Zero-Knowledge Proofs from Multiparty
Computation: Recent Advances

Matthieu Rivain
WRACH 2023
Jun 14, 2023, Roscoft

O

CRYPTOCXPERTS -

WE INNOVATE TO SECURE YOUR BUSINESS

L

Introduction

MPC in the Head

® [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: “Zero-
knowledge from secure multiparty computation” (STOC 2007)

® Turn an MPC protocol into a zero knowledge proof of knowledge

® Generic: can be apply to any cryptographic problem

® Convenient to build (candidate) post-quantum signature schemes

® Picnic: submission to NIST (2017)

® Recent NIST call (01/06/2023): 7 MPCit

schemes / 50 submissions

S T T P 7 N A St e g T N PP PR S TP - e

v v

One-way function Multiparty computation (MPC)

' ; : @ <« > @]
: F:xmy 5 ; Input sharing [[x]| |
| i f \ Joint evaluation of: .
. E.g. AES, MQ system, R S ° Accent i Fo) = v |
| | pt it F(x)=y |

Syndrome decoding NV {Reject fF0) #y |

i b2 pdm s A —2as LR T y T B v s Aot B Lo _posna gD T N 2 Ma s o i e Ach B Lo o2 2 Ma s o i Ach S poama

Signature scheme Zero-knowledge P"OO‘C

msg
, e

Hash ¢ < i
function : T — — OKyou
\‘_._, \', . Prover Verifier know x

signature

-

|

e ARa g o D T N Sutm e s o — Mgy B Lo _p-s2 St Al el A = Ak A Lia Lo e s o ey Ach B L famn

One-way function ' Multiparty computation (MPC)

: @ <« > @ '
F:xm—y Input sharing [[x]|
f \ Joint evaluation of:
E.g. AES, MQ system, : o o Accept if F(x) =
| ot it F(x) =y
Syndrome decoding NV, 80 {Reject it F(x) # y
o
MPC in the Head transform
Signature scheme Zero-knowledge proof
e msg

-

|

— T Y
Hash
function T — — OK you
h—, f, Veritier know x

signature

Background: Additive secret sharing

N
[x] = ([x. ... [xDy) st x=) [x]]
=1

Any set of N — 1 shares is random & independent of x

Commitment

Challenge 1

Response 1

Challenge n

Response n

Prover Verifier

® Completeness: Prlverif v | honest prover] = 1

® Soundness: Priverif v | malicious prover] < e (e.g.271%%)

® Zero-knowledge: veritier learns nothing on x

— e m— — E— E— E— E— = = = = = E— E— E— oy

/ \

- Opening:
: P 9/_

lﬂ -
Verifier \

N e e e e e e e e e e e e e o o

Prover

® Binding: no way | X I can be opened to x" # x

¢ Hiding: | X) I does not reveal information about x (without «=@Q))

e Hash commitment: l X |:= Hash(x || p) with p < $ ~Q = (x,p)

MPCitH: general principle

® Jointly compute
[[.X]]l ‘ [[X]]Z o(x) = {Accept it F(x) =y

Reject it F(x) #y

® (N—1) private: the views of any N — 1
parties provide no information on x
® Semi-honest model: assuming that the
parties follow the steps of the protocol
X

HXH4

¢ Jointly compute

Accept it F(x)=1y
g(x) = {R | .
eject it F(x) #y

® (N —1) private: the views of any N — 1
parties provide no information on x

® Semi-honest model: assuming that the
parties follow the steps of the protocol

® Broadcast model

» Parties locally compute on their shares

[x]] = [l
» Parties broadcast [a]] and recompute a

» Parties start again (now knowing a)

[[X]]l [[x]]z [[x]]N

linear Lall; = e(lx]l)) | | lal, = e(lx],) Lally = e(lx]y)

function ¢

public

recovery

Lall, + Lall, + e+ Lally =

1l [x1l, [x1ly

linear Lall; = e(lx]l)) | | lal, = e(lx],) Lally = e(lx]y)

function ¢

public
recovery
Lall, + Lall, + e+ Lally =
linear
function y A1, = wla, x| |1A1, = wla, l[x]],) A1y = wla, [x]ly) |
public
recovery

LA + A1, 2 A o A1y = [

[[X]]l [[x]]z [[x]]N

linear Lall; = e(lx]l)) | | lal, = e(lx],) Lally = e(lx]y)

function ¢

public
recovery
Lall, + Lall, + e+ Lally =
linear
function y A1 = wla, [xDp] (LA1, = w(a, [x],) /1y = w(a, [x]ly) |
public
recovery
LA + A1, 2 A o A1y = [

Accept
and so on... g:.(v,a,p,...)—

Reject

Example: matrix multiplication y = Hx

PN

[x]] N

mult. by H
is linear

lally = H - [[x]] oublic

recovery

[all + [all, + - + Lally =

. @) Accept ity=a N .
, Q) = Q) = t < —
oY Reject ity # a 80y-) =P Y

Prover Verifier

1) Generate and commit shares

[[x]] — ([[x]]la ce [[x]]N)

Prover

Com”'([[x]];)

Com/¥([[x]ly)

—_— s M —

Verifier

1) Generate and commit shares

[[x]] — ([[x]]la ce [[x]]N)

@ Run MPC in their head

lx]l \ / x]l,

Lxlly '/' \‘ x5

k

Prover

Com”'([[x]];)

Com/¥([[x]ly)

—_— s M —

send broadcast

lally, ..., lally

—_——

Verifier

1) Generate and commit shares

ﬂ;fﬂ — (H){”19°°°9[LthV)

@ Run MPC in their head

[xT, k /’/\[}iﬂz
=y

HXHN' HXH3

Prover

Com”'([[x]];)

Com/¥([[x]ly)

—_— s M —

send broadcast

ladly, ..., Lally

—_——

¥
—mmm—

@ Chose a random party
i* <% {1,....N)

Verifier

1) Generate and commit shares Com”1([[x]],)

[x]] = ([[X]]l, ceus [[x]]N) COmpN([[x]]N)

—_— s M —

@ Run MPC in their head

send broadcast
[[a]]la Ry [[a]]N

@ Chose a random party
[* i* <% {1,....N)

@ Open parties {1,...,N}\{i*} I

Prover Verifier

1) Generate and commit shares Com”1([[x]],)

[x]] = ([[X]]l, ceus [[x]]N) ComﬂN([[x]]N)

_—

@ Run MPC in their head

send broadcast
[[a]]la JURY [[a]]N

@ Chose a random party
7% i S {1,...,N}

B Check Vi # i*
- Commitments Com”i([[x]].)

@ Open parties {1,..., N}\{i*} ————————————— - MPC computation [[a]l; = ¢(llx]l;)

Check g(y, @) = Accept

Prover Verifier

MPCitH transform

® Zero-knowledge <<= MPC protocol is (N — 1)-private

MPCitH transform

® Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness
> it g(y, @) # Accept — Verifier rejects
> it g(y, @) = Accept, then
- either [[x]] = sharing of correct witness F(x) =y — Prover honest

- or Prover has cheated for at least one party

— Cheat undetected with proba v

MPCitH transform

® Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness
> it g(y, @) # Accept — Verifier rejects
> it g(y, @) = Accept, then
- either [[x]] = sharing of correct witness F(x) =y — Prover honest

- or Prover has cheated for at least one party

— Cheat undetected with proba v

® Parallel repetition

1 T
Protocol repeated 7 times in parallel = soundness error (N)

[all,

 Com”([[x]];) }

)
{Haﬂﬁ
j%
—

ULl p; 3 iz

|

|

Verifier

Check Vi # i*

- Commitments Com”i([[x]],)
- MPC computation [la]l; = H - [[x]];
Check a :=2[la]l; = y

e, ° x1l,

o
.#
¥
.§
Randomness - < T
oracle x5 ¢ ¢

[[X]]g

x1l,
@

[[x]h P

8<—$

Q— 7

\ ‘
[[X]]g

Randomness

oracle [[X]]s N

x1l,
@

[[x]h P

8<—$

Q— 7

\ ‘
[[X]]g

Randomness

oracle [[X]]s N

x1l,
@

[[x]h P

8<—$

¢

“ Hint oracle
@®
[[X]]g

Randomness

oracle [[X]]s N

x1l,
@

[[x]h PX

8<—$

—— L

Hint oracle

Randomness

T——
oracle x5 @ ¢

x1l,
@

[[x]h PX

8<—$

—— L

Hint oracle

Randomness

T——
oracle x5 @ ¢

Example: [BN20] check product xy = 7

[l Ly 1y, Lzl

Example: [BN20] check product xy = 7

[[x]]p [[)’]]1» [[Z]]1 [[x]]Na [y]]Na [[Z]]N
[[61]]1, [[b]]19 [[C]]l [[a]]N’ [[b]]N’ IIC]]N « hintab = ¢

Example: [BN20] check product xy = 7

Ixlly, Lyl Uzl [y, [yl Lzl .
[all,, [P1, [l Lally, [P1s [clly — hintab = c
s ‘o e < random ¢

Example: [BN20] check product xy = 7

L1l Lyl Lz]ly
[ally, [O1y, Lclly — hintab = c
E + random &
[ally = ellxlly + llally
Ay = lylly + o1y

[xlly, vl [zl
Hdﬂlaﬂbﬂlaﬂcﬂl

€
Lall, = ellx]l; + [all
A1 = iyl + (21

ad=€cx+ a

[edly 1411 lally 141y B=y+b

Ix1ly, [y, [z [[x]]Na [[y]]N’ [[Z]]N

€ +— random ¢
[ally = ellxlly + [ally
[[,B]]N — [[)’]]N + [[b]]N

€
Lall, = ellx]l; + [all
11, = vl + 2],

ad=€cx+ a

Ledly 1411 lally A1y B=y+b

[vll; = ellzll; — llcll; + allbll; [viy = ellzlly — lclly + allblly
+pllall, — ap +hllally — ap

[vl, [vily V

Ix1ly, [y, [z [[x]]Na [[y]]N’ [[Z]]N

€ +— random ¢
[ally = ellxlly + [ally
151y = lylly + 161y

E
lall; = ellx]l; + lall,
11, = vl + 2],

= ex +
[l 141, [ally [ADy S—vib
[vll; = ellzll; — llcll; + allbll; [viy = ellzlly — lclly + allblly
+pllall, — ap +hllally — ap
Ivil, [vily V

Accept itv=0
gv) =4, . .
Reject ifv#0

Ix1ly, [y, [z [[x]]Na [[y]]N’ [[Z]]N

€ +— random ¢
[ally = ellxlly + [ally
151y = lylly + 161y

E
lall; = ellx]l; + lall,
11, = vl + 2],

= ex +
[l 141, [ally [ADy S—vib
[V, = ellzll; = llclly + ellbll, [Vily = ellzlly = llclly + ellolly
+pllall, — ap +hllally — ap
vl [vily v
() = {Acc:ept ifv=20 f xy=zandab=c, then v=20
S Reject ifv#0 tf xy#2z or ab # c, then Pr[v =0] = 1/|[F]

Ix1ly, [y, [z [[x]]N» [[y]]N’ [[Z]]N

€ +— random ¢
[ally = ellxlly + [ally
151y = lylly + 161y

E
lall; = ellx]l; + lall,
151, = vl + 2],

= ex +
Lally LA Ladly 171y Z — ;x+ ba
[V, = ellzll, — llcll; + allbll; [Vily = ellzlly — llclly + allblly
+pllall, — ap +hllally — ap
vl vy false positive
probability

Accept if v=20 f xy=zandab =c, then v=0
g(v) =

Reject ifv#0 f xy#z or ab # ¢, then Pr[v = 0]

Verifying arbitrary circuits

® Previous slide reference:

[BN20] Baum, Nof. "Concretely-Efficient Zero-Knowledge Arguments for
Arithmetic Circuits and Their Application to Lattice-Based Cryptography"

(PKC 2020)
® Product-check protocol = protocol tor checking any arithmetic circuit C(x) =y
® Principle:
> Let {¢; = a; - b;} all the multiplications in C
» Extended witness: w =x || (¢, ...,C))

» Compute [[y]] = linear function of [[w]] — check [[y]] = sharing of y
> [la;]l, [D,1l, [c;]l = linear functions of [w]] — product check on [[a]], [5;]], [l

MPCitH: optimisations

Optimising communication (sig. size)

® Signature = transcript P = V
» {Com”([[x]],)} — N commitments

> [lally, ... [ally — N MPC broadcasts

> X1, p;) i — N — 1 input shares + random tapes

Optimising communication (sig. size)

® Signature = transcript P = V
» {Com”([[x]],)} — N commitments
> [[ally, ..., [ally — N MPC broadcasts

> X1, p;) i — N — 1 input shares + random tapes

® First optimisation: hashing

> [[ally, ..., [ally = & =Hash([al, ..., [ally), a=2[all
» Verification

- lell; = e(lxll) Vi#i*

- [allyx = a — X +llall;

- Check Hash([[a]l;, ..., [ally) = A

Optimising communication (sig. size)

® Signature = transcript P = V
» {Com”([[x]],)} — N commitments
> [lally, ..., [ally — N-MPC breadeasts — hash (+1 MPC broadcast)

> X1, p;) i — N — 1 input shares + random tapes

® First optimisation: hashing

> [[ally, ..., [ally = & =Hash([al, ..., [ally), a=2[all
» Verification

- lell; = e(lxll) Vi#i*

- [allyx = a — X +llall;

- Check Hash([[a]l;, ..., [ally) = A

Optimising communication (sig. size)

® Signature = transcript P = V
» {Com”([[x]],)} — Ncommitments — hash +1 commitment
> [lally, ..., [ally — MMPC breadeasts — hash (+1 MPC broadcast)

> X1, p;) i — N — 1 input shares + random tapes

® First optimisation: hashing

> [[ally, ..., [ally = & =Hash([al, ..., [ally), a=2[all
» Verification

- lell; = e(lxll) Vi#i*

- [allyx = a — X +llall;

- Check Hash([[a]l;, ..., [ally) = A

® Also works with commitments

Optimising communication (sig. size)

® Signature = transcript P = V

» {Com”([[x]],)} — Ncommitments — hash +1 commitment

® First optimisation: hashing

> [[ally, ..., [ally = & =Hash([al, ..., [ally), a=2[all
» Verification

- lell; = e(lxll) Vi#i*

- [allyx = a — X +llall;

- Check Hash([[a]l;, ..., [ally) = A

® Also works with commitments

Second optimisation: seed trees

e [KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero
Knowledge with Applications to Post-Quantum Signatures” (CCS 2018)

® Pseudorandom generation from seed
> ([lx1l;; p) < PRG(seed;)
- [xlly = x = 22, [x]),
® Seeds {seed;} generated from a common “root seed”

® Goal: revealing {seed;},;+ with less than (N — 1) - 4 bits

(seed1, seed?2) <« PRG(parent_seed)

N
/

(j\

A to be revealed

Second optimisation: seed trees

sibling path

to be revealed

Second optimisation: seed trees

sibling path
— log(V) seeds

to be revealed

Second optimisation: seed trees

® Signature = transcript P = V
» {Com”([[x]].)} — AFeemmitments — hash +1 commitment
> [l ..., [ally = MMPCbreadeasts — hash (+1 MPC broadcast)

> {[xD; p;}ieix = N—Tinputshares+randomtapes — log(V) seeds

o
® \erification + [x]ly it i* #N

- Sibling path — {seed;}, ;-
- seed; = ([[xll;,p;) Vi#i*

Optimising computation: hypercube technique

e [AGHHJY23] Aguilar Melchor, Gama, Howe, Hulsing, Joseph, Yue. "The
Return of the SDitH" (EUROCRYPT 2023)

® High-level principle
> Apply MPC computation to sums of shares
Zier 1] — Zier Lol
» Only log N + 1 such party computations necessary for the prover

> Only log N for the verifier

® See Nicolas’ talk at EC: https://youtu.be/z6nE4tOWVZA (49:33)

https://youtu.be/z6nE4fOWvZA

PCitH with

Background: Shamir’s secret sharing

e Sharing [x]] = (IxIl, ..., [x]y) such that
> Let (ry,...,1,) < $

> Let P the polynomial of coeftticients (x, 7y, ..., 7,)

{ [x1, = P(f,)

: with fi, ..., fy € F distinct field elements
[x1ly = P(fy)

Background: Shamir’s secret sharing

e Sharing [x]] = (IxIl, ..., [x]y) such that
> Let (ry,...,1,) < $

> Let P the polynomial of coeftticients (x, 7y, ..., 7,)

Lxlly = PCfp)
: with fi, ..., fy € F distinct field elements

[x]ly = P(fN)

® (Z + 1, N)-threshold linear secret sharing scheme (LSSS)

Background: Shamir’s secret sharing

e Sharing [x]] = (IxIl, ..., [x]y) such that
> Let (ry,...,1,) < $

> Let P the polynomial of coeftticients (x, 7y, ..., 7,)

{mm=Pm>

: with fi, ..., fy € F distinct field elements
[[x]]N — P(fN)
® (Z + 1, N)-threshold linear secret sharing scheme (LSSS)

» Linearity: [[x]] + V]l = [[x + vyl

Background: Shamir’s secret sharing

e Sharing [x]] = (IxIl, ..., [x]y) such that

> Let (ry,...,1,) < $

> Let P the polynomial of coeftticients (x, 7y, ..., 7,)

Lxlly = PCfp)
: with fi, ..., fy € F distinct field elements

Lxlly = P(f)

® (Z + 1, N)-threshold linear secret sharing scheme (LSSS)
» Linearity: [[x]] + V]l = [[x + vyl

> Any set of £ shares is random and independent of x

» Any set of £ + 1 shares = coefficients (x, ry, ..., 7,) = all the shares

Background: Shamir’s secret sharing

e Sharing [[x]] = (Ix]l;, --., [x]ly) such that

> I_et (7‘1,...,7'{) <« $

> Let P the polynomial of coeftticients (x, 7y, ..., 7,)

[xll, = P(f))
: with fi, ..., fy € F distinct field elements

Ixlly = P(fy)
® (Z + 1, N)-threshold linear secret sharing scheme (LSSS)
» Linearity: [[x]] + [yl = [[x + vl
> Any set of £ shares is random and independent of x
» Any set of £ + 1 shares = coefficients (x, ry, ..., 7,) = all the shares

> [xI = (Ix]l;, ---, [x]ly) is @ Reed-Solomon codeword of (x, 7y, ..., 7,)

VIPCIEH with threshold L5os

® [FR22] Feneuil, Rivain. "Threshold Linear Secret Sharing to
the Rescue ot MPC-in-the-Head" (ePrint 2022)

® /K property = only open ¢ parties
® Verifier challengesaset/ C {1,...,.N} s.t. |I|=7

® Prover opens [[x]l., p;}ic;

1) Generate and commit shares Com”1([[x]],)

[[.X]] — ([[x]]la SRR [[x]]N) CompN([[x]]N)
—>
@ Run MPC in their head

send broadcast

o \ /f e lall, ---, [ally
\ @ Chose random set of parties
0,{'/ ’QO E3R I [C{l,...N},st. |[I|=7C
[\Iﬁ? ®) Check Vi eI
(IxTs 2)ics - Commitments Com”i([[x]].)
@ Open parties in [- — - MPC computation [[a]l; = ¢(llx]l;)

Check g(y, @) = Accept

Prover Verifier

MPCitH transform with threshold LSSS

1) Generate and commit shares

[[X]] — ([[x]]la cc e [[x]]N)

@ Run MPC in their head

o ‘Iﬂ)q' [,

@ Open parties in [

Prover

Com”'([[x]];)

Com”~([[x]]x)

send broadcast

lally, ..., [ally

—_—m—

|
M ——————————————————————————————————

(x1l;s picr

Threshold LSSS = cannot
generate shares from seeds

@ Chose random set of parties

IC{1,...,N}, st |I| =

® Check Vi eI
- Commitments Com”i(|

2

x] i)

- MPC computation [[a]

Check g(y, @) = Accept

Verifier

i = @lx]l;)

MPCitH transform with threshold LSSS

Threshold LSSS = cannot
generate shares from seeds

1) Generate and commit shares Com”1([[x]],)

[x]] = ([[X]]l, . o [[x]]N) COm’ON([[x]]N)

[a]] is an RS codeword

= ¢ + 1 shares fully
determine the sharing

@ Run MPC in their head

send broadcast

LT, & // lx]l, [[a]]l, oo [[a]]N

@ Chose random set of parties

0,{'/ Q‘ [x1l; I IC{l,...N},st. |I|="7
—
[llg ® Check Vi e I
(1.,) - Commitments Com”i([[x]].)
i» Piliel
@ Open parties in [s - MPC computation [[a]l; = ¢([lx]],)

Check g(y, @) = Accept

Prover Verifier

MPCitH transform with threshold LSSS

Threshold LSSS = cannot
generate shares from seeds

1) Generate and commit shares Com”1([[x]],)

[x]] = ([[X]]l, . o [[x]]N) COm’ON([[x]]N)

[a]] is an RS codeword

= ¢ + 1 shares fully
determine the sharing

@ Run MPC in their head

send broadcast

], & // [xT, [ally, ..., [ally A

@ Chose random set of parties

0,{'/ Q‘ [x1l; I IC{l,...N},st. |I|="7
[llg ® Check Vi e I
(1.,) - Commitments Com”i([[x]].)
i» Pi)iel
@ Open parties in I - MPC computation [[a]l; = ¢([[x],)

Check g(y, @) = Accept

= only £ + 1 party

, , Veritfier
computations required

Prover

MPCitH transform with threshold LSSS

Threshold LSSS = cannot
generate shares from seeds

1) Generate and commit shares Com”1([[x]],)

[x]] = ([[X]]l, . o [[x]]N) COm’ON([[x]]N)

[a]] is an RS codeword

= ¢ + 1 shares fully
determine the sharing

@ Run MPC in their head

send broadcast

[l ... [ally A

@ Chose random set of parties

IC{l,..,N},st. |I|="C

B Check Vie [
- Commitments Com”i([[x]].)

- MPC computation [[a]l; = ¢([[x],)
Check g(y, @) = Accept

@ Open parties in [

£ parties opened = only £ + 1 party

. . Veritier
instead of N — 1 computations required

Prover

MPCitH transform with threshold LSSS

Threshold LSSS = cannot
generate shares from seeds

1) Generate and commit shares Com”1([[x]],)

[x]] = ([[X]]l, . o [[x]]N) COm’ON([[x]]N)

[a]] is an RS codeword

= ¢ + 1 shares fully
determine the sharing

@ Run MPC in their head

send broadcast

[l ... [ally A

@ Chose random set of parties

IC{l,..,N},st. |I|="C

B Check Vie [
- Commitments Com”i([[x]].)

°C computation [[a]l;

@ Open parties in [

Check g(y, @) = Accept

£ parties opened = only £ + 1 party only £ party
instead of N — 1 computations required compytations required

Prover

Merkle tree o

Merkle tree o

child_node <« Hash(nodel, node2)

Merkle tree o

child_node <« Hash(nodel, node2)

Merkle tree

child_node <« Hash(nodel, node2)

Opening [[x]];
= need to prove that [[x]].
Is consistent with the root

[[x]]i
- J)co)CJ)coJ)o)dJdJoJgJddgJugJL e e o

Merkle tree

Opening [[x]];
= need to prove that [[x]].
Is consistent with the root

x|l i

FUT
— _

Merkle tree

Opening [[x]];
= need to prove that [[x]].
Is consistent with the root

[Lx] i

TEEE

verification
— log(N) + 1 hashing

\ .
Merkle tree

Opening [[x]];
= need to prove that [[x]].
IS consistent with the root
[[X]]i
.

verification
— log(N) + 1 hashing

\ .
Merkle tree

Opening [[x]];
= need to prove that [[x]].
IS consistent with the root
[[X]]i
.

verification
— log(N) + 1 hashing

\ .
Merkle tree

Opening [[x]];
= need to prove that [[x]].
IS consistent with the root
[[X]]i

verification
— log(N) + 1 hashing

\ .
Merkle tree

Opening [[x]];
= need to prove that [[x]].
IS consistent with the root
[[x]]l‘

verification
— log(N) + 1 hashing

Merkle tree \

1) Generate and commit shares

[[.X]] — ([[x]]la ce [[x]]N)

@ Run MPC in their head

@ Open parties in [

Prover

send broadcast

lally, ..., [ally

ULxl{ auth; g

@ Chose random set of parties

IC{1,...,N}, st |I| =

B Check Vie T
- Commitments Com”i(

- MPC computation [a.

Check g(y, @) = Accept

Verifier

2

x]]l)
1; = @(llx]l;)

Soundness

- [a]
sharing sent to
the verifier s.t.

g(y, @) = Accept

Soundness

- [la]
sharing sent to
the verifier s.t.

8(y, &) = Accept

® P is "honest” it [[all, = [[all;

[[05]]]\7
[ally, - [al

sharing sent to
the verifier s.t.

® # honest parties > 7 + 1 g(y, @) = Accept

® P is "honest” it [[all, = [[all;

Soundness

il

[[05]]1 [[05]]2
[all, el

® P is "honest” it [[all, = [[all;

.A.

- 1

honest parties > ¢ -

>+ 1

N

|BdIPN,

[[a]]N
[[05]]1\7 — Lol

sharing sent to
the verifier s.t.

8(y, &) = Accept

[x] — [a] = [a]
with g(y, &) = Accept

Soundness

1 o o o
]

[all, lall,
[all, lall,

® P is "honest” it [[all, = [[all;

>+ 1

.A.

]V

|BdIPN,

HaﬂN
[ally, - [al

sharing sent to
the verifier s.t.

honest parties > ¢ -

| g(y, @) = Accept
[x] — [a] = []
with g(y, &) = Accept

& [x]] encodes a genuine x

Soundness

® P is "honest” it [[all, = [[all;

honest parties > ¢ -

-1 = honest prover

- ol

sharing sent to
the verifier s.t.

8(y, &) = Accept

Soundness

® P is "honest” it [[all, = [[all;

honest parties > £ + 1 = honest prover

® Malicious prover = # honest parties <7

d |

sharing sent to
the verifier s.t.

g(y, @) = Accept

® P is "honest” it [[all, = [[all;

honest parties > £ + 1 = honest prover

® Malicious prover = # honest parties <7

> # honest parties <7

sharing sent to
the verifier s.t.

g(y, @) = Accept

1| =7 Open parties include

Soundness at least 1 cheating party
B — = MPC verification fails

[all, lall,
[all, lall,

® P is "honest” it [[all, = [[all;

- [la]
sharing sent to
the verifier s.t.

® # honest parties > 7+ 1 = honest prover g(y, @) = Accept

® Malicious prover = # honest parties <7

> # honest parties <7

Soundness

- [la]
sharing sent to
the verifier s.t.

® # honest parties > 7+ 1 = honest prover g(y, @) = Accept

® P is "honest” it [[all, = [[all;

® Malicious prover = # honest parties <7

> # honest parties < ¢ = cheat always detected

- [la]
sharing sent to
the verifier s.t.

® # honest parties > 7+ 1 = honest prover g(y, @) = Accept

® P is "honest” it [[all, = [[all;

® Malicious prover = # honest parties <7

> # honest parties < ¢ = cheat always detected

» # honest parties =7

I = honest parties

Soundness Verification OK
B = successful cheat
PP L.
wln T
[all; [all,
lall, lLall, —]

sharing sent to
the verifier s.t.

® # honest parties > 7+ 1 = honest prover g(y, @) = Accept

® P is "honest” it [[all, = [[all;

® Malicious prover = # honest parties <7

> # honest parties < ¢ = cheat always detected

» # honest parties =7

I # honest parties

Verification NOK
= cheat detected

[[05]]1 [[05]]2
[all, el

® P is "honest” it [[all, = [[all;

- [la]
sharing sent to
the verifier s.t.

® # honest parties > 7+ 1 = honest prover g(y, @) = Accept

® Malicious prover = # honest parties <7

> # honest parties < ¢ = cheat always detected

» # honest parties =7

I # honest parties

Verification NOK
= cheat detected

[all, lall,
[all, lall,

® P is "honest” it [[all, = [[all;

- [la]
sharing sent to
the verifier s.t.

® # honest parties > 7+ 1 = honest prover g(y, @) = Accept

® Malicious prover = # honest parties <7

> # honest parties < ¢ = cheat always detected
¢ Cheat successtul

» # honest parties =7 iff I = honest parties

Soundness

- [la]
sharing sent to
the verifier s.t.

® # honest parties > 7+ 1 = honest prover g(y, @) = Accept

® P is "honest” it [[all, = [[all;

® Malicious prover = # honest parties <7

» # honest parties < £ = cheat always detected
P y | ¢ Cheat successful

» # honest parties = ¢ = soundness error (N) iff I = honest parties

2

Soundness

® \We implicitly assumed that the MPC protocol has no false positive

® False positive probability p #0 — more complex analysis [FR22]

® Soundness error

| (N —7)
") TP

® Fiat-Shamir transform: p should be small for efficient application

Additive sharing
+ seed trees

Threshold LSSS

+ hypercube with ¢ = 1
1 1 1 N-—-1
Soundness error —+p (1 ——) —+p<)
N N N 2
Prover | log N + 1 ’
party computations
Veritier log N 1
party computations
. C sk
>ize O A(log N) 2(log N)

seed / Merkle tree

* might be more for MPC protocols with many rounds of oracle queries

Additive sharing
+ seed trees
+ hypercube

Threshold LSSS
with Z = 1

For signatures with 4 = 128, N = 256, r = 16

Prover | 144 39
party computations

Verifier | 198 14
party computations

Size of KB AKB

seed / Merkle tree

Conclusion

e MPC in the Head is great!
® Efficient and short ZK proofs for small circuits / one-way functions
> Typical application: PQ signatures
> (For larger computation, ZK-SNARK are better)
® Two interesting options (trade-off)
> Additive sharing (with seed trees and hypercube)
» Threshold sharing
® Other type of sharing: sharing over the integers / MPCitH with rejection

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. “Zero-Knowledge Protocols for the Subset
Sum Problem from MPC-in-the-Head with Rejection” (ASIACRYPT 2022)

