Post-Quantum Signatures from Threshold Computation in the Head

Matthieu Rivain

Joint work with Thibauld Feneuil

NIST 5th PQC Standardization Conference Washington DC, 11 April, 2024

Roadmap

- MPC-in-the-Head paradigm
- Threshold Computation in the Head
 - Original framework (Asiacrypt 2023)
 https://ia.cr/2022/1407
 - Improved framework (preprint) https://ia.cr/2023/1573

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding Multiparty computation (MPC)

Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

One-way function

$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

X Hash function signature

Multiparty computation (MPC)

Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} Accept & \text{if } F(x) = y \\ Reject & \text{if } F(x) \neq y \end{cases}$$

MPC-in-the-Head transform

Zero-knowledge proof

MPC model

Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- ℓ -private
- Semi-honest model

 $[\![x]\!]$ is a linear secret sharing of x

MPC model

Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- \(\ell \)-private
- Semi-honest model
- Broadcast model

 $[\![x]\!]$ is a linear secret sharing of x

<u>Prover</u> <u>Verifier</u>

① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, \ldots, [\![x]\!]_N)$

<u>Prover</u> <u>Verifier</u>

- ① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, \ldots, [\![x]\!]_N)$
- 2 Run MPC in their head

<u>Prover</u>

- ① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$
- 2 Run MPC in their head

③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.

<u>Prover</u>

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.

<u>Prover</u>

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

- ③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.
- ⑤ Check $\forall i \in I$
 - Commitments $\mathrm{Com}^{\rho_i}(\llbracket x \rrbracket_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

Prover

2 Run MPC in their head

4 Open parties in I

Additive sharing:

$$x = [\![x]\!]_1 + \dots + [\![x]\!]_N$$

 $(\llbracket x \rrbracket_i, \rho_i)_{i \in I}$

Thoose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \mathcal{C}$.

- Commitments $\mathrm{Com}^{\rho_i}([\![x]\!]_i)$
- MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \text{Accept}$

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

 $\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$...

 $\operatorname{\mathsf{Com}}^{\rho_N}(\llbracket x \rrbracket_N)$

2 Run MPC in their head

Generated using a GGM seed tree [KKW18]:

 $(\llbracket x \rrbracket_i)$

<u>Prover</u> <u>Verifier</u>

<u>Prover</u> <u>Verifier</u>

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

$$\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$$
...
 $\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

Only $log_2 N$ seeds to be revealed:

es

ties

 $(\llbracket x \rrbracket_i)$ $\varphi(\llbracket x \rrbracket_i)$

a.k.a. Threshold Computation in the Head (TCitH)

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

- ③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.
- ⑤ Check $\forall i \in I$
 - Commitments $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

<u>Prover</u>

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their hea

4 Open parties in I

Shamir secret sharing:

$$[\![x]\!]_i := P(e_i) \quad \forall i$$

for
$$P(X) := x + r_1 \cdot X + \dots + r_{\ell} \cdot X^{\ell}$$

m set of parties t. $|I| = \ell$.

 $\operatorname{Com}^{
ho_i}(\llbracket x
rbracket_i)$ ion $\llbracket lpha
rbracket_i = arphi(\llbracket x
rbracket_i)$ scept

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their hea

4 Open parties in I

Shamir secret sharing:

$$\begin{split} \llbracket x \rrbracket_i &:= P(e_i) \quad \forall i \\ \text{for } P(X) &:= x + r_1 \cdot X + \dots + r_\ell \cdot X^\ell \\ &\Rightarrow \ell\text{-privacy} \end{split}$$

n set of parties t. $|I|=\mathscr{C}$.

 $\operatorname{Com}^{
ho_i}(\llbracket x
rbracket_i)$ tion $\llbracket lpha
rbracket_i = arphi(\llbracket x
rbracket_i)$ ccept

Prover

Verifier

① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$

2 Run MPC in their hea

4 Open parties in I

Shamir secret sharing:

$$\begin{split} \llbracket x \rrbracket_i &:= P(e_i) \quad \forall i \\ \text{for } P(X) &:= x + r_1 \cdot X + \dots + r_\ell \cdot X^\ell \\ &\Rightarrow \ell\text{-privacy} \end{split}$$

We use
$$\ell \ll N$$
 (e.g. $\ell = 1$)

m set of parties t. $|I|=\ell$.

 $\operatorname{Com}^{
ho_i}(\llbracket x
rbracket_i)$ tion $\llbracket lpha
rbracket_i = arphi(\llbracket x
rbracket_i)$ ccept

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

 $\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$... $\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

2 Run MPC in their head

Committed using a Merkle tree:

Δ.

 $([x]_i)$

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

parties

ζ.

 $\left[\right]_{i}$

 $= \varphi(\llbracket x \rrbracket_i)$

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

parties

C.

 $\left| \right|_{i}$

 $= \varphi(\llbracket x \rrbracket_i)$

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

 \Rightarrow soundness error $\approx (N - \ell)/N$ §

parties o

 $]]_i)$

 $= \varphi(\llbracket x \rrbracket_i)$

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

 \Rightarrow soundness error $\approx (N - \ell)/N$

Much better!
$$\approx \frac{1}{\binom{N}{\ell}}$$

parties

в.

Π.)

 $= \varphi(\llbracket x \rrbracket_i)$

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

Sharing / MPC protocol *e-private*

 \Rightarrow soundness error $\approx (N - \ell)/N$

Much better!
$$\approx \frac{1}{\binom{N}{\ell}}$$

Proadcasted sharings =
Reed-Solomon codewords

Prover

V C I I I I C

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime		
Verifier runtime		
Size of tree		

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \left(\frac{N}{2}\right)$
Prover runtime	false positive ⇒ must be probability smaller in TCitH	
Verifier runtime		
Size of tree		

TCitH vs. (additive-sharing) MPCitH

	MPCitH + seed trees + hypercube [AGHHJY]	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime	Party emulations log N +1 Symmetric crypto: O(iv)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>
Verifier runtime		
Size of tree		

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime	Party emulations log N +1 Symmetric crypto: O(ïvï)	Party emulations: 2 Symmetric crypto: O(N)
Verifier runtime		fewer party emulations
Size of tree		

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>
Verifier runtime	Party emulations: log <i>N</i> Symmetric crypto: <i>O(N)</i>	Party emulations: 1 Symmetric crypto: O(log N)
Size of tree		

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>
Verifier runtime	Party emulations: log N Symmetric crypto: O(IN)	Party emulations: 1 Symmetric crypto: O(log N)
Size of tree		fewer party emulations

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>
Verifier runtime	Party emulations: log N Symmetric crypto O(N)	Party emulations: 1 Symmetric crypto O(log N)
Size of tree		much less symmetric crypto

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>
Verifier runtime	Party emulations: log <i>N</i> Symmetric crypto: <i>O(N)</i>	Party emulations: 1 Symmetric crypto: O(log N)
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security: ~4KB 256-bit security: ~16KB

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>
Verifier runtime	Party emulations: log <i>N</i> Symmetric crypto: <i>O(N)</i>	Party emulations: 1 Symmetric crypto: O(log N)
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security ~4KB 256-bit security ~16KB

	MPCitH + seed trees + hypercube	TCitH (original framework) $\ell=1$
Soundness error	$\approx \frac{1}{N} + p$	$\approx \frac{1}{N} + p \cdot \left(\frac{N}{2}\right)$
Prover runtime	Party emulations: log N +1 Symmetric crypto: O(N)	Party emulations: 2 Symmetric crypto: <i>O(N)</i>
Verifier runtime	Party emulations: log <i>N</i> Symmetric crypto: <i>O(N)</i>	Party emulations: 1 Symmetric crypto: O(log N)
Size of tree	128-bit security: ~2KB 256-bit security: ~8KB	128-bit security: ~4KB 256-bit security: ~16KB
Number of parties		$N \leq \mathbb{F} $

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \sum_{j} r_{j} P_{j}(X)$$

with $P_{j}(X) = 1 - (1/e_{j}) \cdot X$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a **Shamir's secret sharing** [CDI05]

Let
$$P(X) = \sum_{j} r_{j} P_{j}(X)$$
 with $P_{j}(X) = 1 - (1/e_{j}) \cdot X$

 $[\![x]\!] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$\rightarrow$$
 Party N

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \sum_{j} r_{j} P_{j}(X)$$
 with $P_{j}(X) = 1 - (1/e_{j}) \cdot X$

 $[x] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$\supset \stackrel{\frown}{\bowtie} \rightarrow Partv N$$

Party i can compute

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

(since
$$P_i(e_i) = 0$$
)

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \sum_{j} r_{j} P_{j}(X)$$
 with $P_{j}(X) = 1 - (1/e_{j}) \cdot X$

 $[x] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

Party i can compute

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

(since
$$P_i(e_i) = 0$$
)

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \sum_{j} r_{j} P_{j}(X)$$
 with $P_{j}(X) = 1 - (1/e_{j}) \cdot X$

 $[x] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

Party i can compute

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

(since
$$P_i(e_i) = 0$$
)

 \square

% Can be adapted to $\ell > 1$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a **Shamir's secret sharing** [CDI05]

Let
$$P(X) = \sum_{j} r_{j} P_{j}(X)$$
 with $P_{j}(X) = 1 - (1/e_{j}) \cdot X$

 $[\![x]\!] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$\rightarrow$$
 Party

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

$$0 () \rightarrow Party N$$

(since
$$P_i(e_i) = 0$$
)

Party i can compute

X Can be adapted to $\ell > 1$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a Shamir's secret sharing [CDI05]

Let
$$P(X) = \sum_{j} r_{j} P_{j}(X)$$
 with $P_{j}(X) = 1 - (1/e_{j}) \cdot X$

 $[x] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$\bigcirc \bigcirc \rightarrow Party 2$$

 $0 \not \boxtimes M \rightarrow Party N$

Party i can compute

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

(since
$$P_i(e_i) = 0$$
)

% Can be adapted to $\ell > 1$

Step 1: Generate a replicated secret sharing [ISN89]

$$x = r_1 + r_2 + \dots + r_N$$

Step 2: Convert it into a **Shamir's secret sharing** [CDI05]

Let
$$P(X) = \sum_{j} r_{j} P_{j}(X)$$
 with $P_{j}(X) = 1 - (1/e_{j}) \cdot X$

 $[\![x]\!] = (P(e_1), ..., P(e_N))$ is a valid Shamir's secret sharing of x

$$\nearrow$$

 \rightarrow Party 1

 $\mathfrak{I}(X) \to \mathsf{Party}\,N$

$$[\![x]\!]_i = \sum_{j \neq i} r_j P_j(e_i)$$

(since
$$P_i(e_i) = 0$$
)

X Can be adapted to $\ell > 1$

	Additive MPCitH		TCitH (GGM	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

	Additive MPCitH		TCitH (GGM tree)	
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

	Additive MPCitH		TCitH (GGM	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

Party emulations =
$$1 + \left\lceil \frac{\log_2 N}{\log_2 |\mathbb{F}|} \right\rceil$$

	Additive MPCitH		TCitH (GGN	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	2	

Party emulations =
$$1 + \left\lceil \frac{\log_2 N}{\log_2 |\mathbb{F}|} \right\rceil = \begin{cases} 2 & \text{if } |\mathbb{F}| \ge N \\ \vdots & \vdots \\ 1 + \log_2 N & \text{if } |\mathbb{F}| = 2 \end{cases}$$

	Additive MPCitH		TCitH (GGN	l tree)
	Traditional (ms)	Hypercube (ms)	TCitH (ms)	Saving
Party emulations / repetition	N	$1 + \log_2 N$	$1 + \left\lceil \frac{\log_2 N}{\log_2 \mathbb{F} } \right\rceil$	
AlMer	4.53	3.22	3.22	-0 %
Biscuit	17.71	4.65	4.24	-16 %
MIRA	384.26	20.11	9.89	-51 %
MiRitH-la	54.15	6.60	5.42	-18 %
MiRitH-Ib	89.50	8.66	6.66	-23 %
MQOM-31	96.41	11.27	8.74	-21 %
MQOM-251	44.11	7.56	5.97	-21 %
RYDE	12.41	4.65	4.65	-0 %
SDitH-256	78.37	7.23	5.31	-27 %
SDitH-251	19.15	7.53	6.44	-14 %

- Comparison based on a generic MPCitH library (Clibmpcith)
- Code for MPC protocols fetched from the submission packages

- Comparison based on a generic MPCitH library (libmpcith)
- Code for MPC protocols fetched from the submission packages

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

Simple protocol to verify polynomial constraints

•
$$w$$
 valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w) = 0$

parties locally compute

$$\llbracket \alpha \rrbracket = \llbracket v \rrbracket + \sum_{j=1}^{m} \gamma_j \cdot f_j(\llbracket w \rrbracket)$$

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

Simple protocol to verify polynomial constraints

•
$$w$$
 valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w)$

parties locally compute

$$[\![\alpha]\!] = [\![v]\!] + \sum_{j=1}^{m} \gamma_{j} f_{j}([\![w]\!])$$
randomness from the verifier

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w)$
 - parties locally compute

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w)$
 - parties locally compute

• Shamir's secret sharing satisfies:

$$[\![x]\!]^{(d)} \cdot [\![y]\!]^{(d)} = [\![x \cdot y]\!]^{(2d)}$$

- Simple protocol to verify polynomial constraints
 - w valid $\Leftrightarrow f_1(w) = 0, ..., f_m(w)$
 - parties locally compute

$$\llbracket \alpha \rrbracket = \llbracket v \rrbracket + \sum_{j=1}^{m} \gamma_j \cdot f_j(\llbracket w \rrbracket)$$

Tweaking MPCitH-based candidates ⇒ smaller signatures

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	4 048 B	-15 %
MIRA	5 640 B	5 340 B	-5 %
MiRitH-la	5 665 B	4 694 B	-17 %
MiRitH-Ib	6 298 B	5 245 B	-17 %
MQOM-31	6 328 B	4 027 B	-37 %
MQOM-251	6 575 B	4 257 B	-35 %
RYDE	5 956 B	5 281 B	-11 %
SDitH	8 241 B	7 335 B	-27 %
MQ over GF(4)	8 609 B	3 858 B	-55 %
SD over GF(2)	11 160 B	7 354 B	-34 %
SD over GF(2)	12 066 B	6 974 B	-42 %

^{*} *N* = 256

Shorter signatures for MPCitH-based candidates

	Original Size	Our Variant	Saving
Biscuit	4758 B	3 431 B	
MIRA	5 640 B	4 314 B	
MiRitH-la	5 665 B	3 873 B	
MiRitH-Ib	6 298 B	4 250 B	
MQOM-31	6 328 B	3 567 B	
MQOM-251	6 575 B	3 418 B	
RYDE	5 956 B	4 274 B	
SDitH	8 241 B	5 673 B	
MQ over GF(4)	8 609 B	3 301 B	
SD over GF(2)	11 160 B	7 354 B	-34 %
SD over GF(2)	12 066 B	6 974 B	-42 %

^{*} N = 256 * N = 2048

Shorter signatures for MPCitH-based candidates

Two very recent works:

- Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. https://ia.cr/2024/490
 - General techniques to reduce the size of GGM trees
 - Apply to TCitH-GGM (gain of ~500 B at 128-bit security)
- Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support
 Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. https://ia.cr/2024/541
 - New MPC protocols for TCitH / VOLEitH signatures based on MinRank & Rank SD

Other results

- Improvements for TCitH-MT
 - Degree-enforcing commitment scheme
 - Packed secret sharing
- Other applications
 - Post-quantum ring signatures
 - For any one-way function
 - ▶ $|\sigma| \le 10 \text{ kB}$ (~ 5 kB with MQ) for $|\text{ring}| = 2^{20}$
 - ZKP for lattices
 - Smallest with MPCitH paradigm
 - Competitive to lattice-based ZKP
 - Improvement of Ligero for general arithmetic circuits
- Connections to VOLEitH and Ligero proof systems

Thank you for listening ...

Original TCitH framework (Asiacrypt'23)

Improved TCitH framework (preprint)

References

[AGHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (EUROCRYPT 2023)

[BBMORRRS24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl: "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures" https://ia.cr/2024/490

[BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. "Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank" https://ia.cr/2024/541

[CDI05] Cramer, Damgard, Ishai: "Share conversion, pseudorandom secret-sharing and applications to secure computation" (TCC 2005)

[FR22] Thibauld Feneuil, Matthieu Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" https://ia.cr/2022/1407 (ASIACRYPT 2023)

[FR23] Thibauld Feneuil, Matthieu Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" https://ia.cr/2023/1573

[ISN89] Ito, Saito, Nishizeki: "Secret sharing scheme realizing general access structure" (Electronics and Communications in Japan 1989)

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

Connections to other proof systems

N = 256	TCitH-GGM		VOLEitH	
N = 256	Size	Comput. Field	Size	Computat. Field
AIMer [CCH ⁺ 23]	4352 B	$19 \times GF(2^8)$	3 938 B	$GF(2^{128})$
Biscuit BKPV23	4048 B	$19 \times GF(16^2)$	3 682 B	$GF(16^{2\times16})$
MIRA [ABB ⁺ 23d]	5 340 B	$19 \times GF(16^2)$	4770 B	$GF(16^{2\times16})$
MiRitH-Ia [ABB ⁺ 23b]	4694 B	$19 \times GF(16^2)$	4 226 B	$GF(16^{2\times16})$
MiRitH-Ib ABB ⁺ 23b	5 245 B	$19 \times GF(16^2)$	4690 B	$GF(16^{2\times16})$
MQOM (over \mathbb{F}_{251}) FR23a	4257 B	$19 \times GF(251)$	3858 B	$GF(251^{16})$
MQOM (over \mathbb{F}_{31}) [FR23a]	4027 B	$19 \times GF(31^2)$	3660 B	$GF(31^{2\times16})$
RYDE [ABB ⁺ 23c]	5 281 B	$19 \times GF(2^8)$	4720 B	$GF(2^{128})$
KIDE ADD 25c		$19 \times GF(2^{31})$		
SDitH (over \mathbb{F}_{251}) [AFG ⁺ 23]	7335 B	$19 \times GF(251)$	6450 B	$GF(251^{16})$
SDitH (over \mathbb{F}_{256}) [AFG ⁺ 23]	7335 B	$19 \times GF(256)$	6450 B	$GF(256^{16})$

M = 2019	TCitH-GGM		VOLEitH	
N = 2048	Size	Comput. Field	Size	Computat. Field
AIMer [CCH ⁺ 23]	3 639 B	$13 \times GF(2^{11})$	3546 B	$GF(2^{128})$
Biscuit BKPV23	3 431 B	$13 \times GF(16^3)$	3354 B	$GF(16^{3\times12})$
MIRA ABB ⁺ 23d	4314 B	$13 \times GF(16^3)$	4170 B	$GF(16^{3\times12})$
MiRitH-Ia [ABB ⁺ 23b]	3 873 B	$13 \times GF(16^3)$	3762 B	$GF(16^{3\times12})$
MiRitH-Ib ABB ⁺ 23b	$4250~\mathrm{B}$	$13 \times GF(16^3)$	4110 B	$GF(16^{3\times12})$
MQOM (over \mathbb{F}_{251}) FR23a	3567 B	$13 \times GF(251^2)$	3486 B	$GF(251^{2\times12})$
MQOM (over \mathbb{F}_{31}) [FR23a]	3418 B	$13 \times GF(31^3)$	3 338 B	$GF(31^{3\times12})$
RYDE [ABB ⁺ 23c]	4 274 B	$13 \times GF(2^{11})$	4133 B	$GF(2^{128})$
TUDE [ADD 250]		$13 \times GF(2^{31})$		
SDitH (over \mathbb{F}_{251}) [AFG ⁺ 23]	5 673 B	$13 \times GF(251^2)$	5430 B	$GF(251^{2\times12})$
SDitH (over \mathbb{F}_{256}) [AFG ⁺ 23]	5 673 B	$13 \times GF(256^2)$	5430 B	$GF(256^{2\times12})$