Zero-Knowledge Proofs from Multiparty Computation: Recent Advances

Matthieu Rivain

WRACH 2023

Jun 14, 2023, Roscoff

Introduction

La Santa Control de Co

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn an MPC protocol into a zero knowledge proof of knowledge
- Generic: can be apply to any cryptographic problem
- Convenient to build (candidate) post-quantum signature schemes
- Picnic: submission to NIST (2017)
- Recent NIST call (01/06/2023): 7 MPCitH schemes / 50 submissions

One-way function

 $F: x \mapsto y$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Input sharing [x]

Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

Zero-knowledge proof

One-way function

 $F: x \mapsto y$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Input sharing [x]

Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept if } F(x) = y \\ \text{Reject if } F(x) \neq y \end{cases}$$

MPC in the Head transform

Zero-knowledge proof

Background: Additive secret sharing

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$
 s.t. $x = \sum_{i=1}^N [\![x]\!]_i$

Any set of N-1 shares is random & independent of x

Background: Proof of knowledge

- Completeness: Pr[verif ✓ | honest prover] = 1
- Soundness: $\Pr[\text{verif } \checkmark \mid \text{malicious prover}] \le \varepsilon$ (e.g. 2^{-128})
- Zero-knowledge: verifier learns nothing on x

Background: Commitment scheme

- Binding: no way x can be opened to $x' \neq x$
- Hiding: x does not reveal information about x (without ---)
- Hash commitment: $x := \operatorname{Hash}(x \parallel \rho) \text{ with } \rho \leftarrow \$$ $= (x, \rho)$

MPCitH: general principle

MPC model

Jointly compute

$$g(x) = \begin{cases} \text{Accept if } F(x) = y \\ \text{Reject if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

MPC model

Jointly compute

$$g(x) = \begin{cases} \text{Accept if } F(x) = y \\ \text{Reject if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol
- Broadcast model
 - Parties locally compute on their shares $[x] \mapsto [\alpha]$
 - Parties broadcast $[\![\alpha]\!]$ and recompute α
 - Parties start again (now knowing α)

and so on...
$$g:(y,\alpha,\beta,\ldots)\mapsto \begin{cases} \mathsf{Accept} \\ \mathsf{Reject} \end{cases}$$

Example: matrix multiplication y = Hx

$$g(y, \alpha) = \begin{cases} \text{Accept if } y = \alpha \\ \text{Reject if } y \neq \alpha \end{cases}$$
 $g(y, \alpha) = \text{Accept} \iff Hx = y$

<u>Prover</u> <u>Verifier</u>

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

<u>Prover</u> <u>Verifier</u>

- ① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$
- 2 Run MPC in their head

<u>Prover</u>

- ① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$
- 2 Run MPC in their head

③ Chose a random party $i^* \leftarrow^{\$} \{1,...,N\}$

<u>Prover</u>

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties $\{1,...,N\}\setminus\{i^*\}$

3 Chose a random party $i^* \leftarrow^{\$} \{1,...,N\}$

Prover

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties $\{1,...,N\}\setminus\{i^*\}$

- 3 Chose a random party $i^* \leftarrow^{\$} \{1,...,N\}$
- ⑤ Check $\forall i \neq i^*$
 - Commitments $Com^{\rho_i}([[x]]_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

Prover

• Zero-knowledge \iff MPC protocol is (N-1)-private

- Zero-knowledge \iff MPC protocol is (N-1)-private
- Soundness
 - if $g(y, \alpha) \neq Accept \rightarrow Verifier rejects$
 - if $g(y, \alpha) = Accept$, then
 - either [x] = sharing of correct witness F(x) = y → Prover honest
 - or Prover has cheated for at least one party
 - \rightarrow Cheat undetected with proba $\frac{1}{N}$

• Zero-knowledge \iff MPC protocol is (N-1)-private

Soundness

- if $g(y, \alpha) \neq Accept$ → Verifier rejects
- if $g(y, \alpha) = Accept$, then
 - either [x] = sharing of correct witness F(x) = y → Prover honest
 - or Prover has cheated for at least one party

 \rightarrow Cheat undetected with proba $\frac{1}{N}$

Parallel repetition

Protocol repeated τ times in parallel \rightarrow soundness error $\left(\frac{1}{N}\right)^{t}$

Example: matrix multiplication y = Hx

Prover

<u>Verifier</u>

Check $\forall i \neq i^*$

- Commitments $Com^{\rho_i}([[x]]_i)$
- MPC computation $[\![\alpha]\!]_i = H \cdot [\![x]\!]_i$

$$\operatorname{Check} \alpha := \Sigma_i \llbracket \alpha \rrbracket_i = y$$

 \leftarrow hint ab = c

- \leftarrow hint ab = c
- \leftarrow random ε

- \leftarrow hint ab = c
- \leftarrow random ε

$$\alpha = \epsilon x + a$$
$$\beta = y + b$$

$$g(v) = \begin{cases} \text{Accept if } v = 0 \\ \text{Reject if } v \neq 0 \end{cases} \qquad \text{If } xy = z \text{ and } ab = c, \text{ then } v = 0 \\ \text{If } xy \neq z \text{ or } ab \neq c, \text{ then } \Pr[v = 0] = 1/|\mathbb{F}|$$

false positive probability

If
$$xy = z$$
 and $ab = c$, then $v = 0$
If $xy \neq z$ or $ab \neq c$, then $\Pr[v = 0] = 1/|\mathbb{F}|$

Verifying arbitrary circuits

• Previous slide reference:

[BN20] Baum, Nof. "Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-Based Cryptography" (PKC 2020)

- Product-check protocol \Rightarrow protocol for checking any arithmetic circuit C(x) = y
- Principle:
 - Let $\{c_i = a_i \cdot b_i\}$ all the multiplications in C
 - Extended witness: $w = x \parallel (c_1, ..., c_m)$
 - ► Compute [y] = linear function of [w] \rightarrow check [y] = sharing of y
 - $[a_i], [b_i], [c_i] = \text{linear functions of } [w] \rightarrow \text{product check on } [a_i], [b_i], [c_i]$

MPCitH: optimisations

- Signature = transcript P → V
 - $\{\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)\} \rightarrow N \text{ commitments}$
 - $[\![\alpha]\!]_1, ..., [\![\alpha]\!]_N \rightarrow N \text{ MPC broadcasts}$
 - $\{ [\![x]\!]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes

- Signature = transcript P → V
 - $\{\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)\} \rightarrow N \text{ commitments}$
 - ► $[\![\alpha]\!]_1, ..., [\![\alpha]\!]_N$ $\rightarrow N$ MPC broadcasts
 - $\{ [\![x]\!]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes
- First optimisation: hashing

 - Verification
 - $[\![\alpha]\!]_i = \varphi([\![x]\!]_i) \quad \forall i \neq i^*$
 - $[\![\alpha]\!]_{i^*} = \alpha \Sigma_{i \neq i^*} [\![\alpha]\!]_i$
 - Check $\operatorname{Hash}(\llbracket \alpha \rrbracket_1, ..., \llbracket \alpha \rrbracket_N) = h$

- Signature = transcript P → V
 - $\{\operatorname{Com}^{\rho_i}([\![x]\!]_i)\} \rightarrow N \text{ commitments}$
 - ► $[\![\alpha]\!]_1, ..., [\![\alpha]\!]_N$ $\rightarrow NMPC broadcasts$ \rightarrow hash (+1 MPC broadcast)
 - $\{ [\![x]\!]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes
- First optimisation: hashing

 - Verification
 - $[\![\alpha]\!]_i = \varphi([\![x]\!]_i) \quad \forall i \neq i^*$
 - $[\![\alpha]\!]_{i^*} = \alpha \Sigma_{i \neq i^*} [\![\alpha]\!]_i$
 - Check $\operatorname{Hash}(\llbracket \alpha \rrbracket_1, ..., \llbracket \alpha \rrbracket_N) = h$

- Signature = transcript P → V

 - ► $[\![\alpha]\!]_1, ..., [\![\alpha]\!]_N$ $\rightarrow NMPC broadcasts$ \rightarrow hash (+1 MPC broadcast)
 - $\{ [\![x]\!]_i, \rho_i \}_{i \neq i^*}$ $\rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
 - $\qquad \qquad \blacksquare [\alpha]_1, \ldots, [\alpha]_N \rightarrow \quad h = \operatorname{Hash}([\alpha]_1, \ldots, [\alpha]_N), \quad \alpha = \Sigma_i [\alpha]_i$
 - Verification
 - $[\![\alpha]\!]_i = \varphi([\![x]\!]_i) \quad \forall i \neq i^*$
 - $[\![\alpha]\!]_{i^*} = \alpha \Sigma_{i \neq i^*} [\![\alpha]\!]_i$
 - Check $\operatorname{Hash}(\llbracket \alpha \rrbracket_1, ..., \llbracket \alpha \rrbracket_N) = h$
- Also works with commitments

- Signature = transcript P → V

 - ► $[\![\alpha]\!]_1, ..., [\![\alpha]\!]_N$ $\rightarrow NMPC broadcasts$ \rightarrow hash (+1 MPC broadcast)
 - $\{ [x]_i, \rho_i \}_{i \neq i^*} \rightarrow N-1 \text{ input shares} + \text{random tapes}$ main cost
- First optimisation: hashing
 - $\qquad \qquad \blacksquare [\alpha]_1, \ldots, [\alpha]_N \rightarrow \quad h = \operatorname{Hash}([\alpha]_1, \ldots, [\alpha]_N), \quad \alpha = \Sigma_i [\alpha]_i$
 - Verification
 - $[\![\alpha]\!]_i = \varphi([\![x]\!]_i) \quad \forall i \neq i^*$
 - $[\![\alpha]\!]_{i^*} = \alpha \Sigma_{i \neq i^*} [\![\alpha]\!]_i$
 - Check $\operatorname{Hash}(\llbracket \alpha \rrbracket_1, ..., \llbracket \alpha \rrbracket_N) = h$
- Also works with commitments

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)
- Pseudorandom generation from seed
 - $([x]_i, \rho_i) \leftarrow PRG(seed_i)$
 - $[x]_N = x \sum_{i=1}^N [x]_i$
- Seeds {seed_i} generated from a common "root seed"
- Goal: revealing $\{\mathbf{seed}_i\}_{i\neq i^*}$ with less than $(N-1)\cdot\lambda$ bits

- Signature = transcript P → V
 - ► $\{Com^{\rho_i}([[x]]_i)\}$ $\rightarrow N$ commitments \rightarrow hash +1 commitment
 - ► $[\![\alpha]\!]_1, ..., [\![\alpha]\!]_N \rightarrow NMPC$ broadcasts \rightarrow hash (+1 MPC broadcast)
 - $\{ [\![x]\!]_i, \rho_i \}_{i \neq i^*} \rightarrow N-1 \text{ input shares} + random tapes} \rightarrow \log(N) \text{ seeds}$

+ $[x]_N$ if $i^* \neq N$

- Verification
 - Sibling path $\rightarrow \{ seed_i \}_{i \neq i^*}$
 - seed_i \rightarrow ($[x]_i, \rho_i$) $\forall i \neq i^*$
 - ...

Optimising computation: hypercube technique

- [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The Return of the SDitH" (EUROCRYPT 2023)
- High-level principle
 - Apply MPC computation to sums of shares

$$\Sigma_{i \in I} \llbracket x_i \rrbracket \xrightarrow{\varphi} \Sigma_{i \in I} \llbracket \alpha_i \rrbracket$$

- Only $\log N + 1$ such party computations necessary for the prover
- Only log N for the verifier
- See Nicolas' talk at EC: https://youtu.be/z6nE4fOWvZA (49:33)

MPCitH with threshold LSSS

- Sharing $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$ such that
 - ► Let $(r_1, ..., r_\ell) \leftarrow \$$
 - Let P the polynomial of coefficients $(x, r_1, ..., r_\ell)$

$$\begin{cases} \llbracket x \rrbracket_1 = P(f_1) \\ \vdots \\ \llbracket x \rrbracket_N = P(f_N) \end{cases} \text{ with } f_1, \dots, f_N \in \mathbb{F} \text{ distinct field elements}$$

- Sharing $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$ such that
 - ► Let $(r_1, ..., r_\ell) \leftarrow \$$
 - Let P the polynomial of coefficients $(x, r_1, ..., r_\ell)$

$$\begin{cases} \llbracket x \rrbracket_1 = P(f_1) \\ \vdots \\ \llbracket x \rrbracket_N = P(f_N) \end{cases} \text{ with } f_1, \dots, f_N \in \mathbb{F} \text{ distinct field elements}$$

• $(\ell + 1, N)$ -threshold linear secret sharing scheme (LSSS)

- Sharing $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$ such that
 - ► Let $(r_1, ..., r_\ell) \leftarrow \$$
 - Let P the polynomial of coefficients $(x, r_1, ..., r_\ell)$

$$\begin{cases} \llbracket x \rrbracket_1 = P(f_1) \\ \vdots \\ \llbracket x \rrbracket_N = P(f_N) \end{cases} \text{ with } f_1, \dots, f_N \in \mathbb{F} \text{ distinct field elements}$$

- $(\ell + 1, N)$ -threshold linear secret sharing scheme (LSSS)
 - Linearity: [x] + [y] = [x + y]

- Sharing $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$ such that
 - ► Let $(r_1, ..., r_\ell) \leftarrow \$$
 - Let P the polynomial of coefficients $(x, r_1, ..., r_\ell)$

$$\begin{cases} \llbracket x \rrbracket_1 = P(f_1) \\ \vdots \\ \llbracket x \rrbracket_N = P(f_N) \end{cases} \text{ with } f_1, \dots, f_N \in \mathbb{F} \text{ distinct field elements}$$

- $(\ell + 1, N)$ -threshold linear secret sharing scheme (LSSS)
 - Linearity: [x] + [y] = [x + y]
 - Any set of ℓ shares is random and independent of x
 - ► Any set of $\ell + 1$ shares \rightarrow coefficients $(x, r_1, ..., r_\ell) \rightarrow$ all the shares

- Sharing $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$ such that
 - ► Let $(r_1, ..., r_\ell) \leftarrow \$$
 - Let P the polynomial of coefficients $(x, r_1, ..., r_\ell)$

$$\begin{cases} \llbracket x \rrbracket_1 = P(f_1) \\ \vdots \\ \llbracket x \rrbracket_N = P(f_N) \end{cases} \text{ with } f_1, \dots, f_N \in \mathbb{F} \text{ distinct field elements}$$

- $(\ell + 1, N)$ -threshold linear secret sharing scheme (LSSS)
 - Linearity: [x] + [y] = [x + y]
 - Any set of ℓ shares is random and independent of x
 - ► Any set of $\ell + 1$ shares \rightarrow coefficients $(x, r_1, ..., r_\ell) \rightarrow$ all the shares
 - $\llbracket x \rrbracket = (\llbracket x \rrbracket_1, ..., \llbracket x \rrbracket_N)$ is a Reed-Solomon codeword of $(x, r_1, ..., r_\ell)$

MPCitH with threshold LSSS

- [FR22] Feneuil, Rivain. "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022)
- ZK property \Rightarrow only open ℓ parties
 - Verifier challenges a set $I \subseteq \{1, ..., N\}$ s.t. $|I| = \ell$
 - Prover opens $\{ [\![x]\!]_i, \rho_i \}_{i \in I}$

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

- ③ Chose random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$
- (5) Check $\forall i \in I$
 - Commitments $Com^{\rho_i}([[x]]_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

<u>Prover</u>

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

 $\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$

 $\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

Threshold LSSS \Rightarrow cannot generate shares from seeds

2 Run MPC in their head

 \bigcirc Open parties in I

send broadcast $[\![\alpha]\!]_1,\ldots,[\![\alpha]\!]_N$

 $(\llbracket x \rrbracket_i, \rho_i)_{i \in I}$

- 3 Chose random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$
- ⑤ Check $\forall i \in I$
 - Commitments $Com^{\rho_i}([[x]]_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \text{Accept}$

Prover

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

1

 $(\llbracket x \rrbracket_i, \rho_i)_{i \in I}$

Threshold LSSS \Rightarrow cannot generate shares from seeds

[α] is an RS codeword $\Rightarrow \ell + 1$ shares fully determine the sharing

- 3 Chose random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$
- ⑤ Check $\forall i \in I$
 - Commitments $Com^{\rho_i}([[x]]_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \text{Accept}$

Prover

① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$

2 Run MPC in their head

4 Open parties in I

 $\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$... $\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

Threshold LSSS \Rightarrow cannot generate shares from seeds

[α] is an RS codeword $\Rightarrow \ell + 1$ shares fully determine the sharing

- 3 Chose random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$
- ⑤ Check $\forall i \in I$
 - Commitments $Com^{\rho_i}([\![x]\!]_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \text{Accept}$

Prover

 \Rightarrow only $\ell+1$ party computations required

Sharing and commitments

Sharing and commitments

Sharing and commitments

Opening $[x]_i$ \Rightarrow need to prove that $[x]_i$ is consistent with the root

MPCitH transform with threshold LSSS

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head

4 Open parties in I

- ③ Chose random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$
- ⑤ Check $\forall i \in I$
 - Commitments $Com^{\rho_i}([[x]]_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

Prover

<u>Verifier</u>

TO SHOW HERE AND AND SHOW THE WAR THE WAR AND SHOW THE SH

• \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$

 $\rightarrow \quad [\![\bar{\alpha}]\!]$ sharing sent to the verifier s.t. $g(y,\bar{\alpha}) = \mathsf{Accept}$

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1$

 $\rightarrow \quad [\bar{\alpha}]$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = \text{Accept}$

 \Leftrightarrow [[x]] encodes a genuine x

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover

 $\rightarrow \quad [[\bar{\alpha}]]$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = \text{Accept}$

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow # honest parties $\leq \ell$

 $\rightarrow \quad \llbracket \bar{\alpha} \rrbracket$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = Accept$

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow # honest parties $\leq \ell$
 - # honest parties $< \ell$

 $\rightarrow \quad \llbracket \bar{\alpha} \rrbracket$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = \mathsf{Accept}$

- Malicious prover \Rightarrow # honest parties $\leq \ell$
 - ► # honest parties < ℓ

Open parties include at least 1 cheating party ⇒ MPC verification fails $\llbracket \bar{\alpha} \rrbracket$

sharing sent to

the verifier s.t.

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow # honest parties $\leq \ell$
 - ▶ # honest parties $< \ell \Rightarrow$ cheat always detected

 $\rightarrow \quad \llbracket \bar{\alpha} \rrbracket$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = \mathsf{Accept}$

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow # honest parties $\leq \ell$
 - ▶ # honest parties $< \ell \Rightarrow$ cheat always detected
 - # honest parties = ℓ

 $\rightarrow \quad \llbracket \bar{\alpha} \rrbracket$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = \text{Accept}$

I = honest parties

 $= \ell$

⇒ successful cheat

 \mathcal{P}_N

 $[\![x]\!]_N$

 $[\![\alpha]\!]_N$

 $\llbracket \bar{\alpha} \rrbracket_N$

Verification OK

- $\begin{bmatrix} \alpha \\ i \\ = \\ [\bar{\alpha}]_i \end{bmatrix}$
- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow # honest parties $\leq \ell$
 - ▶ # honest parties $< \ell \Rightarrow$ cheat always detected
 - # honest parties = ℓ

 $\rightarrow \quad [\bar{\alpha}]$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = \text{Accept}$

 $[x]_2$

 $[\![\alpha]\!]_2$

 $\llbracket \bar{\alpha} \rrbracket_2$

 $[\![x]\!]_1$

 $[\![\alpha]\!]_1$

 $\llbracket \bar{\alpha} \rrbracket_1$

 $I \neq \text{honest parties}$ \mathcal{P}_N $[x]_N$ $\begin{bmatrix} \alpha \end{bmatrix}_i \\ \neq \\ \begin{bmatrix} \bar{\alpha} \end{bmatrix}_i$ $\llbracket \alpha \rrbracket_i$ $\llbracket \alpha \rrbracket_N$

Verification NOK ⇒ cheat detected

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow # honest parties $\leq \ell$
 - # honest parties $<\ell$ \Rightarrow cheat always detected

 $\llbracket \bar{\alpha} \rrbracket_i$

• # honest parties $= \ell$

 $\llbracket \bar{\alpha} \rrbracket$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = Accept$

 $\llbracket \bar{\alpha} \rrbracket_N$

 $I \neq \text{honest parties}$

Verification NOK ⇒ cheat detected

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow # honest parties $\leq \ell$
 - ▶ # honest parties $< \ell \Rightarrow$ cheat always detected
 - # honest parties $= \ell$

 $\rightarrow \quad [\![\bar{\alpha}]\!]$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = \text{Accept}$

Cheat successful iff I = honest parties

- \mathcal{P}_i is "honest" if $[\![\alpha]\!]_i = [\![\bar{\alpha}]\!]_i$
- # honest parties $\geq \ell + 1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow # honest parties $\leq \ell$
 - \blacktriangleright # honest parties $<\ell$ \Rightarrow cheat always detected
 - ▶ # honest parties = ℓ ⇒ soundness error $\frac{1}{\binom{N}{\ell}}$

 $\rightarrow \quad [[\bar{\alpha}]]$ sharing sent to the verifier s.t. $g(y, \bar{\alpha}) = \text{Accept}$

- We implicitly assumed that the MPC protocol has no false positive
- False positive probability $p \neq 0 \rightarrow$ more complex analysis [FR22]
- Soundness error

$$\frac{1}{\binom{N}{\ell}} + p \frac{\ell(N-\ell)}{\ell+1}$$

ullet Fiat-Shamir transform: p should be small for efficient application

Comparison

	Additive sharing + seed trees + hypercube	Threshold LSSS with $\mathcal{E}=1$
Soundness error	$\frac{1}{N} + p\left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p\left(\frac{N-1}{2}\right)$
Prover # party computations	$\log N + 1$	2
Verifier # party computations	$\log N$	1
Size of seed / Merkle tree	$\lambda(\log N)$	$2\lambda(\log N)^*$

^{*} might be more for MPC protocols with many rounds of oracle queries

Comparison

	Additive sharing + seed trees + hypercube	Threshold LSSS with $\mathcal{E}=1$	
For signatures with $\lambda=128,N=256,\tau=16$			
Prover # party computations	144	32	
Verifier # party computations	128	16	
Size of seed / Merkle tree	2KB	4KB	

Conclusion

- MPC in the Head is great!
- Efficient and short ZK proofs for small circuits / one-way functions
 - Typical application: PQ signatures
 - ► (For larger computation, ZK-SNARK are better)
- Two interesting options (trade-off)
 - Additive sharing (with seed trees and hypercube)
 - Threshold sharing
- Other type of sharing: sharing over the integers / MPCitH with rejection

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. "Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection" (ASIACRYPT 2022)