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Abstract Differential power analysis is a powerful crypt-
analytic technique that exploits information leaking from
physical implementations of cryptographic algorithms. Dur-
ing the two last decades numerous variations of the original
principle have been published. In particular, the univariate
case, where a single instantaneous leakage is exploited, has
attracted much research effort. In this paper, we argue that
several univariate attacks among the most frequently used
by the community are not only asymptotically equivalent,
but can also be rewritten one in function of the other, only
by changing the leakage model used by the adversary. In
particular, we prove that most univariate attacks proposed
in the literature can be expressed as correlation power anal-
yses with different leakage models. This result emphasizes
the major role plays by the model choice on the attack effi-
ciency. In a second point of this paper we hence also discuss
and evaluate side channel attacks that involve no leakage
model but rely on some general assumptions about the leak-
age. Our experiments show that such attacks, named robust,
are a valuable alternative to the univariate differential power
analyses. They only loose bit of efficiency in case a perfect
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model is available to the adversary, and gain a lot in case
such information is not available.
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1 Introduction

The goal of a Differential Power Analysis (DPA) is to take
advantage of the key-dependent physical leakages provided
by a cryptographic device, in order to recover secret infor-
mation (key bytes, typically). Most of these attacks exploit
the leakages by comparing them with key-dependent mod-
els that are available for the target device. Since the seminal
work of Kocher et al. in the late 1990’s [1], a large variety
of statistical tests, also called distinguishers, have been in-
troduced for this purpose. Namely, the original attack (that
we will always refer to as DPA for convenience) was de-
scribed using a Difference-of-Means test. Following works,
including the all-or-nothing multiple-bit DPA [2], the gen-
eralized multiple-bit DPA [2], the Correlation Power Anal-
ysis (CPA) [3], the Partitioning Power Analysis (PPA) [4]
and the enhanced DPA of Knudsen and Bévan [5], system-
atically proposed ways to enhance the Difference-of-Means
test. Their goal was to better take advantage of the available
information, e.g. , by allowing the adversary to incorporate
more precise leakage models in the statistics. Hence, and in
view of the large variety of distinguishers available in the lit-
erature, a natural question is to determine the exact relations
between them and the conditions upon which one of them
would be more efficient.

Closely related to this question, Mangard et al. showed
in [6] that for a category of attacks, denoted as standard
univariate DPA, a number of distinguishers (namely, those
using a Difference-of-Means test or a Pearson’s correlation
coefficient or Gaussian templates) are in fact asymptotically
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equivalent, given that they are provided with the same a pri-
ori information about the leakages (i.e. if they use the same
model). More precisely, [6] shows that these distinguishers
only differ in terms that become key-independent once prop-
erly estimated. While this result is limited to first-order (aka
univariate) attacks, it clearly underlines that the selection (or
construction) of a proper leakage model in Side Channel At-
tacks (SCA) is at least as important as the selection of a good
distinguisher.

A natural extension of Mangard et al. ’s work is to study
whether their statement holds in non-asymptotic contexts
(i.e. when the number of measurements is reasonably small).
Such a study is of particular importance since it corresponds
to a practical issue from both the attacker and the secu-
rity designer side. Indeed the latter ones often need to pre-
cisely determine which of the numerous existing attacks is
the most suitable one in a given context, or reciprocally,
which context is the most appropriate one for a given attack.

The results in this paper can be seen as a complement
to the previous analyses and are in two parts. We first focus
on the aforementioned list of non-profiled side channel dis-
tinguishers. We prove that they not only are asymptotically
equivalent but also, that they can be explicitly re-written one
in function of another, by only changing the leakage model.
In other words, we show that all these distinguishers exploit
essentially the same statistics and that any difference can be
expressed as a change of model. This provides us with a uni-
fied framework to study and compare the attacks. Moreover,
this emphasizes how strong the impact of the model choice
on the attack efficiency is. Since a good leakage model is not
always available to the attacker, we study in the second part
of this paper, side channel attacks introduced in [7] which
do not relate on a model choice and can be performed with
a few general assumptions about the leakage. Those attacks
are presented and analysed in the unified framework intro-
duced in the first two sections of the paper. Our results show
that such robust side channel attacks1 are only slightly less
efficient than a correlation power analysis performed with
a perfect leakage model (which is a very favourable con-
text for the CPA). At the opposite when no perfect leakage
model is available, robust side channel attacks are more ef-
ficient than a correlation power analysis. Moreover in this
case, they can deal with situations in which a correlation
power analysis would fail.

2 Background

Let EK(p) denote the output of the encryption of a plaintext
p parameterized by a master key K. Let vk be an intermedi-
ate result occurring during the processing of EK(p), which

1 The term robust is related to the statistical notion of robustness
that is the property of being insensitive to small deviations from as-
sumptions.

can be expressed as a deterministic function of the plain-
text p and a guessable part k of the secret key K (e.g. , an
S-box output in a Substitution-Permutation Network (SPN)
cipher). We shall refer to vk as sensitive variable in the fol-
lowing. We consider an adversary, who has access to a phys-
ical implementation of EK(·) and, who observes the side
channel leakage of N successive encryptions of plaintexts
pi. Each encryption EK(pi) gives rise to a value vk,i of the
sensitive variable. The computation of this intermediate re-
sult by the device generates some physical leakage `k,i. We
denote by Vk and L the random variables over the sample
(vk,i)i and (`k,i)i respectively. We assume the leakage L to
be composed of two parts: a deterministic part δ (·) and an
independent noise B such that

L = δ (Vk)+B , (1)

which implies

`k,i = δ
(
vk,i
)
+bi ,

where bi denotes the leakage noise value in the ith leakage
measurement.

Assumption 1 (Independent Noise) The noise B is inde-
pendent of the sensitive variable Vk.

To mount an attack, the adversary measures leakages
(`k,i)i from the targeted device using a sample (pi)i of plain-
texts. Then, he computes the hypothetic value vk̂,i of the
sensitive variable vk,i for every pi and for every possible
k̂. A leakage model function m is subsequently applied to
map the hypothetic sensitive values toward estimated leak-
age values mk̂,i = m(vk̂,i). Eventually, the adversary uses a
distinguisher to compare the different model samples (mk̂,i)i
with the actual leakage sample (`k,i)i. If the attack is suc-
cessful, the best comparison result (i.e. , the highest – or
lowest – value of the distinguisher) should be obtained for
the model sample corresponding to the correct subkey candi-
date k̂ = k. This procedure can then be repeated for different
subkeys in order to eventually recover the full master key.

We sum-up hereafter the different steps of a standard
univariate SCA:

1. Perform N measurements (`k,i)i on the cryptographic de-
vice using a sample (pi)i of N plaintexts.

2. Choose a function m to model the deterministic part of
the leakage.

3. For every key hypothesis k̂, compute the model values
mk̂,i from the plaintexts pi’s and the model function m.

4. Choose a statistical distinguisher ∆ .
5. For every key hypothesis k̂, compute the distinguishing

value ∆k̂ defined by:

∆k̂ = ∆

(
(`k,i)i,(mk̂,i)i

)
.

This results in a score vector (∆k̂)k̂.
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6. Output as the o most likely key candidates the o key hy-
potheses that maximize – or minimize – ∆k̂.

As it can be seen in the previous list, a standard univari-
ate SCA on a given sensitive variable vk is only character-
ized by the model function m and the distinguisher ∆ . For
this reason we shall use in the following the notation (m, ∆)-
SCA to differentiate one such an attack from another.

In the rest of the paper we aim to compare different dis-
tinguishers targeting the same intermediate variable. For this
purpose, we introduce hereafter the notion of reduction be-
tween two SCAs:

Definition 1 (SCA-reduction) A (m, ∆)-SCA is said to be
SCA-reducible to a (m′, ∆ ′)-SCA if there exists a function
f such that m = f ◦m′ and for every pair (k, k̂) and every
samples (`k,i)i and (vk̂,i)i, there exists a strictly monotonous
function g such that:

∆

(
(`k,i)i,(mk̂,i)i

)
= g ◦∆

′
(
(`k,i)i,(m

′
k̂,i)i

)
,

where mk̂,i =m(vk̂,i) and m′
k̂,i

=m′(vk̂,i).

Definition 2 (SCA-equivalence) Let A be a (m, ∆)-SCA
and let B be a (m′, ∆ ′)-SCA. A is said to be SCA-equivalent
to B if and only if A is SCA-reducible to B and B is SCA-
reducible to A.

It is clear from the general attack description recalled
above that two major choices are left to the adversary when
the latter one wishes to perform a standard SCA attack on a
given sensitive variable computed on some device:

– the choice of the distinguisher,
– the choice of the model.

In this paper, we will study both questions and will show
that they are linked. We will first show that most of uni-
variate SCA distinguishers that have been proposed in the
literature give rise to attacks reducible to CPA under Defini-
tion 1. Namely, they lead to similar results up to a change of
model. We will then discuss the importance of the model for
the attack soundness and we will investigate attacks that do
not require any a priori choice of a model.

2.1 Notations

Let X be a random variable and let x and Ω be respec-
tively an element and a subset of the definition set X of
X . In the rest of the paper, we shall denote by Pr (X = x)
and Pr (X ∈Ω) the probabilities associated with the events
(X = x) and (X ∈ Ω) respectively. We shall moreover de-
note by E(X) the expectation of X . Estimations of the ex-
pectation and of the probability over a sample (xi)i of val-
ues taken by X shall be denoted by Ê(X) and P̂r (X = x) re-
spectively. For instance, if N denotes the size of the sample

(`k,i)i, notations Ê(L) and P̂r (L = `) shall refer to the mean

value 1
N ∑i `k,i of the leakage sample and to ratio #{i;`k,i=`}

N .
Eventually, we shall say that a sample (xi)i of a random vari-
able X is a balanced sample if it contains each value of X a
same number of times. Clearly, the size N of such a sample
is a multiple of the cardinality of X .

The random variable related to the observations vk̂,i and
mk̂,i will be denoted by Vk̂ and Mk̂ respectively. Throughout
this paper we will hence have Mk̂ =m(Vk̂).

3 Reduction Between Various Side Channel Attacks

In this section, we first describe the focused distinguishers
and then we give reduction relations between them.

3.1 Distinguisher Descriptions

The first (m, ∆)-SCA was introduced by Kocher et al. in [1],
and was called Differential Power Analysis. It targets a sin-
gle bit of the sensitive variable vk and shall be therefore re-
ferred to as single-bit DPA in the rest of the paper. Since this
bit usually depends on all bits of the subkey, the single-bit
DPA may allow to unambiguously discriminate the correct
subkey. However, for some kinds of algebraic relationships
between the manipulated data and the subkey, several key
candidates (including the correct one) may result in the same
distinguishing value and the attack fails (this phenomenon is
referred to as ghost peaks in [3]). To exploit more informa-
tion from the leakage related to the manipulation of vk and
to succeed when single-bit DPA does not, the attack was ex-
tended to several bits by Messerges in [8] in two ways: the
all-or-nothing DPA and the generalized DPA. The original
single-bit DPA of Kocher and its extensions by Messerges
can all be defined in a similar way as follows:

Definition 3 (Differential Power Analysis (DPA)) A DPA
is a (m, ∆)-SCA, which involves a distinguisher ∆ defined
as a Difference of Means (DoM) between two leakage parti-
tions defined according to the image set Im(m).

Depending on the definition of the leakage model func-
tion m, we recognize the classical presentations of the three
DPA attacks listed above:

– In a single-bit DPA, the image set Im(m) is reduced to
two elements w0 and w1 and for every k̂ we have:

∆k̂ = Ê
(
L |Mk̂ = w0

)
− Ê

(
L |Mk̂ = w1

)
. (2)

– In an all-or-nothing DPA, the image set Im(m) can have
a cardinality greater than 2. Two elements ω0 and ω1 are
chosen in Im(m) and for every k̂ we have:

∆k̂ = Ê
(
L |Mk̂ = ω0

)
− Ê

(
L |Mk̂ = ω1

)
. (3)
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– In a generalized DPA, two subsets Ω0 and Ω1 of Im(m)

are chosen and for every k̂ we have:

∆k̂ = Ê
(
L |Mk̂ ∈Ω0

)
− Ê

(
L |Mk̂ ∈Ω1

)
. (4)

Distinguishers ∆k̂ defined in (2) - (4) shall be denoted
by SB-DPA(k̂), AON-DPA(k̂) and G-DPA(k̂) respectively,
where k̂ is the key hypothesis.

Example 1 Typical choices for the model functions in (2) -
(4) are as follows [1, 8]:

Single-bit DPA: m is the function that maps the vector vk̂ to
one of its bit-coordinates and we hence have Im(m) =

{ω0,ω1}= {0,1}.
All-or-nothing DPA: m is the Hamming weight and thus we

have {ω0,ω1}= {0,n} (n being the bit-size of vk̂).
Generalized DPA: m is the Hamming weight and thus we

have {Ω0,Ω1}=
{
{1, . . . ,b n

2c},{d
n
2e, . . . ,n}

}
.

However, different choices for m, (ω0,ω1) and (Ω0,Ω1)

may be arbitrary made by the attacker, which explains why
we do not fix a particular choice in this paper.

After Messerges’ works, two extensions of the DPA have
been proposed respectively by Le et al. in [4] and by Brier
et al. in [3].

The generalization proposed in [4] starts from (4) and
enables to involve more than 2 subsets to eventually com-
pute a weighted sum of means instead of a simple DoM. We
recall hereafter its definition:

Definition 4 (Partition Power Analysis (PPA)) A PPA is
a (m, ∆)-SCA, which involves a distinguisher ∆ defined for
every k̂ by:

∆k̂ = ∑
ωi∈Im(m)

αi · Ê
(
L |Mk̂ = ωi

)
, (5)

where the αi’s are constant coefficients in R.

A distinguisher ∆k̂ defined such as in (5) shall be denoted
PPA(αi)i

(k̂). Moreover, when we shall need to exhibit the
model m in the PPA, we shall use the notation PPA(αi)i,m

(k̂)
for the distinguisher. As discussed in [4], the tricky part
when specifying a PPA attack is the choice of the most suit-
able coefficients αi’s.

The generalization of the DPA proposed in [9] involves
the linear correlation coefficient. We recall hereafter the def-
inition of this attack:

Definition 5 (Correlation Power Analysis (CPA)) A CPA
is a (m, ∆)-SCA, which involves the Pearson’s correlation
coefficient ρ as distinguisher. Namely, for every k̂, we have:

∆k̂ = ρ̂
(
L , Mk̂

)
=

ĉov
(
L , Mk̂

)
σ̂ (L) · σ̂

(
Mk̂

) , (6)

where σ̂ (L) and σ̂
(
Mk̂

)
denote the standard deviations of

the samples (`k,i)i and (mk̂,i)i
respectively and where their

covariance is denoted by ĉov
(
L , Mk̂

)
which is Ê

(
LMk̂

)
−

Ê(L)Ê
(
Mk̂

)
.

A distinguisher ∆k̂ defined such as in (6) shall be de-
noted by CPA(k̂). Moreover, when we shall need to exhibit
the model m used in the CPA, we shall use the notation
CPAm(k̂) for the distinguisher.

The attacks listed above have been applied in many pa-
pers, e.g. , [8, 10, 11] and have even been sometimes exper-
imentally compared one to another [6, 12]. However, none
of those works have enabled to draw definitive conclusions
about the similarities and the differences of the attacks. Next
sections aim to overcome this lack. The study shall be con-
ducted under the following assumption:

Assumption 2 (Target Uniformity) The predicted variable
sample (vk̂,i)i

is balanced for every key hypothesis k̂.

Remark 1 Assumption 2 is realistic in the SCA context. In-
deed, the (vk̂,i)i

’s result from the evaluation of a balanced
cryptographic primitive (e.g. , an S-box or a linear operation
over a small vector space), and we can fairly assume when
N is large enough that (vk̂,i)i

is a balanced sample.

Remark 2 Since m is defined over the definition set of the
values vk̂ and since the distribution over (vk̂)i is balanced
independent of k̂, then Assumption 2 implies that the mean
and the standard deviation of Mk̂ = m(Vk̂) are always es-
timated from a balanced sample. As a consequence, those
estimations are constant with respect to the key hypothesis k̂
and exactly correspond to the mean E

(
Mk̂

)
and the standard

deviation σ
(
Mk̂

)
of Mk̂.

In what follows, we state the SCA-reductions between
DPA, PPA and CPA (Sections 3.2 and 3.3). We show that
each of those attacks can be reformulated to reveal a cor-
relation coefficient computation and that they only differ in
the involved model function. A direct consequence of this
statement is that comparing those attacks simply amounts to
compare the accuracy/soundness of the underlying models.
Afterward, we address attacks that consist in summing dis-
tinguishers and we show that they are also SCA-reducible
to a CPA (Section 3.4). These results emphasize the im-
portance of making a good choice for the model according
to the attack context specificities, which is eventually dis-
cussed (Section 3.5).

3.2 From DPA to PPA

As the PPA is a generalization of the DPA that is based on
the same statistical tool (namely a DoM test), we can reason-
ably expect that all the DPA presented in Section 3.1 can be



Univariate Side Channel Attacks and Leakage Modeling 5

rewritten in terms of a PPA. We give in the following propo-
sition a formal proof for this intuition. Note that our proof is
constructive and we exhibit how to reformulate any DPA in
terms of a PPA.

Proposition 1 Let DPA(k̂) be one of the DPA defined in
(2) - (4). There exist coefficients (αi)i such that DPA(k̂) =
PPA(αi)i

(k̂).

Proof. Let us first focus on the SB-DPA(k̂) distinguisher
and let us denote by α0 and α1 respectively the coefficients
1 and −1. Relation (2) can be rewritten:

SB-DPA(k̂) = α0Ê
(
L |Mk̂ = w0

)
+α1Ê

(
L |Mk̂ = w1

)
.

(7)

The right part of (7) defines a PPA distinguisher PPA(k̂)
involving the same 2-valued model m as SB-DPA(k̂) and the
pair of coefficients (α0,α1). The same reasoning holds for
an all-or-nothing DPA and its distinguisher AON-DPA(k̂)
defined in (3), by stating α0 = 1, α1 = −1 and αi = 0 for
every ωi ∈ Im(m)\{ω0,ω1}.

Let us now focus on the generalized DPA and its distin-
guisher G-DPA(k̂). It can be easily checked that (4) can be
rewritten:

G-DPA(k̂) = ∑
ω∈Ω0

P̂r(Mk̂=ω)
P̂r(Mk̂∈Ω0)

Ê
(
L |Mk̂ = ω

)
− ∑

ω∈Ω1

P̂r(Mk̂=ω)
P̂r(Mk̂∈Ω1)

Ê
(
L |Mk̂ = ω

)
+ ∑

ω∈Im(m)\Ω0∪Ω1

0 · Ê
(
L |Mk̂ = ω

)
. (8)

Let us denote by (ωi)i the elements in Im(m) and let
(αi)i be a family coefficients defined such that:

αi =


P̂r(Mk̂=ωi)
P̂r(Mk̂∈Ω0)

if ωi ∈Ω0,

− P̂r(Mk̂=ωi)
P̂r(Mk̂∈Ω1)

if ωi ∈Ω1,

0 otherwise.

Under Assumption 2, coefficients αi are constant (namely
independent of the sample size and of the key hypothesis).
After replacing the coefficients in (8) by those αi’s, we rec-
ognize in (8) the definition of a PPA distinguisher involving
the same model m as G-DPA(k̂) and the family (αi)i as co-
efficients. �

As a direct consequence of Proposition 1, we get the fol-
lowing corollary:

Corollary 1 Under Assumption 2, a DPA is SCA-reducible
to a PPA.

In the next section, we compare the PPA with the CPA.

3.3 From PPA to CPA

It is already well known in statistics that a linear correlation
coefficient can be written as a weighted sum of means over
a partition of a probability space. As a straightforward con-
sequence and as mentioned by Le et al. in [4], a CPA can be
viewed as a particular case of a PPA (i.e. , a CPA is SCA-
reducible to a PPA). What we prove in this section is that
a PPA can be re-stated as a CPA. Eventually, we argue that
both attacks are SCA-equivalent under Assumption 2.

Proposition 2 Let PPA(αi)i
(k̂) be a PPA distinguisher de-

fined with respect to a model function m and a family of coef-
ficients (αi)i. Then, there exists a function f and two constant
coefficients a and b such that PPA(αi)i

(k̂) = a ·CPA(k̂)+b,
where CPA(k̂) is a CPA distinguisher involving the model
function f ◦m.

Proof. We recall that, in the definition of PPA(αi)i
(k̂) (see

(5)), every ωi ∈ Im(m) is associated with the coefficient αi.
From those ωi’s and αi’s we define a function f on Im(m)

by:

f(ωi) =
αi

P̂r
(
Mk̂ = ωi

) . (9)

Under Assumption 2, probabilities P̂r
(
Mk̂ = ωi

)
, and thus

coefficients f(ωi), are constant (namely independent of the
sample size and of the key hypothesis k̂). With those new
notations, (5) can be rewritten as:

PPA(αi)i,m
(k̂) =

∑
ωi∈Im(m)

f(ωi) · P̂r
(
Mk̂ = ωi

)
· Ê
(
L |Mk̂ = ωi

)
. (10)

We therefore get the following relation:

PPA(αi)i,m
(k̂) =

∑
α∈Im(f)

α · P̂r
(
Mk̂ ∈ f−1(α)

)
· Ê
(
L |Mk̂ ∈ f−1(α)

)
(11)

i.e.

PPA(αi)i,m
(k̂) =

∑
α∈Im(f)

P̂r
(
f(Mk̂) = α

)
· Ê
(
α ·L | f(Mk̂) = α

)
. (12)

After denoting by M′
k̂

the random variable f(Mk̂) and thanks
to the law of total expectation, we eventually deduce:

PPA(αi)i,m
(k̂) = Ê

(
LM′k̂

)
. (13)

On the other hand, we have:

CPAm′(k̂) =
1

σ̂ (L) σ̂

(
M′

k̂

) · Ê(LM′k̂

)
−

Ê(L)Ê
(

M′
k̂

)
σ̂ (L) σ̂

(
M′

k̂

) ,



6 Julien Doget et al.

where m′ denote the function f ◦m. Under Assumption 2,
values Ê(L), σ̂ (L), Ê

(
Mk̂

)
and σ̂

(
Mk̂

)
are constant with

respect to k̂. This implies that the CPA distinguisher CPA(k̂)
associated with the model function f ◦m satisfies the follow-
ing equality:

Ê
(

LM′k̂

)
= a ·CPAm′(k̂)+b , (14)

where a and b are two constant values satisfying

a = σ̂ (L) σ̂

(
M′k̂

)
and b =

Ê(L)Ê
(

M′
k̂

)
σ̂ (L) σ̂

(
M′

k̂

) .

From (13) and (14) we deduce that there exist two constant
terms a and b and a model transformation f such that

PPA(αi)i,m
(k̂) = a ·CPAm′(k̂)+b , (15)

with m′ = f ◦m. �

As a straightforward consequence of Proposition 2 we
get the following corollary:

Corollary 2 Under Assumption 2, a PPA is SCA-equivalent
to a CPA.

Proposition 2 implies that a PPA and a CPA only differ in
the model, which is involved to correlate the leakage signal.
As a consequence, if a PPA with model m and coefficients
αi’s is more efficient than a CPA with model m′, this simply
means that the model f ◦m (for f defined as in Prop. 2) is
more linearly related to the deterministic leakage function
δ (·) than m′. In such a case, the CPA must be performed
with the most accurate model between both, namely f ◦m.
In other terms, the problem of finding the most pertinent
coefficients αi’s for the PPA is equivalent to the problem of
finding the model with maximum linear correlation with the
deterministic leakage function.

3.4 Summing Distinguishers

In previous sections, we have established the SCA-reduction
of DPA and PPA to CPA. Namely, we have shown that for
every DPA or PPA with model m, there exists a new model
m′ = f ◦m such that a CPA with m′ leads to a similar key-
guess classification. This shows that, when performing such
attacks, the real issue is the choice of the model and not the
choice of the distinguisher. To deal with this issue when the
best model is not known, an approach could consist in ap-
plying one of the distinguishers recalled in previous sections
to a family of models (mi)i and to sum the results to define a
new distinguisher. Actually, this distinguisher is still affinely
reducible to a CPA-distinguisher involving a model defined
with respect to (mi)i and the “new” attack is thus no more
than a CPA attack with a new model. This comes down as a
consequence of the following lemma:

Lemma 1 Let CPAm1(k̂) and CPAm2(k̂) be two CPA dis-
tinguishing values defined for the same samples (`k,i)i and
(vk̂,i)i

, and with two different model functions m1 and m2 re-
spectively. Then, after denoted by m3 the function m1

σ̂

(
Mk̂,1

) +
m2

σ̂

(
Mk̂,2

) , we have:

CPAm1(k̂)+CPAm2(k̂) = a CPAm3(k̂) ,

where Mk̂,1, Mk̂,2 and Mk̂,3 denote the model variables asso-
ciated with the model functions m1, m2 and m3 respectively,
and where a = σ̂

(
Mk̂,3

)
.

The idea consisting in summing several distinguishers to de-
fine a new one has been for instance applied by Bévan and
Knudsen in [5] to enhance the original Kocher’s DPA. The
authors propose to perform a single-bit DPA for each bit of
the sensitive variable Vk̂ and then to sum the results. We call
this attack a Multiple-DPA attack hereafter and we denote
the involved distinguisher by M-DPA(k̂). It is defined as fol-
lows:

M-DPA(k̂) =
t

∑
j=0

SB-DPA(k̂) j . (16)

where t is any integer lower than or equal to the dimension
of vk viewed as a binary-vector and where SB-DPA(k̂) j de-
notes the single-bit DPA with a model function m j defined
w.r.t. two real values ω0, j and cω1, j by m j(vk̂) = (1−vk̂[ j]) ·
ω0, j + vk̂[ j] ·ω1, j. As argued at the beginning of this section
(and as a consequence of Propositions 1 and 2 and Lemma
1), this attack is SCA-reducible to a CPA. We state this in
the following proposition and, for completeness, we exhibit
in its proof the way how to define the CPA-distinguisher of
this reduced CPA.

Proposition 3 A M-DPA attack is SCA-reducible to a CPA
under Assumption 2.

Proof. Let us focus on Relation (16). Due to Proposition
1, for every j the single-bit DPA distinguisher SB-DPA(k̂) j
is affinely reducible to the CPA-distinguisher CPA(k̂) j in-
volving the model function f j ◦m j where f j is defined on
Im(m j) = {ω0, j,ω1, j} by f j(ω0, j) = 1/P̂r

(
m j(Vk̂) = ω0, j

)
and f j(ω1, j) = −1/P̂r

(
m j(Vk̂) = ω1, j

)
. Let Mk̂, j denote the

random variable f j ◦m j(Vk̂). As a consequence of Proposi-
tion 1, we have:

SB-DPA(k̂) j =
CPA(k̂)m j +b

a
,

with a = 1
σ̂(L)σ̂

(
Mk̂, j

) and b =
Ê(L)Ê

(
Mk̂, j

)
σ̂(L)σ̂

(
Mk̂, j

) . It can be checked

that under Assumption 2, a and b are constant with respect
to j and k̂. We therefore deduce that (16) is equivalent with:

M-DPA(k̂) =
1
a

t

∑
j=0

CPA(k̂)m j +
t ·b
a

.
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Lemma 1 then implies the following equality:

M-DPA(k̂) =
σ̂

(
M?

k̂

)
a

CPA(k̂)m? +
t ·b
a

, (17)

with m? being the function ∑
t
j=1

f◦m j

σ̂

(
Mk̂, j

) and where M?
k̂

de-

notes the model variable associated with m?. �

3.5 On the Choice of the Model

In previous sections we argued that most of existing linear
power analysis attacks are reducible to CPAs that only dif-
fer in the model they involve. As a first important conse-
quence, one of those attacks is more efficient than another
if and only if the corresponding SCA-reduced CPA involves
a better model. This naturally raises the question of defin-
ing the model that optimizes the CPA efficiency. It has been
proven in [13] that the model function m : v 7→E

(
L | Vk̂ = v

)
maximizes the amplitude of the correlation coefficient (6)
when the good key is tested and hence optimizes the at-
tack efficiency (as argued in [14]). In the context of uni-
variate SCA with leakage satisfying (1), this function is the
deterministic leakage function δ (·). Note that any model
m(·) = a δ (·) + b where a 6= 0, b are constants will also
maximize the amplitude of the correlation. As a particular
observation, when all the bits of the targeted variable vk
impact the leakage expectation, the result in [13] implies
that the model must take into account all the bits of vk and
that attacks exploiting only a limited number of bits (such
as e.g. , the single-bit DPA) are sub-optimal. It is worth
noticing that if the model is perfect (i.e. , if m(·) = δ (·)),
then under the Gaussian Noise Assumption (i.e. , the noise
B in (1) is drawn from a gaussian distribution), the CPA
is equivalent to a maximum likelihood attack [6], which is
known to be optimal for key-recovery. However, computing
m : v 7→ E

(
L | Vk̂ = v

)
with no a priori knowledge about L

is not possible when no profiling stage is enabled. This im-
plies that the adversary model is often not perfect and the re-
sulting attacks are thus most of the time sub-optimal. In the
next section, we investigate a family of side channel attacks
that make weaker assumptions on the device behavior than
the CPA-like attacks do. To succeed, those attacks, termed
robust, do not require a good affine estimation of the deter-
ministic part δ (·) of the device leakage. Actually, they only
require some general assumptions on the algebraic proper-
ties of δ (·) (e.g. , the output value of the function is any
linear combination of the bits of the input value).

4 Robust Side Channel Attacks

In this section, we investigate robust side channel attacks
that are able to succeed with only a very limited knowledge

on how the device leaks information. The starting point is
to replace the requirement that the deterministic part of the
leakage δ (·) is greatly correlated to the attack model m by
the weaker requirement that δ (·) belongs to a set of func-
tions sharing some algebraic properties.

Before presenting the attacks and in order to determine
the kind of algebraic properties of δ (·) they focus on, let
us have a closer look at this function. As any real function
defined over F2n , it can be represented by a polynomial in
R[x0, . . . ,xn−1], where the degree of every xi in every mono-
mial is at most 1 (because xi

m = xi for every xi ∈ F2 and m∈
N∗). Namely, there exists a multivariate degree (or a degree
for short) d ≤ n and a set of real coefficients (αu)u⊆{0,...,n−1}
such that for every x ∈ F2n we have:

δ (x) = α−1 +
n−1

∑
i=0

αixi +
n−1

∑
i1,i2=0

αi1,i2xi1 xi2 + · · ·

+
n−1

∑
i1,...,id=0

αi1,...,id xi1xi2 · · ·xid . (18)

In view of (18), a side channel adversary could use his
knowledge of the device technology to make an assumption
on the degree d of δ (·) viewed as a polynomial with coeffi-
cients in R. This amounts to make the following assumption
on the device.

Assumption 3 (Leakage Interpolation Degree) The mul-
tivariate degree of the deterministic part δ (·) of the leakage
is upper bounded by d, for some d lower than or equal to n.

In practice and for most of devices such as smart cards,
the coefficients α−1, α0, . . ., αn−1 are significantly greater
than the others. This implies that the value of δ (x) is very
close to the value of the linear part in (18), the other non-
linear terms playing a minor role [15]. In this case, it makes
sense for the adversary to make Assumption 3 for d = 1. It
is sometimes referred as the Independent Bit Leakage (IBL)
Hypothesis in the literature [16] since it amounts to assume
that the leakages related to the manipulation of two differ-
ent bit-coordinates of Vk are independent. This assumption
fits well with the physical reality of numerous electronic de-
vices. Indeed, the power consumption and electromagnetic
emissions both result from logical transitions occurring on
the circuit wires. Thus assume that every bit of a processed
variable contributes independently to the overall instanta-
neous leakage is therefore realistic.

From an attacker point of view, assuming the IBL hy-
pothesis is often a good strategy in practice since it enables
to define an attack which, without being optimal, has an ad-
equate efficiency. However, from the security designer per-
spective the IBL hypothesis may be considered as too re-
strictive. In this case indeed, the security analysis must in-
clude the largest class of adversaries as possible and proving
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resistance under the IBL hypothesis is therefore no longer
sufficient. This is all the more true that for some new de-
vices (e.g. , based on architectures using 65 nm manufactur-
ing technology), it has been observed [16–18] that the co-
efficients of the quadratic terms in (18) are not negligible
compared to those of the linear terms: the leakages related
to the manipulation of two different bit-coordinates of Vk are
no longer independent. In this case, Assumption 3 for d > 2
shall yield a better representation of the reality.

To sum up our discussion, even if making the Assump-
tion 3 for d = 1 may be sufficient for an attacker to perform
a succesfull attack, one (typically a device designer) must
choose d as large as possible if the purpose is to test a de-
vice resistance in the worst case scenario.

In the next two sections we present two side channel at-
tack that are able to successfully recover the expected k with
no other assumption on the deterministic part of the leakage
than Assumption 3 for some limited value of d. In partic-
ular, their efficiency does not rest on the adversary ability
to find a model m which is a good affine approximation of
δ (·) as it was the case for CPA-like attacks. The two attacks
are described in the particular case where Assumption 3 is
done for d = 1. This situation is indeed sufficient for most
of practical attack contexts and it has the advantage to allow
for a simple description of the attacks outlines. Eventually,
in Section 4.3 we briefly explain how they can be simply
extended to deal with Assumption 3 for d > 1 (i.e. , when
neglecting the terms of degree greater than 1 leads to attack
failure).

4.1 Absolute Sum DPA

It may first be noted that the multi-bit DPA recalled in Sec-
tion 3.4 is not a “robust” extension of the binary single-
bit DPA. Indeed, if we take a closer look at (16), we can
check that the sign of each single-bit DPA distinguisher in
the sum depends on the choice of the values ω0, j and ω1, j.
Hence, depending on the models m j’s chosen for the attack,
the sum of the values returned by the single-bit DPA distin-
guishers when the good key is tested may be very close to
zero, which may result in a wrong-key discrimination. As
already pointed out in [19], a straightforward solution to cir-
cumvent this issue consists in replacing the sum in (16) by
a sum of absolute values – or a sum of squares – of single-
bit DPA distinguishers. This leads us to define the following
AS-DPA distinguisher:

AS-DPA(k̂) =
t

∑
i=0

∣∣DPA(k̂)i
∣∣ . (19)

Contrary to what happens for M-DPA(k̂), the value of
each element in the sum in AS-DPA(k̂) stays unchanged if

we replace a family of bijective model functions (m j) j by
another one. We can therefore chose any m which shows
that our new AS-DPA attack is “robust”. In Appendix A, we
give an example illustrating the differences between our new
attack and the M-DPA or the CPA.

4.2 Linear Regression

In [7], Schindler et al. describe an efficient profiling method
for SCA. Assuming that the attacker knows the subkey k,
they explain how to recover the leakage function δ (i.e. , the
α j coefficients under the IBL assumption) using linear re-
gression. As mentioned by the authors, their approach could
also allow for the recovering of k (but no details nor exper-
iments are provided). We develop hereafter the ideas intro-
duced in [7] to get a robust SCA. Let (vk[n− 1], . . . ,vk[0])
be the binary decomposition of the variable vk targeted by
the attack and let (`k,i)i and (vk̂,i)i be respectively a fam-
ily of N leakage measurements and the corresponding hy-
potheses on the leakage deterministic part. The core idea
is to compute, for each key candidate k̂, a set of coeffi-
cients α̂−1, α̂0, ..., α̂n−1 such that the families (`k,i)i and
(α̂−1 +∑

n
j=0 α̂ jvk̂,i[ j])i are as close as possible for a well-

chosen distance. Under Assumption 2, this process should
result in a minimal distance when the good key candidate
k̂ = k is tested. As pointed out in [7], the Euclidean distance
(or equivalently the least-square distance) is a sound dis-
tance choice and it is actually optimal when the noise in (1)
has a Gaussian distribution [20]. Moreover, in this case the
coefficients α̂ j can be efficiently computed by performing a
linear regression.

Let L be the N×1 matrix
(
`k,1, `k,2, . . . , `k,N

)
composed

of the N leakage measurements. To proceed the linear re-
gression for a key candidate k̂, the following N × (n + 1)
matrix is first constructed:

M =



1 vk̂,1 [0] · · · vk̂,1 [n−1]
1 vk̂,2 [0] · · · vk̂,2 [n−1]
...

...
. . .

...
1 vk̂,i [0] · · · vk̂,i [n−1]
...

...
. . .

...
1 vk̂,N [0] · · · vk̂,N [n−1]


.

Notation In the linear regression terminology, the Boolean
coordinate functions vk̂ [ j] : i 7→ vk̂,i [ j] ( j being the coordi-
nate index) play the role of basis functions.

In a second time, the ordinary least square method is
applied, resulting in the construction of the coefficients α̂ j
of the column vector α k̂ defined such that:

α k̂ =
t(

α̂−1, α̂0, . . . , α̂n−1
)
=
(tM ·M

)−1 · tM ·L .
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Eventually, the Euclidean distance, denoted by ‖ · ‖2, be-
tween the hypotheses M · α k̂ and the leakage vector L is
computed. This results in the construction of a distinguish-
ing value ∆k̂ defined such that:

∆k̂ = ‖L−M ·α k̂‖
2 .

By definition, the linear regression outputs the vector α k̂ that
optimally minimizes ‖L−M ·α k̂‖

2 according to the chosen
basis functions.

Under Assumption 3 with d = 1, the distinguishing value
∆k̂ is expected to be minimal for the good hypothesis k̂ = k.
Contrary to the attacks analyzed in Section 3, which in-
volve a fixed model function, regression attacks output a
different model function mk̂ : (vk̂[n−1], . . . ,vk̂[0]) 7→ (vk̂[n−
1], . . . ,vk̂[0]) ·α k̂ for each key candidate k̂. For the key dis-
crimination step, an Euclidean distance is processed in place
of a correlation coefficient with the leakage sample.

Remark 3 In the literature, goodness of fit is the common
way to describe how well a model fits a set of observations.
Different measures of goodness of fit can be used depend-
ing on the context. The coefficient of determination or the
Akaike information criterion are examples of such a mea-
sure. In this paper, we privileged the following coefficient
of determination:

R2(k̂) =
‖L−M ·α k̂‖

2

var (L)
=

E
((

L−M ·α k̂

)2
)

var (L)
. (20)

It first permits to have a value in the range [0,1]. Moreover,
it is closely related to the correlation coefficient. Note that in
your specific case, all models result from a linear regression
with the same basis functions set and with the same obser-
vations. This implies that in this particular case the main
known estimators are equivalent to the Euclidian distance
estimator.

4.3 Extension of the Attacks to Non-linear Contexts

The choice of the coordinate functions vk̂ [ j] as a basis for the
linear regression is due to Assumption 3 assuming d = 1. If
we relax our assumption and assume that the leakage also
depends on some monomials vk[ j1]vk[ j2] · · ·vk[ jr], with d >
r > 2, then the corresponding hypothesis-related monomials
vk̂[ j1]vk̂[ j2] · · ·vk̂[ jr] can be added to the initial basis (vk̂ [ j]) j.
In this case, the regression detailed in previous section can
be straightforwardly adapted to apply on the new (extended)
basis. The new regression is still a linear one, but with a
polynomial (and not simply linear) basis.

In the same manner, the outlines of the generalization
process can be extended to the AS-DPA by using cross-
products of SB-DPA. Namely, if we assume that the leak-
age depends on some monomials vk[ j1]vk[ j2] · · ·vk[ jr], with

d > r > 2, then the corresponding SB-DPA cross-product
|DPA(k̂) j1×DPA(k̂) j2×·· ·×DPA(k̂) jr | can be added to the
initial AS-DPA .

5 Attack Simulations and Experiments

In previous sections, we have shown that common univariate
SCAs based on a restrictive model are equivalent to a CPA.
At the opposite, we have exhibited two pertinent ways of at-
tacking where some constraints on the model can be relaxed.
It involves as a distinguisher either AS-DPA(k̂) or linear re-
gression techniques. In the following we aim to confront our
theoretical analyses with simulations in realistic scenarios.
Simulation parameters are described below.

Attacks Target. The 8-bit output of the AES s-box, denoted
by S, is targeted. Namely the variable Vk in (1) satisfies:

Vk = S(P⊕ k) , (21)

where P corresponds to an 8-bit value known by the adver-
sary.

Attack Types. We list below the attacks we have performed:

1. Single-bit DPA (SB-DPA)
2. All-Or-Nothing DPA (AON-DPA)
3. Generalized DPA (G-DPA)
4. Correlation Power Analysis (CPA)
5. Partition Power Analysis (PPA)
6. Absolute-Sum DPA (AS-DPA)
7. Regression Attack with (vk̂[i])06i67 as basis functions

(this corresponds to Assumption 3 with d = 1).

Model Choice. We recall that AON-DPA, G-DPA, CPA and
PPA require the choice of a model function m, whereas SB-
DPA, AS-DPA and the regression attack do not. In our sim-
ulation, we have assumed that the definition of the func-
tion δ (·) in (1) is not known by the adversary and we thus
systematically used the Hamming weight function when a
model was required to perform the attack. Namely, in AON-
DPA, G-DPA, CPA and PPA the model m satisfies:

m(Vk̂) = HW(Vk̂) = ∑
i

Vk̂ [i] . (22)

This model choice is very classical and has been experimen-
tally validated in several papers e.g. , [15]. Once the model
function has been specified, parameters (ω0,ω1) in AON-
DPA and (Ω0,Ω1) in G-DPA still need to be chosen in order
to determine the distinguishers defined in (3) and (4) respec-
tively. We chose

(ω0,ω1) = (min
Vk̂

m(Vk̂),max
Vk̂

m(Vk̂)) = (0,8)
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and if we denote by medX f (X) the median of the sample
f (X) with respect to X , we chose

(Ω0,Ω1) =

([min
Vk̂

m(Vk̂);med
Vk̂

m(Vk̂)[, ]med
Vk̂

m(Vk̂);max
Vk̂

m(Vk̂)]) =

([0;4[, ]4;8]) . (23)

Note that this choice is optimal and exactly corresponds to
the attacks performed by Messerges in his original papers
[2, 8]. Additionally, we chose the coefficients αi of the PPA
distinguisher such that (13) is satisfied for the model func-
tion m defined in (22) (i.e. , PPA(αi)i

(k̂) = Ê
(
L ·HW(Vk̂)

)
).

Leakage Simulations. Leakages have been simulated in ac-
cordance with (1), with the noise variable B being a Gaus-
sian random variable with mean 0 and standard deviation σ .
As explained in the following sections, we launched our at-
tack simulations for different definitions of the function δ (·)
in (1), leading to two different scenarios:

– Scenario 1: we chose δ (·) in (1) to be the Hamming
weight function. Namely, the leakage variable L satis-
fies:

L = HW(Vk)+B , (24)

In our attack settings, this first scenario is ideally suited
for AON-DPA, G-DPA, CPA and PPA since the model
function m used by the adversary exactly corresponds to
the deterministic function δ (·). It will be referred as the
perfect model scenario.

– Scenario 2: we chose δ (·) to be a linear combination of
the Vk̂ [i]’s with randomly generated coefficients. Namely
the leakage variable L satisfies:

L = α−1 +
7

∑
i=0

αi ·Vk [i]+B , (25)

with coefficients (αi)−16i67 uniformly picked in [−1,1].
This scenario is used to observe the distinguishers be-
havior when the deterministic part of the leakage differs
from the model used by the adversary. We restricted our-
selves to functions δ (·) that are linear combinations in
R of the bit-coordinates of the targeted value Vk̂ i.e. as
in Assumption 3 with d = 1. It will be referred as the
random linear leakage scenario.

Remark 4 We do not restrict ourselves to Assumption 2.
Namely we do not ensure that the size of the plaintext sam-
ple is a multiple of 256. Nevertheless plaintexts are drawn
from a uniform distribution.

Attack Efficiency. In the following, an attack is said to be
successful if the good key is output by the attack, that is if
the key corresponding to the first element in the score vector
is the key used in the simulated cryptographic device. An at-
tack is said to be more efficient than another if it needs less
messages to achieve the same success rate. Success rate is
measured over 1,000 tries.

We report and analyze in next two sections our attack
simulations results for Scenario 1 (Section 5.1) and Scenario
2 (Section 5.2).

5.1 Attack Results in the Perfect Model Scenario

In this section we assume that L satisfies (24). In Fig. 1,
the number of messages needed to achieve a success rate of
90% is recorded for each attack mentionned before2. Note
that a success rate threshold has been fixed at 90% but in
this configuration each attack can reach 100%.
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Fig. 1: Evolution of the number of messages (y-axis
logscaled) to achieve a success rate of 90% according to the
noise standard deviation (x-axis logscaled) – Fitted curves.

Curves in Fig. 1 can be split in two parts depending on
the noise standard deviation: the oversampling part, where
a huge number of observations are needed to deal with the
important noise effects and the undersampling part, where
a small number of observations is sufficient. The two situa-
tions are analyzed separately in the following. In both cases,
the most relevant observations are listed and discussed.

2 We inform the reader that the curves are plotted fitted with a fourth
degree polynomial to ease the reading of the figure. Fitted curves per-
mit to observe the general behavior. Raw data can be found in Ap-
pendix C.
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Oversampling. When the noise standard deviation is strictly
greater than 23, each distinguisher needs a large number of
messages (greater than 500) to reach a success rate of 90%.
In this case the curves have the same shape for each dis-
tinguisher, which is compliant with the asymptotical results
in [6]. Our observations are detailled below:

– The efficiency curves of each attack have the same gra-
dient. This suggests us that the noise similarly impacts
the efficiency of the attacks.

– The curves corresponding to G-DPA, CPA, PPA, AS-
DPA and the regression attack are stacked. Note that
with the logscaling that implies that those attacks share
approximatively the same efficiency and that none of
them is emerging as better candidate than the others.
In fact, in the perfect model scenario, the distinguishers
corresponding to these attacks are equivalent to a max-
imum likelihood test and the attacks therefore perform
in a similar (and optimal) way [6]. This pinpoints the
equivalence between the distinguishers when the model
function used in the model-based attacks (i.e. , AON-
DPA, G-DPA, CPA and PPA) is optimal (i.e. , perfectly
corresponds to the function δ (·) in 1).

– As expected, SB-DPA and AON-DPA are less powerful
than the others (around 100 and 30 times less efficient
than G-DPA, CPA, PPA, AS-DPA and the regression at-
tack for the SB-DPA and the AON-DPA respectively).
Indeed, by nature they do not exploit all the informa-
tion contained in the leakage signal: in SB-DPA only one
output bit is targeted over the 8 output bits of the AES,
whereas the AON-DPA only exploits a limited part of
the leakage measurements.

Remark 5 The good result of G-DPA can be surprizing as
the involved model is not the Hamming weight model. The
G-DPA model only takes two values -1 and 1 depending on
the Hamming weight of the sensitive variable is lower than
4 or not. In fact the linear correlation between the G-DPA
model and the Hamming weight model is high (greater than
0.9). That implies an efficiency ratio of 1.2 (0.08 in a log10
scale) according to [21]. This explains why G-DPA’s curve
appears stacked with CPA’s curve.

Undersampling. When the noise standard deviation is lower
than 23, the number of messages needed to perform an attack
is quite small (lower than 500). In this case, the statistical
stability of the involved distinguisher plays a role. To better
understand how the different attacks perform in this context
we redrew in Fig. 2 the curves with a thiner resolution than
in Fig. 1. We detail our observations below:

– An important efficiency difference occurs between the
CPA, the DPAs and the PPA. For example with a noise
standard deviation of 1, CPA needs only 30 messages
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Fig. 2: Evolution of the number of messages (y-axis
logscaled) to achieve a success rate of 90% according to the
noise standard deviation (x-axis logscaled) – Higher resolu-
tion.

to reach a success rate of 90%, whereas PPA needs 280
messages to achieve the same threshold.

– CPA is the most efficient attack. This confirms that Pear-
son’s coefficient is the good tool to measure a linear cor-
relation.

– In comparison, the PPA is much less efficient than the
CPA (and even also than the DPAs). This result was ac-
tually expected. Indeed, centering the leakage and the
model random variables (i.e. computing Ê

(
L ·m(Vk̂)

)
−

Ê(L)Ê
(
m(Vk̂)

)
instead of Ê

(
L ·m(Vk̂)

)
in the PPA at-

tack) and then normalizing the centered mean by the
standard deviations of the random variables (i.e. dividing
Ê
(
L ·m(Vk̂)

)
− Ê(L)Ê

(
m(Vk̂)

)
by σ̂ (L) and σ̂

(
m(Vk̂)

)
thus getting the CPA distinguisher CPA(k̂)) is useful to
reduce the linear dependency estimation errors when the
number of observations is small (i.e. undersampling),
which is the case when the attacks are performed for a
small amount of noise.

– G-DPA, CPA and PPA are more efficient than AS-DPA
and regression attacks. It may be noted that this situation
is the opposite of the one occuring in the oversampling
case.

Eventually, our results corroborate our theoretical anal-
ysis: the SB-DPA and the AON-DPA are less efficient than
the other simulated attacks independent of the noise amount
in the leakage. This highlights the fact that targeting a sub-
space of the model (i.e. , a single bit over eight or targeting
2 values over 256) is suboptimal when the adversary uses a
model that well corresponds to the function δ (·) (G-DPA,
CPA and PPA) or when an AS-DPA or a regression attack
is performed. Whatever the signal-to-noise ratio, CPA is al-
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ways the best attack. However its efficiency is very close to
that of G-DPA and PPA when the noise standard deviation
reaches the threshold 4. Actually CPA is mainly better than
the other tested attacks when the leakage is not very noisy
(i.e. , when the noise standard deviation is between 0 and
4). Eventually, it can be noted that the efficiency of AS-DPA
and linear regression attack tends to be close to that of the
CPA while the perfect model scenario is optimally suited for
CPA.

5.2 Attack Results in the Random Linear Leakage Scenario

In this section we assume that L satisfies (25). In Fig. 3, we
recorded the success rate for different numbers of messages
and for different values of noise standard deviation.

Observations are reported below. As in the perfect model
scenario we can split our observations in two parts.

Oversampling. When the number of messages available is
greater than approximately 105 × σ2, the curves have the
same shape for each distinguisher but contrary to what hap-
pened in the perfect model scenario, all the attacks do not
reach a success rate of 100%.

– The maximum success rate achieved by the model-based
attacks is lower than 75% (e.g. , CPA achieves a suc-
cess rate of 62% while G-DPA and PPA are still less
efficient with a success rate limit of 58%) independent
of the noise standard deviation. In other terms, for some
linear functions δ (·), those attacks do not succeed in dis-
criminating the good key candidate when the Hamming
weight function is involved as model. In Appendix B,
we give a theoretical explanation of the CPA ineffective-
ness for some linear functions δ (·) and we argue that it
is related to the algebraic properties of the s-box S that
is targeted.

– At the opposite, the regression attack and the AS-DPA
always succeeds in recovering the key and, actually, in a
more efficient way than other attacks. Moreover, as it can
be observed in Fig. 3b–3c, this assessment is confirmed
independent of the noise standard deviation.

– AON-DPA only reaches a maximal success rate of 6%
which is very low compared to the others. A possible
explanation for the AON-DPA poor effectiveness resides
in the fact that the design of the sets Ω0 and Ω1 under
the hypothesis m= HW is not relevant when δ (·) is far
away from the Hamming weight function

– At the opposite SB-DPA reaches a maximal success rate
of 72% which is better than CPA. This observation is not
surprising since SB-DPA targets only one bit (indepen-
dently of the model choice) over eight, which lowers the
impact of the model choice on the remaining seven bits.
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Fig. 3: Evolution of the success rate (1,000 tries) for differ-
ent numbers of messages and according to some critic noise
standard deviations – whole data can be found in Appendix
C.
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Undersampling. Let us focus on the critic values when a
small number of messages is involved in the attack (lower
than 500). In this case, the statistical stability of the involved
distinguisher plays a role. To better understand how the dif-
ferent attacks perform in this context we redrew in Fig. 4 the
curves with a thiner resolution than in Fig. 3.

Our observations are detailled below:

– In this situation, each distinguisher has the same ranking
as in oversampling.

– G-DPA, CPA and PPA are relatively less efficient than
in the perfect model scenario. Indeed, in the latter model
scenario they are more efficient than AS-DPA and re-
gression attack which is not the case here.

– SB-DPA and AON-DPA still have a different behavior
than other model based attacks due to the use of a subop-
timal model (with respect to the attacker choice in (22)).

The impact of the noise on the attacks efficiency in our
linear random model scenario is very close to what we ob-
served in the perfect model context. Namely the maximal
success rate is the same whatever the noise deviation but
more messages are needed to achieve it. In fact, we confirm
the theoretical analysis in [21], where the author shows that
doubling the noise deviation just increases the number of
needed messages by

√
N to reach the same success rate.

Among the attacks we simulated in the random model
scenario, the linear regression attack and the AS-DPA are
clearly the most efficient ones and they are the only ones
that reach a success rate of 100%.

5.3 Attacks Experiments in Real Life

In the previous sections, we have confronted our theoretical
analyses with simulations in realistic scenarios. Two attacks
emerged, the CPA and the linear regression. In the follow-
ing, we aim to confront our results against real measure-
ments. Thus we only focus on CPA and linear regression
attacks. Attack parameters are described below:

Attacks Target. The 8-bit output of the AES s-box, denoted
by S, is targeted. Namely the variable Vk in (1) satisfies:

Vk = S(P⊕ k) , (26)

where P corresponds to an 8-bit value known by the adver-
sary.

Attack Types. We list below the attacks we have performed:

– CPA with m satisfying (22).
– Regression Attack with Blin =(vk̂[i])06i67 as basis func-

tions (Assumption 3 with d = 1).
– Regression Attack with Bquad = (vk̂[i] · vk̂[ j])06i6 j67 as

basis functions (Assumption 3 with d = 2).
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Fig. 4: Evolution of the success rate (10,000 tries) for num-
ber of messages from 1 to 1,000 with some noise values.
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Leakage Measurements. Power consumption leakages have
been measured on a 8051 8-bit micro-controller. In each
measurement curve, the part related to the manipulation of
Vk is composed of 200 points. We suppose the curves to be
synchronized (a glitch is used to be synchronized at the be-
ginning of the manipulation processing). Before mounting
the attacks, a pre-processing step has been performed on the
curves to determine the most pertinent point of interest for
each attack. By definition, this point is the one among the
200 points per curve that optimizes the attack efficiency. As
argued in Section 3.5, it corresponds for the CPA to the point
when the error resulting from the approximation of the leak-
age by the attack model (i.e. the Hamming weight function)
is minimum. For the regression attacks, the point of interest
is the point on which the error resulting from the approxima-
tion of the leakage by a linear (resp. quadratic) combination
of the coordinates of the manipulated variable is minimum.
During the pre-processing, we have used the fact that we
knew the values vk,i manipulated by the device. Even if this
does not correspond to a real life adversary, pre-processing
in this context allows us to determine the time/point when
an attack performed by an adversary with no such a knowl-
edge is the most efficient. In the following, we sum-up the
pre-processing step for the three attacks.

– CPA: the coefficient CPAHW(k)2 has been estimated for
each of the 200 points of the curve – the estimation being
performed for a sample of size 400,000 – to determine
the best attack time.

– Regression Attack: a model function mlin (resp. mquad)
corresponding to the correct k has been computed for
each of the 200 points of the curve, the estimation be-
ing performed for a sample of size 400,000. Then, 200
determination coefficients R2 have been performed (one
for each model Mk and the corresponding leakage point)
to determine the best attack time corresponding to the
basis functions Blin (resp. Bquad)

Figure 5 illustrates the results of the pre-processing step for
each attack and each of the 200 points.

For the attack comparisons, only the point of interest re-
sulting in the maximal distinguishing value has been consid-
ered for each attack.

Attack Comparaison. For each attack, the distinguishing co-
efficient (in y-axis) has been computed for each key candi-
date and for a given (increasing) number of power traces (x-
axis). We recorded the minimal number of messages needed
to have the real key ranked first (i.e. emerging from others).
Results are drawn in Fig. 6,7 and 8. As expected linear re-
gression with linear basis is clearly more efficient than CPA
i.e. , a lower number of messages is required for the real key
to emerge (68 messages is sufficient for the first one while
95 at least are needed for the CPA). As expected, the linear

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200
Manipulation times

ρ2(L,mquad(X))

ρ2(L,mlin(X))

ρ2(L,HW(X))

x : 74
y : 0.1670

x : 83
y : 0.2346

x : 83
y : 0.2348

Fig. 5: Characterisation Timing Diagram. Max values are
pinpointed by an arrow.

regression with quadratic basis needs more messages. In fact
the information contained in the quadratic part of the leak-
age is not enough to compensate for the increase of noise
resulting from the multiplication of leakage points (which
is necessary to process the linear regression). Moreover the
quadratic regression has to build a larger model (i.e. , from
a larger basis) from data. We can remark that even with
quadratic basis, the minimum number of messages needed
to discriminate the real key is still very close to the one for
CPA (≈ 95).
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Fig. 6: Evolution of the distinguishing value (y-axis) with
the number of messages (x-axis) for all key candidates for
CPA. The curve of the real key used in the device is plotted
in red.



Univariate Side Channel Attacks and Leakage Modeling 15

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

∆
k̂

messages

Linear Regression with Linear Basis
68

Fig. 7: Evolution of the distinguishing value (y-axis) with
the number of messages (x-axis) for all key candidates for
linear regression with linear basis. The curve of the real key
used in the device is plotted in red.
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5.4 Conclusion on the Attack Simulations and Experiments

When the chosen model exactly corresponds to the leak-
age function (perfect model case), each distinguisher reveals
the key and the CPA and regression attacks are among the
most efficient ones (actually except SB-DPA and AON-DPA
all tested attacks have equivalent efficiency when the noise
increases). Nevertheless in case of undersampling, CPA is
ranked first. This can be explained by the fact that the linear
regression attack has to rebuild the model from data while
CPA is directly provided with the optimal model function
and uses the observations only to corroborate a linear de-
pendency.

When the model is unknown, the linear regression at-
tack and the AS-DPA always succeed in revealing the key.
they both are moreover more efficient than the model-based
attacks. Nevertheless, collating both, the linear regression
is always better than AS-DPA. That is, at a cost of a lit-
tle computational overhead, linear regression attack shall be
preferred to the other distinguishers.

Finally, if one has a good linear approximation of δ (·)
then CPA is an optimal way to perform an attack. In other
cases, the linear regression attack will always perform better.

6 Conclusion and Future Works

In this paper, we have compared standard univariate side
channel attacks and we have demonstrated that they all can
be rewritten as a CPA. Our analyses show how important the
model used for the attacks is. As a good model is not always
known to the adversary, we have focused on another sound
attack that is not parameterized by a model. This attack (in-
troduced by Schindler et al. in [7]) is based on linear regres-
sion techniques. It is experimentally compared to CPA both
in a favourable context for CPA (i.e. , the real leakage model
is known) and in a more realistic context (i.e. , the real leak-
age model is linear but unknown and randomly generated).
Eventually we have shown that in all cases the linear regres-
sion attack performs well independent of the leakage nature,
provided that the key-dependent bits leak independently. We
have moreover proposed an extension of the original attack
in such a way that the latter assumption can be relaxed.

Based on our study, we think that the linear regression
attacks are a relevant alternative to attacks based on an a pri-
ori model choice (as e.g. , the CPA). Our work moreover hi-
lights the fact that any new attack should be compared at first
mathematically and experimentally if needed to the existing
ones to reveal the core differences with the state-of-the-art.
An interesting extension of our work will be to investigate
the behavior of the linear regression attacks in multivariate
contexts. Moreover, rewritting the side channel attack prob-
lematic in terms of a model estimation problematic opens
the door to a large variety of stochastic tools that could be
investigated for further research.
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A Illustration of the Differences Between AS-DPA,
M-DPA and CPA

Let us focus on an adversary targeting the manipulation of a 2-bit
intermediate value Vk. For illustration purpose, we assume here that
the attacked device leaks exactly the difference between the two bit-
coordinates of Vk. Namely we assume that L satisfies L = δ (Vk), with
δ (Vk) = Vk [0]−Vk [1]. As explained in [22], such a situation is quite
classical when leakage is measured by electro-magnetic analysis. If
the adversary performs a single-bit DPA to exploit L, a natural choice
for Mk̂ is either Vk̂ [0] or Vk̂ [1] (namely in (2) the model function m is
the projection related to one of the bit-coordinates of Vk̂ and w0 and
w1 equal 0 and 1 respectively). We denote by DPA(k̂)0 (respectively
DPA(k̂)1) the distinguisher defined with respect to Mk̂ =Vk̂ [0] (respec-
tively Mk̂ = Vk̂ [1]). Under Assumption 2 which implies var (Vk [0]) =
var (Vk [1]) and the independency between Vk [0] and Vk [1], we have

DPA(k̂)0 =

{
E(Vk [0]) if k̂ = k ,

0 otherwise

and

DPA(k̂)1 =

{
−E(Vk [1]) if k̂ = k ,

0 otherwise .

Since we have DPA(k̂)0 = −DPA(k̂)1 for every k̂, the distinguisher
M-DPA(k̂) always equals 0 whereas AS-DPA(k̂) = 2 ·E

(
Vk̂ [0]

)
if k̂ =

k and 0 otherwise.
Let us now focus on the case where the adversary performs a CPA

with the Hamming weight as a model function. When computing the
correlation between the leakage L and the model random variable Mk̂ =
HW(Vk̂) =Vk̂ [0]+Vk̂ [1], we have:

cov
(
L , Mk̂

)
= cov

(
Vk [0]−Vk [1] ,Vk̂ [0]+Vk̂ [1]

)
which can be rewritten:

cov
(
L , Mk̂

)
= cov

(
Vk [0] ,Vk̂ [0]

)
+ cov

(
Vk [0] ,Vk̂ [1]

)
− cov

(
Vk [1] ,Vk̂ [0]

)
− cov

(
Vk [1] ,Vk̂ [1]

)
,

from which we deduce CPA(k̂) = 0 independent of the relation be-
tween k̂ and k.

To sum-up, this section gives an example of a leakage on a 2-bit
variable for which the M-DPA and the CPA (with Hamming weight
model function) fail, whereas the AS-DPA still succeeds.

B Why CPA can failed?

This section aims at explaining why the CPA fails in discriminating the
correct key for some linear leakage models. Before starting our discus-
sion, let us first have a look on the definition of the CPA distinguisher
(6). Under Assumption 2, it involves standard deviations that tend to
be independent of the key hypothesis when the sample size increases.
As a consequence, the distinguisher in (6) discriminates key hypothe-
ses in a similar way as the covariance cov

(
L , Mk̂

)
. Explaining the CPA
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failure hence amounts to explain the covariance failure when involved
as a key-distinguisher.

Our analysis will be merely related to the following proposition.

Proposition 4 Let f and g be two Boolean functions defined over f2n .
If f and g are balanced, then we have:

cov( f , g) =
1
4

W ( f ⊕g) , (27)

where W ( f ⊕g) denotes the value 2−n
∑x∈Fn

2
(−1) f (x)⊕g(x).

Proof The result is a direct consequence of the following equality:

f +g = f ⊕g+2 f g . (28)

Due to Assumption 1 and the fact that the leakage satisfies (1),
we recall that cov

(
L , Mk̂

)
equals cov

(
δ (Vk) , Mk̂

)
independent of the

targeted key k and the key hypothesis k̂. If the model function m is the
Hamming weight and if δ (·) satisfies (18) with d = 1 (i.e. Assumption
3), then δ (Vk) and Mk̂ =m(Vk̂) respectively equal α−1+∑i αiVk [i] and
∑ j Vk̂ [ j]. Under those two assumptions, we hence get:

cov
(
L , Mk̂

)
= cov

(
α−1 +∑

i
αiVk [i] , ∑

j
Vk̂ [ j]

)
, (29)

i.e. ,

cov
(
L , Mk̂

)
= ∑

i
αi

(
∑

j
cov
(
Vk [i] ,Vk̂ [ j]

))
. (30)

Since functions Vk [i] and Vk̂ [ j] are both balanced under Assumption 2,
Proposition 4 can be applied to develop the covariances in (30):

cov
(
L , Mk̂

)
=

1
4 ∑

i
αi ∑

j
W (Vk [i]⊕Vk̂ [ j]) , (31)

That is we have cov
(
L , Mk̂

)
= 1

4 ∑i αiwi(k, k̂) after denoting the term
∑ j W (Vk [i]⊕Vk̂ [ j]) by wi(k, k̂).

Let us study (31) when the correct key hypothesis is tested, i.e. ,
when k̂ equals k. As Vk is balanced, the term W (Vk [i]⊕Vk̂ [ j]) is al-
ways zero except for i = j where it equals 1. Equation (31) can thus be
rewritten as:

cov
(
L , Mk̂

)
=

1
4 ∑

i
αi . (32)

In view of (32), argmaxk̂|cov
(
L , Mk̂

)
| is not equal to the expected key

(i.e. , the covariance distinguisher fails at discriminating the correct
key), if there exists at least one key hypothesis k̂ 6= k such that Vk̂ satis-
fies:

∣∣∣∣∣∑i
αi

∣∣∣∣∣<
∣∣∣∣∣∑i

αiwi(k, k̂)

∣∣∣∣∣ . (33)

Actually, for the type of variables Vk involved in our attack simulations
reported in Section 5.2, the condition (33) is often satisfied. In those
simulations, Vk corresponds to the output of the AES s-box S parame-
terized by the key k. Namely, Vk takes the form S(P⊕k). In this context,
Vk [i]⊕Vk̂ [ j] corresponds to the function P 7→ Si(P⊕ k)⊕ S j(P⊕ k̂),
where S1, . . . ,Sn denote the boolean coordinate functions of S. When
P has a uniform distribution, the latter function shares the same dis-
tribution as the function Sa

i, j defined by Sa
i, j(P) = Si(P⊕ a)⊕ S j(P),

with a denoting k⊕ k̂. After denoting by wi(a) the sum ∑ j W (Sa
i, j), we

therefore conclude on the equivalency between (33) and

∣∣∣∣∣∑i
αi

∣∣∣∣∣<
∣∣∣∣∣∑i

αiwi(a)

∣∣∣∣∣ . (34)

Since the coefficients (αi)i and (wi(a))i,a have an amplitude upper
bounded by 1 and the right hand of (34) is itself upper-bounded by
min(∑i |αi|,∑i |wi(a)|), we deduce two sufficient conditions for (34) to
be never satisfied for a 6= 0 :

– All the terms αi’s have the same sign.
– maxa 6=0 ∑i |wi(a)| is lower than or equal to ∑i |αi|.

The first sufficient condition condition is device dependent and the
second condition relies on the s-box properties. For the AES s-box
for instance, it can be checked that maxa ∑i |wi(a)| equals 1.9375 (for
a = 53). Thus, if ∑i |αi| is greater than 1.9375, then (34) cannot be
satisfied for a value a 6= 0 and we deduce that the CPA is theoretically
able to succeed in this case.

In the following, we give an example of such a case (i.e. , when
CPA failed to discriminate the good key):

Example 2 Let {αi}06i6<7 = {0.5,0.2,−0.5,0.2,−0.5,1,−0.8,0.5}
be the coefficients of the leakage model, that is for every x ∈ F28 :

δ (x) = 0.5x0 +0.2x1−0.5x2 +0.2x3−0.5x4 + x5−0.8x6 +0.5x7

where (x7, . . . ,x0) is the binary decomposition of x. In this case we
have |∑i αi| = 0.6 < 1.9375 and at least ten values (see Table 1) of a
are such that |∑i αiwi(a)|> |∑i αi|.

Table 1: Eleven highest values of |∑i αiwi(a)| obtained in
Example 2.

a |∑i αiwi(a)|

101 0.8875
228 0.84375
109 0.775

25 0.7625
30 0.721875

176 0.66875
19 0.6578125

151 0.6515625
66 0.634375

158 0.6203125
0 0.6

Table 2: Values of wi and ∑wi for the AES s-box – values
must be divided by 256.

a w0 w1 w2 w3 w4 w5 w6 w7 ∑wi
0 256 256 256 256 256 256 256 256 2048
1 -48 -28 0 -68 24 16 48 -72 304
2 -8 8 -16 -68 40 -16 40 4 200
3 0 40 32 8 0 84 48 4 216
4 64 -52 92 52 -44 -12 -12 40 368
5 4 24 -4 -28 -20 -20 -68 -88 256
6 64 -24 24 12 -48 20 40 16 248
7 36 48 -52 4 48 -40 84 -16 328
8 40 -60 20 24 76 84 -24 -96 424
9 -84 -40 -24 -52 12 40 -24 36 312

10 60 0 56 4 -12 24 68 72 296
11 -48 -108 -60 -20 -60 -4 -4 -56 360
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12 0 -36 32 -52 -108 32 12 40 312
13 40 -28 -64 60 80 -36 40 -52 400
14 48 -28 100 48 44 64 -20 -24 376
15 12 -12 -4 -56 32 56 -4 -40 216
16 -44 -16 -36 -52 -40 64 -48 -12 312
17 -36 28 -96 8 12 -44 20 -36 280
18 -36 24 -60 40 -32 -36 -12 -56 296
19 -44 -20 -76 -28 80 -64 36 -84 432
20 40 4 56 -68 -12 -24 24 76 304
21 -32 -8 -48 -48 -44 24 36 -32 272
22 20 44 60 140 12 0 16 68 360
23 -36 24 -52 -20 44 -48 -68 -4 296
24 -20 28 44 20 -12 52 -80 16 272
25 -40 12 8 -56 16 -72 68 -56 328
26 -16 8 -32 -16 -100 44 12 100 328
27 -20 36 -8 -104 32 -16 -20 -12 248
28 -56 48 -12 -28 -28 -20 -32 128 352
29 20 48 -104 -76 -68 -80 -40 -52 488
30 100 12 -44 -4 -56 24 -24 80 344
31 -104 -20 -32 4 8 0 -60 20 248
32 60 44 -16 88 56 -12 4 -104 384
33 -76 0 -88 -24 -44 -36 16 -60 344
34 8 24 12 -4 52 60 -60 76 296
35 -52 -48 -16 -28 -24 -64 -28 -68 328
36 20 24 16 44 -4 56 52 40 256
37 -48 76 -28 8 60 84 -12 -76 392
38 32 16 44 -84 52 60 20 44 352
39 -24 52 0 64 0 68 36 52 296
40 64 64 -68 -36 60 28 16 56 392
41 -32 -32 -52 -40 -32 -32 -8 -4 232
42 60 16 32 -36 16 -32 8 16 216
43 -20 -32 36 8 28 32 -24 -20 200
44 12 -60 44 -56 -64 20 -36 84 376
45 40 -28 -16 -12 32 4 4 -48 184
46 32 -20 -28 -84 -36 44 -48 -20 312
47 20 80 -92 32 64 8 -64 -8 368
48 68 20 16 36 28 -40 -16 104 328
49 -12 52 0 -60 -28 -32 -44 36 264
50 92 -28 48 -44 -8 0 76 40 336
51 24 -12 80 16 96 52 40 16 336
52 -4 24 24 40 40 -40 -16 68 256
53 -4 -60 -120 -84 68 -100 -12 -48 496
54 24 -36 44 -8 -16 -60 48 -44 280
55 4 68 8 -40 -60 16 -52 -24 272
56 24 -88 -8 24 -52 76 -28 12 312
57 24 12 -36 -32 -16 -32 -60 36 248
58 -32 -36 -32 40 -72 -4 -80 40 336
59 -72 60 16 -12 -84 -76 -32 -32 384
60 -28 -40 28 -112 -92 -8 -8 -44 360
61 -8 -28 84 24 -44 72 -20 -16 296
62 104 32 36 96 72 -4 36 12 392
63 -64 -40 -76 -124 -8 -20 16 -92 440
64 64 -12 60 -20 -16 -8 -104 28 312
65 12 -48 32 -60 -88 -8 -12 28 288
66 112 -16 -12 8 -32 48 0 76 304
67 -8 44 -24 68 -16 -16 -20 -60 256
68 20 64 -40 52 8 -28 -12 48 272
69 -28 28 -68 -36 -20 -28 44 44 296
70 -24 40 72 4 60 4 16 -36 256
71 20 20 -32 -32 -8 40 -96 -88 336
72 56 16 84 52 -20 20 12 -12 272
73 -20 -52 -32 0 76 -12 4 -12 208
74 -100 -40 -44 -8 -24 40 -36 -36 328
75 8 28 -12 36 -48 12 -28 -28 200
76 8 -12 -20 -16 -16 -96 0 -48 216
77 -32 -56 -32 -24 40 -12 -76 -80 352
78 -36 36 44 4 -32 -12 -12 -48 224
79 0 56 -60 -20 -60 48 24 -28 296
80 -4 -68 -36 40 -36 -16 24 -80 304
81 36 -40 -20 -24 32 -16 -44 -4 216
82 -12 -8 8 64 72 -68 48 80 360
83 8 -12 -40 -76 -12 -28 -20 -36 232
84 -8 -48 -16 8 16 -36 8 44 184
85 20 96 -52 -40 100 52 52 20 432
86 64 8 44 36 56 -16 -16 -24 264
87 -16 -76 -24 -44 -4 -24 -44 -16 248
88 68 20 -20 -20 40 -20 -56 12 256
89 -76 -20 84 -28 -36 28 4 -44 320
90 -24 40 -4 12 -32 -24 76 4 216
91 -12 -8 -24 -20 36 0 0 -4 104
92 -32 104 -4 40 48 24 36 56 344
93 44 40 -52 -20 40 12 24 -64 296
94 -60 -40 24 56 -76 36 32 12 336
95 16 92 -40 -20 0 8 24 72 272

96 32 -16 -60 -60 8 -4 0 -44 224
97 -32 24 -60 24 0 -8 -36 0 184
98 0 16 12 48 88 -40 -20 24 248
99 -56 -24 32 -52 20 48 12 -60 304

100 56 12 8 -24 48 12 76 4 240
101 96 -24 -64 28 -92 48 -68 -4 424
102 64 36 20 12 28 -80 76 -4 320
103 0 24 -24 -40 -64 20 16 -20 208
104 92 68 -16 -4 -16 -16 8 -36 256
105 -80 12 16 -56 -44 -20 -4 -80 312
106 -24 -68 -32 -96 36 12 12 -24 304
107 132 56 -40 0 -8 52 4 -44 336
108 12 44 92 -20 12 -60 4 92 336
109 -32 76 -36 20 4 88 -64 80 400
110 -32 -48 12 -24 -12 0 36 -68 232
111 -20 16 4 28 12 -44 -24 68 216
112 68 28 60 -8 76 0 -16 -8 264
113 -4 -20 -80 20 0 60 52 -20 256
114 -36 -40 -56 -12 -24 -8 104 32 312
115 36 32 44 -44 -48 12 -44 92 352
116 -76 -116 -20 -32 20 -40 12 28 344
117 16 120 64 28 36 88 -24 16 392
118 24 -32 -16 60 4 32 16 24 208
119 48 -28 -40 -60 76 -48 20 16 336
120 -76 -8 24 40 -32 20 72 -16 288
121 -32 8 20 60 -80 36 60 56 352
122 36 0 -72 32 80 -20 12 76 328
123 -20 32 -32 60 108 68 -40 40 400
124 -44 -76 -44 -56 -32 -24 32 44 352
125 -4 8 -60 68 -28 40 72 -24 304
126 -20 -48 -4 72 -12 -44 -48 8 256
127 -28 0 52 -36 -32 4 -16 -40 208
128 -24 -52 -36 -56 4 -16 -16 -100 304
129 52 16 -16 44 80 -32 -32 -40 312
130 -32 -32 -44 -12 -72 -36 -44 -88 360
131 -36 -4 -36 -92 -24 -52 -24 12 280
132 52 -44 12 28 28 -44 -40 24 272
133 -20 24 -12 -32 -92 -48 4 -40 272
134 12 36 20 8 20 -44 -4 -24 168
135 -28 0 64 56 0 24 -52 -16 240
136 8 24 8 -24 44 -44 -16 0 168
137 72 124 0 24 52 28 12 -8 320
138 4 36 -36 48 0 -60 16 -48 248
139 24 44 0 -100 -28 8 24 28 256
140 -8 -28 16 -24 36 -12 16 -4 144
141 4 -20 -24 0 -108 -52 -32 -24 264
142 -4 32 -16 64 -32 -36 56 -48 288
143 -12 24 12 8 -64 32 28 -44 224
144 24 24 0 4 112 -76 12 44 296
145 36 -12 8 92 -12 -32 -16 104 312
146 112 -4 84 32 -8 -32 -36 60 368
147 0 -80 72 12 -40 32 0 -28 264
148 -84 -8 72 -56 -68 -56 -20 -36 400
149 -4 -8 -12 52 -40 -20 -12 100 248
150 -24 8 -20 56 -20 24 80 8 240
151 0 0 -68 32 28 76 -48 52 304
152 8 -48 88 80 48 4 20 16 312
153 -120 -44 0 32 -60 0 -40 -96 392
154 12 -36 -32 0 -8 -28 -16 -44 176
155 -20 -48 -72 44 -40 -36 24 76 360
156 28 -8 60 32 104 0 96 32 360
157 -48 -96 -48 -44 -4 64 12 -4 320
158 -72 0 20 -8 52 -24 44 -52 272
159 -8 68 32 88 8 8 40 28 280
160 36 -36 80 20 -40 -8 -32 -92 344
161 60 0 12 32 28 72 -12 0 216
162 36 72 16 40 12 -44 36 64 320
163 0 -44 36 -56 16 4 -4 16 176
164 -12 20 36 -52 8 20 -40 -4 192
165 24 4 4 -4 24 -32 52 0 144
166 -56 -36 28 -4 12 44 -72 28 280
167 -84 -60 -12 -80 20 -56 -60 -52 424
168 -4 -56 16 68 -36 0 -4 24 208
169 -76 -60 -60 -24 -56 -40 36 -32 384
170 -68 -84 80 -12 -32 -52 -40 -24 392
171 20 -20 24 -12 44 40 -44 12 216
172 -32 -8 52 12 -4 -4 8 24 144
173 -12 -36 -32 -56 -52 24 64 -60 336
174 36 56 12 8 52 48 60 72 344
175 64 -24 -24 -12 40 40 -72 12 288
176 28 24 -28 -4 -12 68 -64 28 256
177 -72 8 -44 8 12 16 0 -56 216
178 -44 -28 4 32 -20 32 4 -68 232
179 32 -16 -76 -8 -52 -40 64 -24 312
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180 -28 -4 32 0 4 -4 32 32 136
181 -8 -4 12 4 -88 12 -32 24 184
182 0 16 24 -8 -20 -20 40 0 128
183 0 -40 -28 20 48 28 24 -28 216
184 48 112 0 48 -8 72 36 52 376
185 -32 40 -8 -16 -4 0 16 4 120
186 4 20 100 -16 60 -48 -16 8 272
187 -24 -68 -60 -32 -72 16 44 -52 368
188 20 36 60 68 8 -4 4 -40 240
189 -132 28 -64 -16 -24 -28 -44 -40 376
190 -32 8 4 16 -4 -24 20 60 168
191 -12 52 4 20 -4 4 72 32 200
192 -64 0 -40 28 8 32 -20 40 232
193 -40 8 48 -28 -16 56 -20 -48 264
194 -72 -44 -56 24 56 4 -32 -32 320
195 -52 96 -32 20 52 4 -60 52 368
196 4 -28 -16 0 96 -20 0 -28 192
197 -32 -48 20 28 -16 92 44 -8 288
198 4 -44 40 60 -40 48 64 28 328
199 -68 0 52 -32 32 -4 -32 -44 264
200 -36 32 12 -4 -20 -28 -28 -56 216
201 68 48 4 20 32 60 4 76 312
202 48 64 8 40 64 4 68 72 368
203 -24 -32 8 -52 -64 32 -12 24 248
204 -44 12 44 24 92 -52 0 -4 272
205 72 16 -28 -24 -40 12 8 56 256
206 56 -32 -36 12 -12 -64 4 24 240
207 -12 -4 36 4 -8 36 -36 32 168
208 -72 52 156 20 -40 28 24 0 392
209 -20 -32 40 -40 -36 68 -68 -72 376
210 20 -36 -20 -32 16 -48 8 -20 200
211 -12 36 36 16 -80 64 80 92 416
212 92 60 -36 -12 76 16 -4 56 352
213 12 -8 24 20 8 56 36 28 192
214 -72 4 -16 -96 -44 12 -16 -44 304
215 0 44 28 40 -92 8 44 -8 264
216 56 16 -32 24 4 -68 8 -80 288
217 -12 -48 -8 24 -68 -44 64 -4 272
218 0 -36 -4 76 28 -36 36 -8 224
219 4 -20 0 -8 -32 -52 -72 -92 280
220 28 4 -32 -12 -8 0 -28 -40 152
221 -72 -4 88 8 -84 -44 -48 -20 368
222 32 -76 -12 -48 56 16 32 8 280
223 -36 -36 -24 -8 -44 36 -52 -52 288
224 -64 -52 24 48 -12 8 4 36 248
225 12 20 -16 0 -44 -28 88 40 248
226 64 -28 0 28 -12 0 8 12 152
227 -32 -20 84 -76 24 4 48 16 304
228 -28 28 -28 56 56 120 -84 80 480
229 -48 -36 -16 -44 56 -16 32 -32 280
230 68 -44 24 4 36 -64 4 12 256
231 32 -28 44 28 60 68 0 28 288
232 -20 -48 32 64 -76 -20 -84 16 360
233 48 -28 -20 68 8 -52 -28 -44 296
234 8 64 -4 136 -12 4 44 32 304
235 12 16 28 4 8 -52 32 32 184
236 116 -8 -12 12 76 -52 28 0 304
237 -24 -32 32 20 12 68 100 16 304
238 -16 4 -12 96 -44 -16 8 -4 200
239 44 -28 32 0 -80 -52 -12 -120 368
240 -16 60 -28 8 -24 -64 -32 48 280
241 -60 -4 -40 -20 -4 40 -8 0 176
242 -104 -8 60 16 8 56 -40 12 304
243 -4 -8 -28 -68 36 -60 -40 28 272
244 40 44 0 20 24 0 -52 -4 184
245 -104 -92 -56 -16 -72 4 -44 -92 480
246 -56 -40 16 -44 -28 0 8 -40 232
247 48 4 28 40 4 24 8 4 160
248 48 16 88 -64 52 -60 12 12 352
249 44 -28 32 -84 -28 -52 -24 -44 336
250 68 40 -24 -16 60 -32 -48 56 344
251 -76 32 -56 -112 -56 28 20 -4 384
252 44 -24 20 56 32 -48 -96 0 320
253 -12 -24 -28 0 -68 -88 -32 60 312
254 100 28 16 28 -16 -24 -28 8 248
255 0 -28 -36 -36 40 -52 -76 -28 296

C Additional Material

In this article, several experimentations have been practiced, resulting
in various sets. Some of the data sets have been adapted (e.g. , fitted,
truncated) to become more readable. For informational purpose we plot
the whole data set in this section. Figure 9 shows us the raw data use
for fitting in Fig. 1.

Figure 10 shows us the evolution of the success rate according to
the number of messages and the noise deviation in the random leakage
scenario. Figures 3 and 4 are extracted from Fig. 10.
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Fig. 9: Evolution of the number of messages needed to
achieve a success rate of 90% for different noise values.
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Fig. 10: evolution of the success rate according to the number of messages and the noise deviation.


