 2048 Size |Comput. Field|| Size |Computat. Field
AlMer [CCH™ 23] 3639 B | 13x GF(2') |/ 3546 B| GF(2'%®)
Biscuit [BKPV23] 3431 B | 13x GF(16°) || 3354 B| GF(16°*'?)
MIRA [ABB™23d] 4314 B | 13x GF(16°) || 4170 B| GF(16**'?)
MiRitH-Ia [ABB™23b] 3873 B |13x GF(16°) || 3762 B| GF(16%*'?)
MiRitH-Ib [ABB™23b] 4250 B | 13x GF(16°) || 4110 B| GF(163%'?)
MQOM (over F251) [FR23a] [3567 B |13x GF(251°%)| 3486 B| GF(251°*'%)
MQOM (over F3;) [FR23a] | 3418 B|13x GF(31%) (3338 B| GF(313%!?)
11

RYDE [ABB*23(] 4274 B igi gigmi 4133 B| GF(2'%®)
SDitH (over F251) [AFGT23]| 5673 B [13x GF(251%)|| 5430 B| GF(251**'?)
SDitH (over Fa56) [AFGT23]| 5673 B [13x GF(256%)|| 5430 B | GF(256**'?)

