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Roadmap

• MPC-in-the-Head with Additive Secret Sharing


• Optimisations


• SDitH Signature Scheme: MPCitH with Syndrome Decoding


• MPC-in-the-Head with Threshold Secret Sharing



MPC-in-the-Head with

 Additive Secret Sharing



MPC model

[[x]]1
[[x]]2

[[x]]3

[[x]]4

[[x]]5

• Jointly compute





•  private: the views of any  
parties provide no information on 


• Semi-honest model: assuming that the 
parties follow the steps of the protocol


• Broadcast model


‣ Parties locally compute on their shares 
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⋯
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[[x]]1
[[α]]1 = H ⋅ [[x]]1

𝒫1 𝒫2 𝒫N

⋯
[[x]]2
[[α]]2 = H ⋅ [[x]]2


[[x]]N
[[α]]N = H ⋅ [[x]]N

[[α]]1 [[α]]2 [[α]]N+ + ⋯ +    = α

 g(y, α) = {Accept if y = α
Reject if y ≠ α

public 

recovery

mult. by   
is linear

H

Example: matrix multiplication y = Hx

 g(y, α) = Accept ⟺ Hx = y
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MPCitH transform

Prover Verifier
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i* ⑤ Check 

      - Commitments 

      - MPC computation  
   Check 
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MPCitH transform

• Zero-knowledge      MPC protocol is -private


• Soundness


‣ if   → Verifier rejects


‣ if , then 


- either  = sharing of correct witness   


                   → Prover honest


- or Prover has cheated for at least one party  

                        → Cheat undetected with proba  

⟺ (N − 1)

g(y, α) ≠ Accept
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[[x]] F(x) = y

1
N
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[[x]]1
[[α]]1 = H ⋅ [[x]]1

𝒫1 𝒫2 𝒫N

⋯

[[α]]1 [[α]]2 [[α]]N+ + ⋯ +    = α

Example: matrix multiplication y = Hx
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[[α]]2 = H ⋅ [[x]]2
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[[α]]N = H ⋅ [[x]]N

Prover Verifier{Comρi([[x]]i)}
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      - Commitments 

      - MPC computation  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Comρi([[x]]i)

[[α]]i = H ⋅ [[x]]i
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False positive probability

• False positive = MPC protocol outputs “Accept” while  s.t.  


• False positive probability:


  


     (over the randomness of  )


• Soundness error:


                                         

[[x]] F(x) ≠ y

p = max
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P[𝖬𝖯𝖢 : ([[x]], [[β]], ε) ↦ "Accept" ∣ F(x) ≠ y]

ε

1
N

1
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Verifying arbitrary circuits

• Product-check protocol  protocol for checking any arithmetic circuit 


• Principle:


‣ Let  all the multiplications in 


‣ Extended witness: 


‣ Compute  = linear function of       →   check  = sharing of 


‣  = linear functions of     →   product check on 

⇒ C(x) = y

{ci = ai ⋅ bi} C

w = x ∥ (c1, …, cm)

[[y]] [[w]] [[y]] y

[[ai]], [[bi]], [[ci]] [[w]] [[ai]], [[bi]], [[ci]]



Optimisations



Optimising communication (sig. size)

• Signature = transcript P → V (  iterations)


‣        →  commitments  


‣        →  MPC broadcasts


‣           →  input shares + random tapes


• First optimisation: hashing


‣   →   ,  


‣ Verification


-    


- 
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×τ

{Comρi([[x]]i)} N

[[α]]1, …, [[α]]N N

{[[x]]i, ρi}i≠i* N − 1

[[α]]1, …, [[α]]N h = Hash([[α]]1, …, [[α]]N) α = Σi[[α]]i

[[α]]i = φ([[x]]i) ∀i ≠ i*

[[α]]i* = α − Σi≠i*[[α]]i

Hash([[α]]1, …, [[α]]N) = h
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Optimising communication (sig. size)

• Signature = transcript P → V (  iterations)


‣        →  commitments   → hash +1 commitment


‣        →  MPC broadcasts  → hash (+1 MPC broadcast)


‣           →  input shares + random tapes


• First optimisation: hashing
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Second optimisation: seed trees

• [KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero 
Knowledge with Applications to Post-Quantum Signatures” (CCS 2018)


• Pseudorandom generation from seed


‣ 


‣ 


• Seeds  generated from a common “root seed”


• Goal: revealing  with less than  bits

([[x]]i, ρi) ← PRG(𝗌𝖾𝖾𝖽i)

[[x]]N = x − ΣN
i=1[[x]]i

{𝗌𝖾𝖾𝖽i}

{𝗌𝖾𝖾𝖽i}i≠i* (N − 1) ⋅ λ
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• Seeds  generated from a common “root seed”


• Goal: revealing  with less than  bits

([[x]]i, ρi) ← PRG(𝗌𝖾𝖾𝖽i)

[[x]]N = x − ΣN
i=1[[x]]i

{𝗌𝖾𝖾𝖽i}

{𝗌𝖾𝖾𝖽i}i≠i* (N − 1) ⋅ λ
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• Signature = transcript P → V


‣   →  commitments   → hash +1 commitment


‣   →  MPC broadcasts  → hash (+1 MPC broadcast)


‣      →  input shares + random tapes  →  seeds


• Verification
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Optimising computation: hypercube technique

• [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The 
Return of the SDitH" (EUROCRYPT 2023)


• High-level principle


‣ Apply MPC computation to sums of shares 





‣ Only  such party computations necessary for the prover


‣ Only  for the verifier


• See Nicolas Gama’s talk at EC: https://youtu.be/z6nE4fOWvZA (49:33)

Σi∈I [[xi]]
φ Σi∈I [[αi]]

log N + 1

log N

https://youtu.be/z6nE4fOWvZA
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SDitH Signature Scheme: 

MPCitH with SD



Syndrome decoding problem
• Parameters


• A field  ,       (code length) ,      (code dimension) ,     (weight)


• Let 


•                           (random parity-check matrix)


•    s.t.            (SD solution)


•                                    (syndrome)


• From   find  


• Standard form (wlog):                    where     

𝔽q m ∈ ℕ k < m w < m

H ← 𝔽 (m−k)×m
q

x ← 𝔽m
q wt(x) ≤ w

y = H x

(H, y) x

H = (H′￼| Im−k) ⇒ y = H′￼xA + xB x = (xA |xB)
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Polynomial expression

x S(X)
interpolation

S( f1)

S( fm)

⋮=



Polynomial expression

x S(X)
interpolation

S( f1)

S( fm)

⋮

Q(X) = ∏
i∈E

(X − fi)

=



Polynomial expression

x S(X)
interpolation

S( f1)

S( fm)

⋮

Q(X) = ∏
i∈E

(X − fi)

=

indices   s.t.   i xi ≠ 0
|E | ≤ w ⇒ deg(Q) ≤ w



Polynomial expression

x S(X)
interpolation

S( f1)

S( fm)

⋮

Q(X) = ∏
i∈E

(X − fi)
Q( f1)

Q( fm)

⋮=

indices   s.t.   i xi ≠ 0
|E | ≤ w ⇒ deg(Q) ≤ w

= zero coordinate
= non-zero coordinate



Polynomial expression

x S(X)
interpolation

S( f1)

S( fm)

⋮
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Q( f1)
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indices   s.t.   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= zero coordinate
= non-zero coordinate
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∃ Q ≤ w S(X) ⋅ Q(X)

f1, …, fm
⇔

∃ Q, P ≤ w w − 1
S(X) ⋅ Q(X) = F(X) ⋅ P(X)

 evaluates to 0 in  ⇒ S(X) ⋅ Q(X) f1, …, fm

We’ll show this



SDitH MPC protocol

• Parties receive 


•  sharings of 


•  SD instance


• Parties jointly compute


   


where   and  

[[xA]], [[P]], [[Q]] xA, P, Q

(H′￼, y)

g(xA, P, Q) = {Accept if SQ = FP
Reject otherwise

xB = y − H′￼xA S = Interp(xA |xB)

[[xA, P, Q]]1 [[xA, P, Q]]2

[[xA, P, Q]]3

[[xA, P, Q]]4

[[xA, P, Q]]5
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Schwartz–Zippel lemma

• Let  and  two degree-  polynomials of 


• Let  a random point of ,





( roots of  )


• For a random  ,


    

P1 P2 d 𝔽 [X]

r 𝔽

Pr [P1(r) = P2(r) ∣ P1 ≠ P2] ≤
d

|𝔽 |

P1(r) = P2(r) ⇔ r ∈ P1 − P2

r ∈ 𝔽 η
q

Pr [S(r) ⋅ Q(r) = F(r) ⋅ P(r) ∣ SQ ≠ FP] ≤
m + w − 1

qη
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SDitH MPC protocol

• Principle: check  on  random points (SZ lemma)


1. Locally compute   


2. Locally compute   by Lagrange interpolation of 


3. Randomness oracle    


4. Locally compute    


5. Check the product  from the shares 


• using [BN20] product-check protocol 


• False positive probability:   

SQ = FP t

[[xB]] = y − H′￼[[xA]]

[[S]] [[x]] = ([[xA]] | [[xB]])

→ r1, …, rt ∈ 𝔽 η
q

[[S(ri)]], [[Q(ri)]], F(ri) ⋅ [[P(ri)]] ∀i ∈ [1 : t]

S(ri) ⋅ Q(ri) = F(ri) ⋅ P(ri)

p =
t

∑
i=0

(t
i) ( m + w − 1

qη )
i

(1 −
m + w − 1

qη )
t−i

( 1
qη )

t−i
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SDitH signature scheme

128-bit security

 variant based in MPCitH 

with threshold secret sharing 
∃☝



MPC in the Head with 

Threshold Secret Sharing 


(a.k.a. TCitH)



• Generate


‣ Let 


‣ Let   the polynomial of coefficients 


             with     distinct field elements


• Reconstruct 


‣ Interpolate  from 


‣

(r1, …, rℓ) ← $

P (x, r1, …, rℓ)
[[x]]1 = P( f1)

⋮
[[x]]N = P( fN)

f1, …, fN ∈ 𝔽

P [[x]]1, …, [[x]]N

x = P(0)

Background: Shamir’s secret sharing

[[x]] = ([[x]]1, …, [[x]]N)
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• -threshold linear secret sharing scheme (LSSS)


‣ Linearity: 


‣ Any set of  shares is random and independent of 


‣ Any set of  shares → coefficients  → all the 
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•  is a Reed-Solomon codeword of 
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[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

E.g. ℓ = 2

• [FR23] Feneuil, Rivain. "Threshold Linear Secret Sharing to 
the Rescue of MPC-in-the-Head" (Asiacrypt 2023)


• ZK property  only open  parties


• Verifier challenges a set   s.t.  


• Prover opens 

⇒ ℓ

I ⊆ {1,…, N} | I | = ℓ

{[[x]]i, ρi}i∈I

MPCitH with threshold LSSS (a.k.a TCitH)



Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③  Chose random set of parties 
      I ⊆ {1,…, N}, s.t. | I | = ℓI

④  Open parties in  I
([[x]]i, ρi)i∈I

⑤ Check 

      - Commitments 

      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4
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MPCitH with threshold LSSS (a.k.a TCitH)

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Merkle root
②  Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③  Chose random set of parties 
      I ⊆ {1,…, N}, s.t. | I | = ℓI

④  Open parties in  I
{[[x]]i, authi}i∈I

⑤ Check 

      - Commitments 

      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

authentication path
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🛠

• “Degree-enforcing commitment scheme”


• Verifier  Prover : random 
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MPCitH 
+ seed trees


+ hypercube [AGHHJY23]

TCitH


Prover runtime
Party emulations: log N +1   
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• Shamir’s secret sharing satisfies:


                   


• Simple protocol to verify polynomial constraints


‣  valid    


‣ parties locally compute
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m

∑
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• Shamir’s secret sharing satisfies:


                   


• Simple protocol to verify polynomial constraints


‣  valid    


‣ parties locally compute


            

[[x]](d) ⋅ [[y]](d) = [[x ⋅ y]](2d)

w ⇔ f1(w) = 0, …, fm(w) = 0

[[α]] = [[v]] +
m

∑
j=1

γj ⋅ fj([[w]]) Soundness error 

(dα

ℓ )
(N

ℓ)
+ p

pre-committed 

sharing of 0

randomness

from the verifier 

check  

false positive proba   

α = 0
1/ |𝔽 |

 ℓ ⋅ deg fj  ( 1
|𝔽 | )

#α
Here:

Using multiplication homomorphism



Signature from MQ and TCitH

• Parameters


- A field  ,      (# variables) ,     (# equations)


• Let 


-                                         (MQ solution)


-                 (  random matrices)


-                     (  random vectors)


-      s.t.       


• From   find  

𝔽q n ∈ ℕ m ∈ ℕ

x ← 𝔽n
q

Ai ← 𝔽n×n
q ∀i ∈ [1 : m] m

bi ← 𝔽n
q ∀i ∈ [1 : m] m

y = (y1, …, ym) ∈ 𝔽m
q

y1 = xT A1x + bT
1 x

⋮
ym = xT Amx + bT

mx
({Ai}, {bi}, y) x

MQ Problem 

💡
Checking a MQ instance

= checking  quadratic


constraints on the secret   
m

x

☝
We can directly apply 

the previous protocol  

⇒

sig   3 kB  | | ≈



Original Size Our Variant Saving

Biscuit 4 758 B 4 048 B -15 %

MIRA 5 640 B 5 340 B -5 %

MiRitH-Ia 5 665 B 4 694 B -17 %

MiRitH-Ib 6 298 B 5 245 B -17 %

MQOM-31 6 328 B 4 027 B -37 %

MQOM-251 6 575 B 4 257 B -35 %

RYDE 5 956 B 5 281 B -11 %


SDitH 8 241 B 7 335 B -27 %

MQ over GF(4) 8 609 B 3 858 B -55 %

SD over GF(2) 11 160 B 7 354 B -34 %

SD over GF(2) 12 066 B 6 974 B -42 %

* N = 256

Shorter Signatures from TCitH-GGM



Original Size Our Variant Saving

Biscuit 4 758 B 3 431 B

MIRA 5 640 B 4 314 B

MiRitH-Ia 5 665 B 3 873 B

MiRitH-Ib 6 298 B 4 250 B

MQOM-31 6 328 B 3 567 B

MQOM-251 6 575 B 3 418 B

RYDE 5 956 B 4 274 B

SDitH 8 241 B 5 673 B

MQ over GF(4) 8 609 B 3 301 B

SD over GF(2) 11 160 B 7 354 B -34 %

SD over GF(2) 12 066 B 6 974 B -42 %

* N = 256 * N = 2048

Shorter Signatures from TCitH-GGM



Shorter Signatures from TCitH-GGM

Two very recent works :


• [BBMO+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One 
Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. 
https://ia.cr/2024/490


‣ General techniques to reduce the size of GGM trees: tree merging & proof of work


‣ Apply to TCitH-GGM (gain of ~500 B at 128-bit security)


• [BFGNR24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the 
Head: Shorter Signatures from Rank SD and MinRank. https://ia.cr/2024/541


‣ New MPC protocols for TCitH / VOLEitH signatures based on MinRank & Rank SD

https://ia.cr/2024/490
https://ia.cr/2024/541
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MPCitH with additive 
sharing, e.g.


[KKW18,BN20,DOT21]

Original TCitH 
framework [FR23a]

Application of Shamir’s 
secret sharing with Merkle 

tree commitments 

General TCitH 
framework [FR23b]

VOLE-in-the-Head 
[BBDG+23]

Ligero  
[AHIV17,AHIV23]

Connection to other proof systems

VOLEitH = TCitH-GGM 
with  and 

large field embedding  
s = ℓ = 1

Good for larger 

statements


(e.g. lattices)

TCitH-MT with  = 
optimised version of the 
Ligero concrete scheme

ΠLigero
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Conclusion
• MPC-in-the-Head


‣ Versatile approach to build ZK proofs and (PQ) signatures


‣ Drastic improvements since 2017  
(in particular thanks to GGM trees [KKW18])


‣ Applicable to any one-way function  
           conservative / unstructured PQ assumptions


‣ Instrumental to advanced signatures / ZK proofs 
           e.g. current shortest PQ ring signatures [FR23b]


• State of the art still moving!


‣ New frameworks: VOLEitH [BBDG+23], TCitH [FR23b]


‣ Compression of GGM trees [BBMO+24]


‣ Improvements for most MPCitH-based NIST submissions
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What next?

You find out!


