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Roadmap

* MPC-in-the-Head paradigm
* Threshold Computation in the Head

> Original framework (Asiacrypt 2023)
https://ia.cr/2022/1407

> Improved framework (preprint)
https://ia.cr/2023/1573
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® Jointly compute
IxT, IxT, o(x) = <(Accept it F(x) =y
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MPCitH transform: with additive sharing
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MPCitH transform: with threshold sharing

a.k.a. Threshold Computation in the Head (TCitH)
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MPCitH transform: with threshold sharing

(1) Generate and commit shares Com”1([[x],)

[xIl = (LxIly, -, [xDly)

O

CoglopN( [xTy)

Committed using a Merkle tree:
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Sharing / MPC protocol ¢-private
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@ Open parties in I , broadcasted sharings =

Reed-Solomon codewords



MPCitH transtorm: with threshold sharing

Only log, N labels to be revealed:
Ixll; [xIly e [xly

/

Ut
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TCitH vs. (additive-sharing) MPCitH
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Additive MPCitH

TCitH (GGM tree)

Traditional (ms) | Hypercube (ms) TCitH (ms) Saving
Party emulations | [ log, N 1
/ repetition N 1+ 10g2 N + log, | F]|

AlMer 4.53 3.22 3.22 -0 %
Biscuit 17.71 4.65 4.24 -16 %
MIRA 384.26 20.11 9.89 51 %
MiRitH-la 54.15 6.60 5.42 -18 %
MiRitH-Ib 89.50 8.66 6.66 23 %
MQOM-31 96.41 11.27 8.74 21 %
MQOM-251 44 .11 7.56 5.97 21 %

RYDE 12.41 4.65 4.65 -0 %
SDitH-256 78.37 7.23 5.31 27 %
SDitH-251 19.15 7.53 6.44 -14 %

e Comparison based on a generic MPCitH library (()libmpcith)

* Code for MPC protocols fetched from the submission packages




Speedups for MPCitH candidates

ae)
ing
rryem| @ Nice speedups, but could
/ repe
A we also improve the sizes? %
Bisc 5 %
MIR %
MiRit : o . 3 %
wrll & Let's use the multiplication  p=
MQO %
MQO homomorphism %
RYL %
SDitH- %
SDitH-25 7. : 0. 242 -14 %

e Comparison based on a generic MPCitH library (()libmpcith)

* Code for MPC protocols fetched from the submission packages
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Using multiplication homomorphism

e Shamir's secret sharing satisfies:
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> parties locally compute
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Using multiplication homomorphism

e Shamir's secret sharing satisfies:

L)@ - [y19 = [x - y) oo

e Simple protocol to verity polynomial constraints

- wvalid & fi(w) =0, ..., f,(w)

> parties locally compute

[edl = [vD + ) ;- f(IwD)

J=1

e Tweaking MPCitH-based candidates = smaller signatures



Original Size Our Variant Saving

Biscuit 4758 B 4048 B -15 %
MIRA 5640 B 5340 B 5%
MiRitH-la 5 665B 4694 B -17 %
MiRitH-lb 6298 B 5245 B -17 %
MQOM-31 6 328 B 4027 B -37 %
MQOM-251 65/5B 4257 B -35%
RYDE 5956 B 52818B -11 %
SDitH 8241 B / 335B 27 %
MQ over GF(4) 38 609 B 3858B -55 %
SD over GF(2) 11160 B / 354 B -34 %
SD over GF(2) 12 066 B 6974 B -42 %

*N =256




Original Size Our Variant Saving
Biscuit 4758 B 3431 B
MIRA 5640 B 4314 B
MiRitH-la 5665B 38/3B
MiRitH-lb 6 298 B 4 250 B
MQOM-31 6 328 B 3567 B
MQOM-251 65/5B 3418 B
RYDE 5956 B 4274 B
SDitH 8 241 B 56/3B
MQ over GF(4) 8 609 B 3301B

SD over GF(2) 11160 B / 354 B -34 %

SD over GF(2) 12 066 B 69/4 B -42 %

*N=1256 *N =2048




Shorter signatures for candicates

Two very recent works :

e Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy,
Scholl. One Tree to Rule Them All: Optimizing GGM Trees and
OWFs for Post-Quantum Signatures. https://ia.cr/2024/490

> General techniques to reduce the size of GGM trees

> Apply to TCitH-GGM (gain of ~500 B at 128-bit security)

e Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support

Decomposition in the Head: Shorter Signatures from Rank SD and
MinRank. https://ia.cr/2024/541

> New MPC protocols for TCitH / VOLEitH signatures based on
MinRank & Rank SD


https://ia.cr/2024/490
https://ia.cr/2024/541

Other results

* Improvements for TCitH-MT
> Degree-enforcing commitment scheme

> Packed secret sharing

® Other applications

> Post-quantum ring signatures

> For any one-way function
> |o| < 10kB (~ 5 kB with MQ) for |ring]| = 2%°
> ZKP for lattices

> Smallest with MPCitH paradigm
> Competitive to lattice-based ZKP

> Improvement of Ligero for general arithmetic circuits

e Connections to VOLEitH and Ligero proof systems



Thank you for listening J\

Original TCitH Improved TCitH
framework framework
(Asiacrypt’23) (preprint)
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MPCitH with additive
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[KKW18,BN20,DOT21]

Original TCitH
framework
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Merkle tree commitments

+ GGM variant

General TCitH + packed secret sharing

framework
(this work)

VOLEitH = TCitH with
s =¢ =1 and large field
embedding

+ non-linear round functions
+ degree-enforcing MT commitment

TCitH with T} e, =
optimised version of the
Ligero concrete scheme

VOLE-in-the-Head
[BBDG 23]

Ligero
[AHIV17,AHIV23]



TCitH-GGM VOLEitH
N — 256 Size |Comput. Field|| Size |Computat. Field
AlMer [CCH™23 4352 B| 19x GF(2°) ||3938 B GF(2'%®)
Biscuit [BKPV23 4048 B | 19x GF(16%) |/ 3682 B| GF(16%*°)
MIRA [ABB™23d 5340 B | 19x GF(16%) || 4770 B| GF(16**'%)
MiRitH-Ia [ABB*23b 4694 B [ 19x GF(16%) | 4226 B| GF(162%16)
MiRitH-Ib [ABB™23b] 5245 B | 19x GF(16%) | 4690 B| GF(16**'°)
MQOM (over Fa51) [FR23a| | 4257 B | 19x GF(251)| 3858 B| GF(251%°)
MQOM (over F31) [FR23a| | 4027 B |19x GF(31%) || 3660 B| GF(31°*')
8
RYDE [ABBT23c 5281 B 115: g 5((;31)) 4720 B| GF(2'*®)
SDitH (over Fa51) [AFGT23|| 7335 B | 19x GF(251) || 6450 B| GF(251'°)
SDitH (over Fas6) [AFG™23|| 7335 B | 19x GF(256) || 6450 B | GF(256'°)
TCitH-GGM VOLEitH
N — 2048 Size |Comput. Field|| Size |Computat. Field
AlMer [CCH™ 23] 3639 B | 13x GF(2') |/ 3546 B| GF(2'%®)
Biscuit [BKPV23] 3431 B | 13x GF(16°) || 3354 B| GF(16°*'?)
MIRA [ABB™23d] 4314 B | 13x GF(16°) || 4170 B| GF(16**'?)
MiRitH-Ia [ABB™23b] 3873 B |13x GF(16°) || 3762 B| GF(16%*'?)
MiRitH-Ib [ABB™23b] 4250 B | 13x GF(16°) || 4110 B| GF(163%'?)
MQOM (over F251) [FR23a] [ 3567 B |13x GF(251°%)| 3486 B| GF(251°*'%)
MQOM (over F3;) [FR23a] | 3418 B|13x GF(31%) (3338 B| GF(313%!?)
11

RYDE [ABB*23(] 4274 B igi gigmi 4133 B| GF(2'%®)
SDitH (over F251) [AFGT23]| 5673 B [13x GF(251%)|| 5430 B| GF(251**'?)
SDitH (over Fa56) [AFGT23]| 5673 B [13x GF(256%)|| 5430 B | GF(256**'?)




