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Abstract. In the last decade, an effort has been made by the research
community to find efficient ways to thwart side channel analysis (SCA)
against physical implementations of cryptographic algorithms. A com-
mon countermeasure for implementations of block ciphers is Boolean
masking which randomizes by the bitwise addition of one or several
random value(s) to the variables to be protected. However, advanced
techniques called higher-order SCA attacks exist that overcome such a
countermeasure. These attacks are greatly favored by the very nature of
Boolean masking. In this paper, we revisit the affine masking initially
introduced by Von Willich in 2001 as an alternative to Boolean mask-
ing. We show how to apply it to AES at the cost of a small timing
overhead compared to Boolean masking. We then conduct an in-depth
analysis pinpointing the leakage reduction implied by affine masking.
Our results clearly show that the proposed scheme provides an excellent
performance-security trade-off to protect AES against higher-order SCA.

1 Introduction

Side Channel Analysis is a cryptanalytic technique that consists in analyzing the
side channel leakage (e.g. the power consumption, the electromagnetic emana-
tions) produced during the execution of a cryptographic algorithm embedded on
a physical device. SCA exploits the fact that this leakage is statistically depen-
dent on the intermediate variables that are processed. Some of these variables
are sensitive in the sense that they are related to secret data, and recovering
information on them therefore enables efficient key recovery attacks [12, 2, 8].

A very common countermeasure to protect implementations of block ciphers
against SCA is to randomize the sensitive variables by masking techniques [3,
10]. The principle is to add one or several random value(s) (called mask(s)) to
every sensitive variable occurring during the computation. Masks and masked
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variables propagate throughout the cipher in such a way that every intermediate
variable is independent of any sensitive variable. This strategy ensures that the
instantaneous leakage is independent of any sensitive variable, thus rendering
SCA difficult to perform. The masking can be characterized by the number of
random masks used per sensitive variable. A masking that involves d random
masks is called a dth-order masking. Such a masking can always be theoretically
broken by a (d+1)th-order SCA, namely an SCA that targets d+1 intermediate
variables at the same time [16, 27, 22]. However, the noise effects imply that the
difficulty of carrying out a dth-order SCA in practice increases exponentially
with d [3]. The dth-order SCA resistance (for a given d) is thus a good security
criterion for implementations of block ciphers. Unfortunately, only a few higher-
order masking schemes exist and they are costly in timings [27, 5, 23, 24].

Instead of looking for perfect security against dth-order SCA, an alternative
approach consists in looking for practical resistance to these attacks. It may
for instance be observed that the efficiency of higher-order SCA is related to
the way the masks are introduced to randomize sensitive variables. Merely all
masking schemes proposed in the literature are based on Boolean masking where
masks are introduced by exclusive-or (XOR). This masking enables securing im-
plementations against first-order SCA quite efficiently, however it is especially
vulnerable to higher-order SCA [16, 18] due to the intrinsic physical properties
of electronic devices. Indeed, when the mask is introduced by XOR, then every
bit of the mask randomizes one bit of the sensitive variable. Since each bit of a
processed variable usually independently contributes to the leakage, the infor-
mation leaking about the mask and the information leaking about the masked
variable can be efficiently combined to unmask the variable.

A first work towards the direction of practical – instead of perfect – secu-
rity against dth-order SCA has been published by von Willich [30]. It argues
that affine masking offers an improved SCA resistance compared to standard
first-order masking schemes. However, implementation issues are not taken into
account and the paper does not explain how to apply affine masking to usual
block ciphers such as AES or DES. Moreover, von Willich defines the affine
masking over the vector space GF(2)n. When defined in such a way, it implies
the generation of an invertible n× n binary matrix, and n scalar products over
GF(2) each time a sensitive variable must be masked. Those steps, and espe-
cially the scalar products, are very costly when applied in software. A natural
idea to deal with this issue is to define the operations over the field GF(2n) in
place of the vector space GF(2)n. The addition operation stays unchanged and
the field multiplication is a particular case of the matrix product (the security
analysis conducted in this paper shows that both operations offer similar SCA
resistance). The idea of masking sensitive data with a multiplicative mask in
a field structure was first proposed in [1] to protect an AES implementation.
However it was shown in [9] that such a masking is insecure since, by nature, it
fails in masking the zero value. A similar zero-value first-order flaw was subse-
quently exploited in [6] to break the linear masking proposed to protect DES in



[10]. These works clearly show that letting the zero value unmasked renders a
masking scheme insecure.

Our contribution. In this paper, we propose a practical application of affine
masking to AES. Namely, we present an implementation of the block cipher such
that every 8-bit intermediate result z ∈ GF(256) is manipulated under the form
G(z) = r1 · z ⊕ r0, where (r1, r0) ∈ GF(2n)∗ × GF(2n) is a pair of random val-
ues generated before each new execution of the algorithm. Our scheme is very
efficient as it maintains the same compatibility as Boolean masking (which is
a particular case of our scheme for r1 = 1) with the linear transformations of
the algorithm. In the second part of the paper, we conduct an in-depth anal-
ysis which shows that the joint use of a multiplicative mask with a Boolean
mask greatly improves the resistance of the scheme to higher-order SCA. As we
argue, the multiplicative mask enables to complicate the relationship between
the unmasked data and the leakage while the Boolean mask prevents the zero-
value leakage. Our analysis pinpoints the leakage reduction resulting from affine
masking as well as its improved higher-order SCA resistance.

2 Securing AES with Affine Masking

The AES is an iterated block cipher algorithm. It is composed of several rounds
that operate on a 4 × 4 array of bytes denoted by s = (si,j)0≤i,j≤3 and termed
the state. At the beginning of AES in encryption mode, the state is initialized
with the plaintext.

Let us first briefly introduce the outlines of our method. Initially, both the
state s and the master key mk = (mki,j)0≤i,j≤3 are masked by applying a
randomly generated affine transformation G to each si,j and mki,j . Then, all
the original transformations of the cipher are adapted in order to process on
and to return affinely masked variables. Should the additive part of the mask
cancel out within the computation, a temporary additive mask is introduced in
order to avoid any potential zero-value first-order flaw. Eventually, the ciphertext
(ci,j)0≤i,j≤3 is simply recovered by applying the inverse mapping G−1 to each
part of the final value of the masked state (which contains the values G(ci,j)).

Before explaining how the AES implementation can be adapted to securely
operate on a state masked by an affine transformation G, we briefly recall the
algorithm specifications in the following section.

2.1 The AES Encryption Algorithm

We recall in this section the four main operations involved in the AES encryption
algorithm. For each of them, we denote by s = (si,j)0≤i,j≤3 the state at the input
of the transformation, and by s′ = (s′i,j)0≤i,j≤3 the state at the output of the
transformation.



1. AddRoundKey: Let k = (ki,j)0≤i,j≤3 denote the round key. Each byte of the
state is XOR-ed with the corresponding round key byte:

(s′i,j)← (si,j)⊕ (ki,j).

2. SubBytes: each byte of the state passes through the 8-bit AES S-box S:

s′i,j ← S(si,j) .

3. ShiftRows: each row of the state is cyclically shifted by a certain offset:

s′i,j ← si,j−i mod 4 .

4. MixColumns: each column of the state is modified as follows:

(s′0,c, s
′
1,c, s

′
2,c, s

′
3,c)← MixColumns(s0,c, s1,c, s2,c, s3,c) ,

where MixColumns implements the following operations:
s′0,c ← (02 · s0,c)⊕ (03 · s1,c)⊕ s2,c ⊕ s3,c

s′1,c ← s0,c ⊕ (02 · s1,c)⊕ (03 · s2,c)⊕ s3,c

s′2,c ← s0,c ⊕ s1,c ⊕ (02 · s2,c)⊕ (03 · s3,c)
s′3,c ← (03 · s0,c)⊕ s1,c ⊕ s2,c ⊕ (02 · s3,c)

where · denotes the multiplication and the addition in the field GF(2)[X]/(X8+
X4 +X3 +X + 1), and where 02 and 03 respectively denote the elements X
and X+1. In the following, we will assume that MixColumns is implemented
as 

s′0,c ← xtimes(s0,c ⊕ s1,c)⊕ tmp ⊕ s0,c

s′1,c ← xtimes(s1,c ⊕ s2,c)⊕ tmp ⊕ s1,c

s′2,c ← xtimes(s2,c ⊕ s3,c)⊕ tmp ⊕ s2,c

s′3,c ← s′0,c ⊕ s′1,c ⊕ s′2,c ⊕ tmp

where tmp = s0,c⊕s1,c⊕s2,c⊕s3,c and where xtimes denotes a look-up table
for the function x 7→ 02 · x.

2.2 Affine Masking applied to AES

To secure the state manipulations thanks to the affine masking countermeasure
every manipulation of s is replaced by a manipulation of G(s) = (G(si,j))0≤i,j≤3.
In the following, we assume that G is defined with respect to a pair (r1, r0) of
random elements of GF(256)∗ ×GF(256) as:

G : x ∈ GF(256) 7−→ r1 · x⊕ r0 ∈ GF(256) .

In the sequel, G(x) shall be called the G-representation of x and the variables r1

and r0 shall be referred to as the multiplicative mask and and the additive mask
respectively.

Let us now explain how the four main AES primitives can be easily adapted
to securely operate on a state masked by an affine transformation G. We shall
denote by G(s) = (G(si,j))0≤i,j≤3 the masked state at the input of each trans-
formation, by G(s′) = (G(s′i,j))0≤i,j≤3 the masked state at the output, and by
G(k) = (G(ki,j))0≤i,j≤3 the masked representative of the current round key.



1. To securely compute the G-representation of the output of AddRoundKey
from the G-representations of the input state and the round key, each byte
G(s) of the state is XOR-ed with the corresponding round key byte G(k) as
follows:

G(s′)← (((G(s)⊕ r)⊕G(k))⊕ r0)⊕ r .
where r is randomly chosen in GF(256). The method is essentially based on
the following observation: each masked output byte G(s′i,j) can be computed
as G(s′i,j) = G(si,j ⊕ ki,j) = G(si,j) ⊕ G(ki,j) ⊕ r0. A temporary random
mask has to be introduced to ensure that the state bytes are always masked
affinely and not only linearly.

2. To process the S-box transformations, we propose to use a new look-up table
S̃ that is recomputed at each new AES execution from both G and S such
that for every x ∈ GF(256), we have:

S̃[G(x)] = G(S[x]) . (1)

Remark 1. In Sect. 2.3, we propose several methods to generate the new
S-box S with various time-memory trade-offs.

It can be easily checked that processing S̃ on the G-representation of a byte
si,j results in the G-representation of s′i,j = S[si,j ]. Securing the SubBytes

transformation with the affine masking thus simply consists in applying S̃ to
each byte of the state:

G(s′i,j)← S̃[G(si,j)] .

3. Since we have ShiftRows(G(s)) = G(ShiftRows(s)) and since ShiftRows op-
erates on each byte separately, it can be directly applied on G(s) without
introducing any flaw:

G(s′)← ShiftRows(G(s)) .

4. Since each output byte of MixColumns can be expressed as a linear function
of the bytes of the input state over GF(256), it can be checked that we have:

MixColumns(G(s0,c), G(s1,c), G(s2,c), G(s3,c))

= (G(s′0,c), G(s′1,c), G(s′2,c), G(s′3,c)).

This suggests to perform the following steps to securely process MixColumns
on the G-representation of the state columns.


tmp ← r ⊕G(s0,c)⊕G(s1,c)⊕G(s2,c)⊕G(s3,c)
G(s′0,c)← xtimes(G(s0,c)⊕ r′ ⊕G(s1,c))⊕ tmp ⊕G(s0,c)⊕ r ⊕ xtimes(r′)
G(s′1,c)← xtimes(G(s1,c)⊕ r′ ⊕G(s2,c))⊕ tmp ⊕G(s1,c)⊕ r ⊕ xtimes(r′)
G(s′2,c)← xtimes(G(s2,c)⊕ r′ ⊕G(s3,c))⊕ tmp ⊕G(s2,c)⊕ r ⊕ xtimes(r′)
G(s′3,c)← r ⊕G(s′0,c)⊕G(s′1,c)⊕G(s′2,c)⊕ tmp

To ensure that the state bytes are always masked affinely and not only
linearly, two temporary random masks r, r′ ∈ GF(256) have to be introduced.
Moreover, the operations above must be processed from left to right.



Finally, since the round key derivation is a composition of the previous trans-
formations, it can be protected by the exact same methods as previously de-
scribed.

2.3 Time-Memory Trade-Offs

Affine masking requires 32 computations of G in order to mask both the plaintext
and the key, and eventually 16 computations of G−1 in order to unmask the
ciphertext. Field multiplications and inversions involved in affine masking can
be efficiently implemented with the well-known log/alog tables technique as long
as conditional statements are avoided to thwart timing attacks (see Appendix A
for an example of such an implementation).

Essentially, the processing of G(si,j), G
−1(si,j) and S̃(si,j) may be conducted

on-the-fly or may involve pre-computations. Both strategies have different im-
pacts on time and storage costs.

The best time-memory trade-off consists in using two look-up tables for G
and S̃, and in processing one field multiplication and one addition each time G−1

must be performed on a state element. The different steps of the look-up table
generations of G and S̃ are summarized in Algorithm 1.

Algorithm 1
Input: r0 ∈ GF(256), r1 ∈ GF(256)∗, and the LUT S for the AES S-box
Output: The LUTs for G and S̃

1. for i = 0 to 255 do

2. G[i]← r1 · i⊕ r0
3. for i = 0 to 255 do

4. S̃[G[i]]← G[S[i]]

5. return (G, S̃)

As G−1 is not stored as a look-up table, each byte s̃ of the final output state has
to be unmasked by processing s← r−1

1 · (s̃⊕ r0).
This way of implementing the affine masking requires the storage of 512 bytes

for the look-up tables G and S̃. It also involves 256 multiplications in the field
GF(256) and 256 XORs to generate G, while S̃ is generated using look-ups only.
The initial masking of the plaintext and the key only requires 32 table look-ups.
Unmasking implies a total of 16 inversions and 16 multiplications in the field
GF(256).

As an alternative to the previous algorithm, two variants can be proposed.

1. First variant. S̃, G and G−1 are pre-computed using three look-up tables
in order to save on-the-fly computations. Masking both the plaintext and
the key involves 32 table look-ups and unmasking the ciphertext involves 16
table look-ups. This method requires the storage of 3 × 256 bytes for these
look-up tables. It also involves 256 multiplications in the field GF(256) to
generate G.



2. Second variant. This variant involves a single look-up table for S̃ and
performs every other operation on-the-fly. It requires the storage of 256 bytes
for this look-up table. It also involves 2 × 256 multiplications in the field
GF(256) to generate S̃, and 32 multiplications for the initial masking of the
plaintext and the key. Unmasking implies a total of 16 inversions and 16
multiplications in the field GF(256).

2.4 Implementation Results

In this section, we compare several AES implementations protected by affine
masking, first-order Boolean masking and second-order Boolean masking. The
codes are written in assembly language for an 8051-based 8-bit architecture. More
details about these countermeasures can be found in the respective papers [15, 23,
27]. Table 1 lists the timing and memory performances of each implementation.

Table 1. Comparison of AES implementations.

Method Reference Cycles RAM (bytes) ROM (bytes)

Unprotected Implementation

No Masking Na. 2× 103 32 1150

Provably Secure First-Order SCA Resistant Implementation

First-Order Boolean Masking [15] 9× 103 256 + 35 1744

Affine Masking (ref. implem.) This paper 29× 103 512 + 37 2857

Affine Masking (1st var.) This paper 28× 103 768 + 36 2985

Affine Masking (2nd var.) This paper 38× 103 256 + 37 3252

Provably Secure Second-Order SCA Resistant Implementation

Second-Order Boolean Masking [27] 594× 103 512 + 90 2336

Second-Order Boolean Masking [23] 672× 103 256 + 86 2215

Table 1 shows that the implementation of AES protected by affine masking
is 3.2 to 4.2 times slower than the one protected by first-order Boolean masking,
whereas the memory overhead is either +0% (2nd variant) or +100% (reference
implementation) or +200% (3rd variant). When compared to the second-order
Boolean masking proposed in [27] and [23], the affine masking of AES is 17.7
times faster with the third variant and 20.5 times faster with the first variant.

As every intermediate variable of the computation is affinely masked, we
keep a perfect security with respect to first-order SCA. Moreover, as argued
in the next section, we significantly increase the resistance of the implemen-
tation against higher-order SCA. In view of the implementation performances
depicted in Table 1, this rise in security has been obtained at the cost of a very
small overhead when compared to the overhead of provably secure second-order
Boolean masking. This demonstrates that affine masking is a sound alternative



to second-order Boolean masking to increase the security of an implementation
against higher-order SCA.

3 Resistance to Higher-Order SCA

Affine masking is not inherently perfectly secure against higher-order SCA. It can
for instance be checked that several pairs of intermediate variables of the scheme
proposed in Sect. 2 depend on sensitive variables. We however argue in this sec-
tion that affine masking is much more resistant than the widely-used Boolean
masking. To highlight this statement, we quantify the information leakage re-
duction provided by affine masking and we study the efficiency of higher-order
DPA [16, 22] against it. For comparison purposes, we apply the same analysis to
Boolean masking. We eventually give the results of several attack experiments in
order to check the reliability of our theoretical analysis with respect to practical
attack scenarios.

3.1 Leakage of Affine Masking

In what follows, we shall consider that an intermediate variable Ui is associated
with a leakage variable Li representing the information leaking about Ui through
side channel. We will assume that the leakage can be expressed as a deterministic
leakage function ϕ of the intermediate variable Ui with an independent additive
noise Bi. Namely, we will assume that the leakage variable Li satisfies:

Li = ϕ(Ui) +Bi . (2)

In the following, we shall call dth-order leakage a tuple of d leakage variables
Li corresponding to d different intermediate variables Ui that jointly dependent
on some sensitive variable. As already argued in Sect. 2, when an implementation
is correctly protected by affine masking (i.e. when every sensitive variable is
affinely masked), no first-order leakage of sensitive information occurs. This is a
consequence of the action of the random additive mask R0. However, as detailed
hereafter, second-order and third-order information leakages do occur in the
presence of affine masking.

Second-order leakage. To recover sensitive information when affine masking is
applied, one must at least consider the joint leakage of two different intermediate
variables U1 and U2 that share common masks. Those variables can thus be
assumed to satisfy: {

U1 = G(Z1) = R1 · Z1 ⊕R0

U2 = G(Z2) = R1 · Z2 ⊕R0
, (3)

where R1 and R0 are random variables defined over GF(2n)∗ and over GF(2n)
respectively and where Z1 and Z2 are sensitive variables. A particular case is
Z2 = 0 which amounts to target the pair (G(Z1), R0).



In the following, we shall assume that R1 and R0 are uniformly distributed
over GF(2n)∗ and over GF(2n) respectively and that they are mutually indepen-
dent of the pair (Z1, Z2), and of each other. After denoting by Z the sensitive
variable Z1 ⊕ Z2, we obtain the following lemma.

Lemma 1. The pairs (U1, U2) and (G(Z), R0) are identically distributed.

Proof. Let R′0 = R1 ·Z2⊕R0. We have U1 = R1 ·Z⊕R′0 and U2 = R′0. Moreover,
R′0 is uniformly distributed and mutually independent of both Z and R1, which
concludes the proof. �

Lemma 1 shows that the second-order leakage corresponding to a pair of
sensitive variables (Z1, Z2) both affinely masked is equivalent to the the second-
order leakage on a sensitive variable Z = Z1⊕Z2 that is affinely masked and on
the corresponding additive mask R0. For this reason, in the following, we shall
only consider a second-order leakage corresponding to a pair (G(Z), R0), with
Z being possibly the sum of two sensitive variables. The analysis hereafter shall
further make use of the following lemma.

Lemma 2. The random pair
(
(L1, L2)|Z = z

)
is identically distributed for every

z ∈ GF(2n)∗ and the random pair
(
(L1, L2)|Z = 0

)
has a distinct distribution.

Proof. Since Z equals Z1 ⊕ Z2, we have
(
(L1, L2)|Z = z

)
=
(
ϕ(R′1 ⊕ R′0) +

B1, ϕ(R′0)+B2

)
, where R′1 = R1 ·z and R′0 = R1 ·Z2⊕R0. For every z ∈ GF(2n)∗,

R′1 and R′0 are uniformly distributed over GF(2n)∗ and GF(2n) respectively, and
they are mutually independent. Therefore the distribution of

(
(L1, L2)|Z = z

)
is

the same for every z ∈ GF(2n)∗. On the other hand, Z = 0 implies Z1 = Z2 and
therefore

(
(L1, L2)|Z = 0

)
=
(
ϕ(R′0) +B1, ϕ(R′0) +B2

)
. Since ϕ is not constant

by definition, the distribution of (ϕ(R′0), ϕ(R′0)) differs from the distribution of
(ϕ(R′1 ⊕ R′0), ϕ(R′0)) and it follows that the distribution of ((L1, L2)|Z = 0)
differs from the distribution of ((L1, L2)|Z ∈ GF(2n)∗). �

Lemma 2 shows that the second-order leakage (L1, L2) only reveals informa-
tion about whether Z equals 0 or not (i.e. whether Z1 equals Z2 or not). Such a
leakage can be thought as a zero-value second-order leakage analogously to the
zero-value first-order leakage of multiplicative masking [1, 9]. Intuitively, we have
the following diagram where each arrow indicates an additional security level.

No countermeasure
1st-order leakage

↙ ↘
Boolean masking Multiplicative masking
2nd-order leakage zero-value 1st-order leakage

↘ ↙
Affine masking

zero-value 2nd-order leakage



Third-order leakage. To get more information about Z, a natural idea is
to exploit (L1, L2) together with the leakage L3 on the multiplicative mask
U3 = R1. Indeed, while the pair (U1, U2) only reveals whether Z equals 0 or not,
the triplet (U1, U2, U3) does reveal the full value of Z by:

Z = U−1
3 · (U1 ⊕ U2) = R−1

1 · (G(Z1)⊕G(Z2)). (4)

However, the information about the Ui’s that leak through the Li’s does not
enable a simple recovery as in (4). In fact, we expect that extracting information
on Z through side channels is more difficult when affine masking is applied
in place of Boolean masking. Indeed, when the mask is introduced by bitwise
addition, then each bit of the mask acts on a single bit of the sensitive variable.
In this case, every bit of the masked variable depends on a single bit of the mask.
Since bits of processed variables usually contribute to the leakage independently,
the information leaking about the mask and the information leaking about the
masked variable can be efficiently combined to unmask the variable. This can
be illustrated in the Hamming weight leakage model (where ϕ = HW) by the
important correlation between HW(Z) and either |HW(Z ⊕ R0) − HW(R0)| or
(HW(Z⊕R0)−n/2)(HW(R0)−n/2) [16, 22]. When a further mask is introduced
by multiplication in GF(2n)∗, the additive mask still prevents from a zero-value
first-order leakage (as for multiplicative masking [9]), and the new multiplicative
mask ensures that every bit of the masked variable depends on every bit of both
the sensitive variable and the multiplicative mask. In this case, it is legitimate
to expect that the information leaked by side channel is much more difficult to
exploit to recover information about Z. For instance, there is no evident way to
combine HW(Z ·R1) and HW(R1) to construct a variable with high correlation
with HW(Z). In order to validate this intuition, we conduct in the next section
an information theoretic evaluation of the leakages resulting from affine masking
and different kinds of masking.

3.2 Information Theoretic Evaluation

In order to evaluate the information revealed by affine masking leakages (first-
order and second-order) we follow the information theoretic approach suggested
in [28]. Namely we compute the mutual information between the sensitive vari-
able Z and either the pair of leakages (L1, L2) or the triplet of leakages (L1, L2, L3).
For comparison purposes, we proceed similarly for Boolean masking and multi-
plicative masking. We list hereafter the leakages we consider and the underlying
leaking variables:

– 2nd-order leakage of 1st-order Boolean masking: (Z ⊕R0, R0)
– 3rd-order leakage of 2nd-order Boolean masking: (Z ⊕R0 ⊕R′0, R0, R

′
0)

– 1st-order leakage of multiplicative masking: R1 · Z
– 2nd-order leakage of multiplicative masking: (R1 · Z,R1)
– 2nd-order leakage of affine masking: (R1 · Z ⊕R0, R0)
– 3rd-order leakage of affine masking: (R1 · Z ⊕R0, R0, R1)



The variables Z, R0, R′0 and R1 are assumed to be uniformly distributed (over
GF(256) for the former and over GF(256)∗ for R1) and mutually independent.
For each kind of leakage, we computed the mutual information between Z and
the tuple of leakages in the Hamming weight model with Gaussian noise: the
leakage Li related to a variable Ui is distributed according to (2) with ϕ =
HW and Bi ∼ N (0, σ2) (the different Bi’s are also assumed to be mutually
independent). In this context, the signal-to-noise ratio (SNR) of the leakage is
defined as Var [ϕ(Ui)] /Var [Bi] = 2/σ2.
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Fig. 1. Mutual information (log10) between the leakage and the sensitive variable over
an increasing noise standard deviation.

Fig. 1 shows the mutual information values obtained for each kind of leak-
age with respect to an increasing noise standard deviation over [0.1, 4.47] (i.e. a
decreasing SNR over [ 1

10 , 200]). These results demonstrate the information leak-
age reduction implied by the use of affine masking. As expected, affine masking
leaks less information than multiplicative masking and first-order Boolean mask-
ing for all SNRs. We further observe that affine masking leaks less information
than second-order Boolean masking when σ is lower than 2.36, that is when the
SNR is greater than 0.36. This first analysis allows us to conclude that affine
masking is less leaky than 2nd-order Boolean masking when the amount of noise
in the leakage is small. On the other hand, these results illustrate that a 2nd-
order SCA security is asymptotically better than a 1st-order SCA security even
if the masking relation is more complicated in the latter case. Similarly, we see
that for a low noise amount, multiplicative masking is more resistant than 1st-



order Boolean masking although it does not thwart 1st-order SCA while Boolean
masking does.

Fig. 1 also confirms our intuition regarding the information provided by the
leakage on the multiplicative mask. Observing the obtained mutual information
for affine masking and for multiplicative masking, we note that the information
gained from the leakage on the multiplicative mask is low. This phenomenon
amplifies when σ increases and, beyond σ ≈ 2 the distance between the mutual
information curves almost vanishes for both kinds of masking. This means that
when the noise is sufficiently strong, the leakage on the multiplicative mask does
not provide useful information anymore and only the zero-value leakage reveals
sensitive information.

In this section, we have quantified the impact of affine masking on the reduc-
tion of the information leakage. We will now see to which extent this reduction
also applies to the efficiency of side channel attacks on affine masking.

3.3 Higher-Order DPA Evaluation

Let us assume that Z depends on the plaintext and of a subkey k?, and let
us denote by Z(k) the hypothetic value of Z for a guess k on k?. In a higher-
order DPA (HO-DPA) [16, 22], the attacker tests the guess k by estimating the
correlation coefficient ρ [ϕ̂(Z(k)), C(L)], where C is a combining function that
converts the multivariate leakage L into a univariate signal and where ϕ̂ is a
prediction function chosen such that ϕ̂(Z) is as much as possible correlated to
C(L). The guess k leading to the greatest correlation in absolute value is selected
as key-candidate. In [14], the authors show that the number of traces required
to mount a successful DPA attack is roughly quadratic in ρ−1 where ρ is the
correlation coefficient ρ [ϕ̂(Z), C(L)] (that is the expected correlation for the
correct key guess). The latter can therefore be used as a metric for the efficiency
of a (HO-)DPA attack.

The analysis conducted in [22] states that a good choice for C is the normal-
ized product combining:

C : L 7→
∏
i

(Li − E [Li]). (5)

Although the effectiveness of the normalized product combining has been
only studied in [22] in the context of Boolean masking, this combining function
stays a natural choice against any kind of masking since ρ [ϕ̂(Z(k)), C(L)] is
related to the multivariate correlation4 between ϕ̂(Z(k)) and every coordinate
of L [29]. Besides, in the presence of (even little) noise in the side-channel leakage,
the HO-DPA with normalized product combining is nowadays the most efficient
unprofiled attack against Boolean masking in the literature (see for instance
[22, 29, 24]). For those reasons, it is natural to study how efficient is a HO-DPA

4 What we call multivariate correlation here is the straightforward generalization of
the correlation coefficient to more than two variables (see [29]).



with normalized product combining against affine masking compared to Boolean
masking.

In [22], it is also shown that the best choice for ϕ̂ given C is:

ϕ̂ : z 7→ E [C(L)|Z = z] . (6)

As explained in [22], the attacker may not be able to evaluate ϕ̂ without knowing
the exact distribution of L given Z (as in a profiled attack scenario). In a security
evaluation context, it however makes sense to assume that the attacker has this
ability. As proved in Appendix B, the optimal prediction function ϕ̂ computed
according to (6) for the zero-value 2nd-order leakage of affine masking is an affine
transformation of the dirac function δ0 defined as5:

δ0(z) =

{
1 if z = 0 ,
0 if z 6= 0 .

(7)

Therefore, we have ρ [ϕ̂(Z(k)), C(L)] = ±ρ [δ0(Z(k)), C(L)], that is, the at-
tack performs similarly with ϕ̂ and δ0.

Remark 2. Computing ρ [δ0(Z(k)), C(L)] amounts to performing a zero-value
DPA attack as in [9] but on the combined leakage C(L). After assuming that
Z(k) is uniformly distributed over GF(2n), it can indeed be checked that the
covariance between δ0(Z(k)) and C(L) (which is the discriminating element in
the correlation) equals 2n−1

2n E [C(L)|Z(k) 6= 0]− 1
2n E [C(L)|Z(k) = 0].

When the leakage satisfies (2) with ϕ = HW and Bi ∼ N (0, σ2) (i.e. when
the Hamming weight leakage model with Gaussian noise is assumed), we show
in Appendix B that the coefficient ρaff obtained for the zero-value second-order
leakage of affine masking satisfies:

ρaff =
n

(4σ2 + n)
√

2n − 1
, (8)

where n is the bit-size of Z.
We also computed the correlation coefficient corresponding to the 3rd-order

leakage of affine masking. We did not obtained explicit formulae for this coef-
ficient but we observed for several values of n and σ that it was always lower
that ρaff. This suggests that HO-DPA with normalized product combining works
better against the 2nd-order leakage of affine masking than against the 3rd-order
one. From our analysis, we therefore concluded that ρaff not only quantifies the
resistance of affine masking against 2nd-order DPA, but also that against HO-
DPA in general.

Regarding Boolean masking, it has been shown in [25] that the correlation
ρbool corresponding to HO-DPA with normalized product combining against dth-
order Boolean masking satisfies (in the Hamming weight model):

ρbool = (−1)d
√
n

(n+ 4σ2)
d+1
2

. (9)

5 This is actually true whatever the leakage function and noise distribution as a direct
consequence of Lemma 2.



Let us denote by Naff (resp. Nbool) the number of leakage measurements for a
successful attack on affine masking (resp. Boolean masking). Since, according
to [14], Naff and Nbool are respectively roughly quadratic in the values of the
inverse of the correlation coefficients, the ratio Naff

Nbool
satisfies:

Naff

Nbool
≈
(
ρbool

ρaff

)2

=
2n − 1

n

(
1

n+ 4σ2

)1−d

. (10)

Let ν denote the value 2n−1
n

(
1

n+4σ2

)1−d
. In view of (10), affine masking is more

resistant to HO-DPA than dth-order Boolean masking if and only if ν ≥ 1.
Comparing the resistance of Boolean masking and affine masking against HO-
DPA thus amounts to study when ν ≥ 1 is satisfied. Let us study this inequality
with respect to d:

– When d = 1, we have ν ≥ 1 for all n ≥ 1 whatever σ. We deduce that affine
masking is more resistant to HO-DPA than first-order Boolean masking for
all SNRs. Moreover, from (10), we expect that HO-DPA against first-order
Boolean masking required around 32 times more leakage measurements than
against affine masking whatever σ.

– For d = 2, ν ≥ 1 if and only if σ2 ≤ (2n − n2 − 1)/4n. This implies that for
the case of AES where n = 8, affine masking is more resistant to HO-DPA
than 2nd-order Boolean masking if σ ≤ 2.44, which corresponds to a SNR
greater than 0.335.

– For d ≥ 3, ν is always smaller than 1 for every n ≥ 1. Affine masking is hence
less resistant to HO-DPA than 3rd-order Boolean masking for all SNRs.

Eventually Fig. 2 plots the correlation values ρbool for d ∈ {1, 2, 3}, ρaff (2O-
DPA against affine masking) as well as the correlation values obtained for the
third-order DPA against affine masking. It illustrates the fact that the correlation
corresponding to the 3rd-order leakage of affine masking is always lower than
that corresponding to the 2nd-order leakage of affine masking. Moreover and as
expected, it shows that the coefficient ρaff is always lower than ρbool for d = 1,
always greater than ρbool for d = 3, and lower than ρbool d = 2 only when
σ ≤ 2.44.

3.4 Attack Experiments

In order to confront the theoretical analyses conducted in the previous sections
to practice, we performed several attack experiments. In a first place, we applied
several side-channel distinguishers to leakage measurements simulated in the
Hamming weight model with Gaussian noise. We not only applied (HO)-DPA,
but also two other kinds of attacks, namely (higher-order) Mutual Information
Analysis (MIA) and Template Attacks (TA). We chose to test these three side-
channel distinguishers against the different kinds of masking firstly because they
are the most widely used in the literature, and secondly because they represent a
brand spectrum of adversary capabilities. As already mentioned, HO-DPA with
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Fig. 2. Correlation values with respect to σ (logarithmic scale).

normalized product combining is the most efficient unprofiled attack against
Boolean masking. On the other hand HO-MIA does not rely on a specific com-
bining function, which is of interest for a fair comparison between Boolean and
affine masking. Eventually, assuming that the adversary’s templates are perfect,
template attacks are the best possible attacks and hence they give the maximal
security level reached by each kind of masking. Our methodology enabled us to
observe how the different attacks perform against affine masking and to com-
pare its resistance with that of the Boolean/multiplicative masking for different
SNRs. Afterward, we performed some attacks against real power consumption
measurements of smart-card implementations in order to check our observations
in a real-world context.

Attack simulations. The leakage measurements have been simulated as sam-
ples of the random variables Li defined according to (2) with ϕ = HW and
Bi ∼ N (0, σ2) (the different Bi’s are also assumed independent). For all the
attacks, the sensitive variable Z was chosen to be an AES S-box output of the
form S(X ⊕ k?) where X represents a varying plaintext byte and k? represents
the key byte to recover.

Side-channel distinguishers. We applied higher-order DPA such as described in
Sect. 3.3 and we also applied higher-order MIA (HO-MIA) and template attacks.
In a higher-order MIA [21, 7], the correlation coefficient is replaced by the mu-
tual information: the guess k is tested by estimating I(ϕ̂(Z(k)); L). Since the



mutual information is a multivariate operator, this approach does not involve a
combining function. In a template attack [4, 17], the attacker owns some tem-
plates of the leakage that he previously acquired during a profiling phase (see
for instance [26, 13]). More precisely, he has some estimations of the probability
distributions (`, z) 7→ Pr [L = `|Z = z]. Based on those estimations, the attacker
tests a guess k by estimating the likelihood Pr[k? = k|L, X].

Target variables. Each attack was applied against the leakages of affine masking,
multiplicative masking and Boolean masking. The target variables are those
listed in Sect. 3.2 for Z being S(X ⊕ k?).

Prediction functions. For each (HO-)DPA, we chose ϕ̂ to be the optimal predic-
tion function (6). As explained in Sect. 3.3, this leads us to select the dirac func-
tion δ0 in the attacks against the zero-value 2nd-order leakage of affine masking
(resp. the zero-value 1st-order leakage of multiplicative masking) and, according
to [25], to select the Hamming weight function in the attacks against Boolean
masking of any order.

For the (HO-)MIA attacks, we chose ϕ̂ such that it maximizes the mutual
information I(ϕ̂(Z(k)); L) for k = k? while ensuring discrimination (i.e. the mu-
tual information must be lower for k 6= k?). As a direct consequence of Lemma 2,
we chose ϕ̂ = δ0 to attack the zero-value 2nd-order leakage. Naturally, we did the
same choice for the zero-value 1st-order leakage of multiplicative masking. For
the third-order MIA on affine masking (and second-order MIA on multiplicative
masking), ϕ̂ was chosen to be the identity function since it maximizes I(ϕ̂(Z); L).
However, for the attack to succeed with such a choice, the target sensitive vari-
able Z must be such that the function X 7→ Z = fk?(X) (where X is the plain-
text part involved in Z) is not injective [8, 21]. This constrained us to slightly
modify the target variables for these attacks. Against affine masking, we targeted
an affinely masked S-box output G(S(X ⊕ k?)) and an affinely masked plaintext
byte G(X ′) (together with the multiplicative mask R1), which by Lemma 1 yields
a non-injective function (X,X ′) 7→ Z = S(X ⊕ k?)⊕X ′. Against multiplicative
masking, we targeted the bitwise addition between two S-box outputs, which
yields a non-injective function (X,X ′) 7→ Z = S(X ⊕ k?) ⊕ S(X ′ ⊕ k?′). Even-
tually, every HO-MIA against Boolean masking was performed with ϕ̂ = HW
since the distribution of (HW(Z ⊕R0),HW(R0)) only depends on HW(Z), and
therefore I

(
Z; (HW(Z ⊕ R0),HW(R0))

)
= I
(
HW(Z); (HW(Z ⊕ R0),HW(R0))

)
(the same argument holds for every masking order).

Pdf estimation method. For the (HO-)MIA attacks, we used the histogram esti-
mation method with rule of [8] for the bin-widths selection.

Leakage templates. For the template attacks, the attacker’s templates were as-
sumed to be perfect. In our context, this means that the attacker is aware of
ϕ = HW and Bi ∼ N (0, σ2) for every i, and he uses this knowledge to evaluate
the real probabilities Pr [L|Z].



Attack simulation results. Each attack simulation was performed 100 times for
various SNR values (+∞, 1, 1/2, 1/5 and 1/10), that is, for several noise standard
deviation values (0,

√
2, 2,

√
10 and 2

√
5). Table 2 summarizes the number of

leakage measurements required to observe a success rate of 90% in retrieving k?

for the different attacks.

Table 2. Number of leakage measurements for a 90% success rate.

Attack \ SNR +∞ 1 1/2 1/5 1/10

Unprofiled Attacks against Boolean Masking

2O-DPA on 1O Boolean Masking 150 500 1500 6000 20 000

2O-MIA on 1O Boolean Masking 100 5000 15 000 50 000 160 000

3O-DPA on 2O Boolean Masking 1500 9000 35 000 280 000 > 106

3O-MIA on 2O Boolean Masking 160 160 000 650 000 > 106 > 106

Unprofiled Attacks against Multiplicative Masking

1O-DPA on Multiplicative Masking 900 1500 2500 4000 7500

1O-MIA on Multiplicative Masking 700 2500 3500 5500 15000

2O-DPA on Multiplicative Masking 2500 7500 20 000 60 000 220 000

2O-MIA on Multiplicative Masking 4000 35 000 55 000 100 000 200 000

Unprofiled Attacks against Affine Masking

2O-DPA on Affine Masking 6500 20 000 45 000 170 000 650 000

2O-MIA on Affine Masking 5500 100 000 600 000 > 106 > 106

3O-DPA on Affine Masking > 106 > 106 > 106 > 106 > 106

3O-MIA on Affine Masking 100 000 > 106 > 106 > 106 > 106

Profiled Attacks

2O-TA on Boolean Masking 20 500 1200 7000 20 000

3O-TA on 2O Boolean Masking 20 8000 35 000 300 000 > 106

1O-TA on Multiplicative Masking 500 1300 1900 4000 7000

2O-TA on Multiplicative Masking 60 900 1400 4000 8000

2O-TA on Affine Masking 1300 15 000 45 000 200 000 > 106

3O-TA on Affine Masking 260 15 000 35 000 200 000 106

The results presented in Table 2 show the significant gain of security induced
by affine masking compared to multiplicative and first-order Boolean masking.
Some more specific observations are reported hereafter.

– Affine masking versus multiplicative masking. In all scenarios, affine
masking is more resistant than multiplicative masking. When the SNR de-
creases, the resistance of affine masking increases faster than that of multi-
plicative masking. This is a consequence of the fact that affine masking is
perfectly secure against first-order attacks which is not the case of multi-
plicative masking.



– Affine masking versus Boolean masking. When compared to first-
order Boolean masking, a successful HO-DPA requires between 30 and 40
more leakage measurements against affine masking. For low noises (i.e. high
SNRs), HO-DPA is also less efficient against affine masking than against
second-order masking. The tide is turned when noise increases, which cor-
roborates that higher-order masking combined with noise provides good re-
sistance to SCA [3]. These results validate the theoretical analysis done in
Sect. 3.3, where it is expected that affine masking is around 32 times more
resistant than first-order Boolean masking and more resistant than second-
order Boolean masking only when the SNR is greater than 0.335. On the
other hand, the results of template attacks confirm that affine masking is
always more resistant than first-order Boolean masking, and that it is also
more resistant than second-order Boolean masking for high SNRs. It is in-
teresting to note the strong correlation between the information theoretic
evaluation of Sect. 3.2 and the efficiency of template attacks. We see that
template attacks are more efficient against second-order Boolean masking
than against affine masking when the SNR is greater than 1/2 (i.e. σ < 2)
which corresponds to the situation where the information leakage of affine
masking is lower than that of second-order Boolean masking according to
Fig. 1. This observation is in accordance with the argumentation of [28] that
the mutual information metric is related to the efficiency of template attacks.

– 3rd-order attacks against affine masking. It can be observed that tar-
geting the multiplicative mask to mount a third-order attack against affine
masking does not improve the efficiency of unprofiled attacks. On the con-
trary, they become clearly inefficient. This is quite natural for the third-order
DPA using the product combining since unlike for an additive mask, such a
combination is not suitable to remove a multiplicative mask. Therefore, the
contribution of the third leakage to the combined leakage mainly acts as a
noise, which renders the attack inefficient. For third-order MIA, the efficiency
loss may result from the fact that precise estimations of 3-variate densities
require significantly more samples than for bivariate densities which slows
down the attack efficiency convergence. For template attacks, targeting the
multiplicative mask improves the attack efficiency for high SNRs. However
when the noise increases the efficiency of 2O-TA and 3O-TA against affine
masking become similar. Once again, this corroborates the information the-
oretic evaluation of Sect. 3.2 which shows that the information provided by
the third-order leakage of affine masking get closer to that provided by the
second-order leakage as the noise increases.

– (HO-)MIA versus (HO-)DPA. (HO-)MIA attacks are always less effi-
cient than the corresponding (HO-)DPA. A possible explanation is that the
measurements are simulated in the Hamming weight model which is a situa-
tion more favorable to DPA attacks than to MIA attacks. A second possible
explanation is that the rule proposed in [8] for the bin-widths selection in
the MIA is not suitable when targeting affine masking. This point is let for
further research.



Practical attacks. The attack experiments reported in the following figures
have been carried out against software implementations of the AES S-box pro-
tected with (1) affine masking, or (2) multiplicative masking, or (3) first-order
Boolean masking or (4) second-order Boolean masking. The codes were exe-
cuted on a 8051 microcontroller. We measured a SNR between 0.5 and 0.6 and
our estimation of the correlation coefficient between the hamming weight of the
manipulated data and the corresponding leakage was around 0.4.

We chose to only apply non-profiled side-channel attacks since the adversaries
considered by the embedded security industry often have a limited access to
the device and are not able to chose the values of the sensitive data that are
manipulated. For each category of attacks (HO-)DPA and (HO-)MIA and for
each targeted countermeasure, we moreover chose to only implement the most
efficient attack strategy (e.g. we did not apply 3O-DPA against affine masking
since our simulations show that it is much less efficient than the 2O-DPA). The
results of these attacks are plotted in Fig. 3. The x-axis refers to the number of
measurements and the y-axis refers to the correlation coefficient values for the
(HO)-DPA and to the logarithm of the mutual information for the 2O-MIA.

It can be noticed that our attack experiments corroborate quite well our at-
tack simulations for an SNR equal to 1/2. The multiplicative masking is broken
by the first-order DPA with dirac prediction function after around 1000 measure-
ments, whereas the first-order Boolean masking is defeated by the second-order
DPA with Hamming weight prediction after around 1600 measurements. As ex-
pected, the affine masking resists much better to the second-order DPA. It needs
more than 62000 measurements to unambiguously discriminate the correct key.
The ratio between the two second-order DPA is approximatively 38 which is
close to the ratio value 32 predicted by our theoretical analysis. The fact that
the information does not perfectly leak in the Hamming weight model probably
explain the small difference. Eventually, our 2O-MIA attack experimentations
are also in accordance with our attacks simulated for an SNR equal to 1/2. The
first-order Boolean masking is broken with around 1200 measurements, whereas
80000 measurements do not allow us to break the affine masking by 2O-MIA.

4 Conclusion

In this paper, we introduced affine masking as an alternative to the commonly
used Boolean masking to protect implementations of block ciphers against side
channel analysis. The principle is to mask each sensitive variable both additively
and multiplicatively in order to complicate the masking relation and therefore
achieve better higher-order resistance in practice. We described an affine masking
scheme for AES and we provided some implementation results for our scheme.
Moreover, we conducted an in-depth analysis which demonstrates that affine
masking significantly improves the resistance to higher-order SCA compared to
Boolean masking. This analysis together with our implementation tests clearly
show that the proposed scheme provides a good performance-security trade-off
compared to existing countermeasures.



0 1 2 3 4 5 6 7 8

x 10
4

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6 7 8

x 10
4

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(a) 1O-DPA against multiplicative masking. (b) 2O-DPA against Boolean masking.

0 1 2 3 4 5 6 7 8

x 10
4

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3 4 5 6 7 8

x 10
4

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(c) 2O-DPA against affine masking. (d) 3O-DPA against Boolean masking.

0 1 2 3 4 5 6 7 8

x 10
4

10
−2

10
−1

1 2 3 4 5 6 7 8

x 10
4

10
−2

10
−1

(e) 2O-MIA against Boolean masking. (f) 2O-MIA against affine masking.

Fig. 3. Practical attacks on a software AES implementation.
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A Computing the product in GF(256)

Affine masking involves multiplications in the field GF(2n). The most efficient
way to implement the product in the field GF(256) is to use log/alog tables.
These tables are constructed using the fact that all non-zero elements in a finite
field GF(2n) can be obtained by exponentiation of a generator in this field. For
a generator α of GF(256)∗ we define log(αi) = i and alog(i) = αi. This results
are stored in two tables of 2n − 1 words of n bits.

If a, b are non-zero, then the product a · b can be computed using log/alog
tables as

a · b = alog[(log(a) + log(b)) mod (2n − 1)]. (11)

In order to compute the addition modulo 2n − 1, let a, b ∈ GF(2n), and
let c denote the carry associated with the operation a + b mod (2n). Then, a +
b mod (2n − 1) can be computed from a+ b mod (2n) and c as follows.

Algorithm 2
Input: a, b ∈ GF(2n)
Output: s = a+ b mod (2n − 1)

1. s← a+ b mod 2n

2. s← s+ c mod 2n

3. if s = 2n − 1 then s = 0

4. Return s

In the case of affine masking, one of the two operators of the product is
always non-zero. Let δ{0}(i) be the indicator function of the set {0}. Assuming
that a is always non-zero, then the product a · b can be computed as

a · b = (1− δ{0}(b))× alog[(log(a) + log(b)) mod (2n − 1)]. (12)

Similarly the inversion of a non-zero element a ∈ GF(2n) can be implemented
using log/alog tables as

a−1 = alog[− log(a) mod (2n − 1)]. (13)

B Optimal Correlation for 2O-DPA on Affine Masking

Let us assume that the leakages L1 and L2 follow the Hamming weight model
with Gaussian noise, that is the leakage function is defined as ϕ(·) = δ + HW(·)
where δ is a constant and the noises Bi’s have (independent) Gaussian distri-
butions N (0, σ2). Normalized product combining was proven in [22] to be the
most efficient known combining function for exclusive-or masked variables. After
normalization, the two leakage variables L1 = L1 −E [L1] and L2 = L2 −E [L2]
respectively satisfy:

L1 = −n
2

+ HW(R1Z ⊕R0) +B1 (14)



and
L2 = −n

2
+ HW(R0) +B2, (15)

where B1 and B2 are assumed to be two independant random variables with
mean 0 and standart deviation σ.

The optimal correlation ρaff for the correct key hypothesis can be obtained
from Corollary 8 in [22]:

ρaff =

√
Var

[
E
[
L1 × L2|Z = z

]]
Var

[
L1 × L2

] (16)

SinceR1Z is uniformly distributed over GF(2n), the formula for Var
[
L1 × L2

]
given in [22] in the Boolean masking setting can also be applied in our context:

Var
[
L1 × L2

]
=
n2

16
+
n

2
σ2 + σ4. (17)

We are left with evaluating Var
[
E
[
L1 × L2|Z = z

]]
. We have the following

result.

Proposition 1. Let L1 and L2 satisfy (14) and (15). Then for every z ∈
GF(2)n, we have

E
[
L1 × L2|Z = z

]
=

{
n
4 if z = 0,

− n
4(2n−1) otherwise.

(18)

Proof. Since E [B1] = E [B2] = 0, we have

E
[
L1 × L2|Z = z

]
= −n

2

4
+ E [HW(R1Z ⊕R0)×HW(R0)|Z = z] . (19)

Let α(z) = E [HW(R1Z ⊕R0)×HW(R0)|Z = z]. We have

α(0) = E
[
HW(R0)2

]
=
n2 + n

4
. (20)

Now let z 6= 0 and X = R1z. Then

α(z) = E [HW(X ⊕R0)×HW(R0)] (21)

=
1

2n(2n − 1)

∑
r0

HW(r0)
∑
x 6=0

E [HW(x⊕ r0)] (22)

=
1

2n(2n − 1)

∑
r0

HW(r0)×
(

2n
n

2
−HW(r0)

)
(23)

By simplifying (23), we get

α(z) =
n2

4
− n

4(2n − 1)
. (24)



Finally, (19), (20) and (24) leads to (18). ut
�

From (18), we obtain

Var
[
E
[
L1 × L2|Z = z

]]
=

n2

16(2n − 1)
. (25)

Finally, (16), (17) and (25) leads to

ρaff =
n

(4σ2 + n)
√

2n − 1
. (26)

As an illustration to (26), Table 3 gives some values of the optimal correlation
for n ∈ {1, . . . , 8} and σ ∈ {0, 1, 5, 10} in the affine masking setting.

Table 3. Optimal correlation for 2O-DPA on affine masking

σ\n 1 2 3 4 5 6 7 8

0 1.00000 0.57735 0.37796 0.25820 0.17961 0.12599 0.08874 0.06262

1 0.20000 0.19245 0.16198 0.12910 0.09978 0.07559 0.05647 0.04175

5 0.00990 0.01132 0.01101 0.00993 0.00855 0.00713 0.00581 0.00464

10 0.00249 0.00287 0.00281 0.00256 0.00222 0.00186 0.00153 0.00123


