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Overview of the presentation

� White-box crypto context

� White-box crypto in theory
� definitions & security notions

� White-box crypto in practice
� early designs & breaks

� gray-box attacks & countermeasures

� WhibOx competitions



White-box crypto context



How to protect a cryptographic key?



How to protect a cryptographic key?

Well, put it in a smartcard of course!

... or any piece of secure hardware



But...

� Secure hardware is expensive (production,
integration, infrastructures...)

� Long lifecycle, limited updates

� Bugs, security flaws might occur
� e.g. ROCA vulnerability (October 2017)



Security in pure software

� Advantages: cheaper, faster time-to-market,
easier to update

� Huge need for many contexts� Mobile apps (SE/TEE not always available)

� IoT (cheap hardware)

� Content protection, DRM

� OS / firmwares



Protecting keys in software?

� Potential threats:
� malwares

� co-hosted applications

� users themselves

� White-box adversary model
� full control of the execution environment

� analyse the code

� access the memory

� tamper with execution



White-box cryptography

General idea: hide the secret key in an
obfuscated cryptographic implementation



White-box crypto in theory



What is a program?

� A word in a formal language P ∈ L
execute ∶ L × {0,1}∗ → {0,1}∗(P, input) � output

(Universal Turing Machine)

� �P �: size of P ∈ L
� time(P ): # operations for execute(P, ⋅)



What is a program?

� P ≡ f (P implements f)

∀x ∶ execute(P,x) = f(x)
� P1 ≡ P2 (functional equivalence)

∀x ∶ execute(P1, x) = execute(P2, x)
� Straight-line programs

� no conditional statements, no loops

� �P � = time(P )



What is an obfuscator?

� An algorithm:

P

randomness

O(P )⌘ P

� Size and execution time increase
(hopefully not too much)



What is a white-box compiler?

k

key

randomness

[Ek]⌘ Ek(·)

encryption program

� Specific to an encryption function E

� Can be constructed from an obfuscator

k → P ≡ Ek(⋅) O�→ [Ek]



What is an adversary?

� An algorithm:

O(P )

obfuscated
program

randomness

(
0

1

1 bit of
information

� Wlg: � 1-bit ] ⇒ � multi-bit ]



[BGI+01] On the (Im)possibility of Obfuscating

Programs (CRYPTO 2001)

� Virtual Black Box (VBB) security notion

� Impossibility result: VBB cannot be achieved
for all programs (counterexample)

� Indistinguishability Obfuscation (IO)



VBB security notion

8 O(P )

adversary
(
0

1

9 P S

simulator

(
0

1
x

P (x)
'

� O(P ) reveals nothing more than the I/O
behavior of P



Impossibility result

P
⇤ inputs

hardcoded
secret key

k
⇤

k P

k
?
= k

⇤

P (k⇤,?)
?
= k

⇤output k⇤

output k⇤ output 0

yes no

yes no

� P ∗(0, P ∗) = k∗
� BB access to P ∗ reveals nothing



The good news

� The impossibility result does not apply to a
given encryption algorithm

� VBB AES might exist

WB-AESk

(
0

1
' S

(
0

1

AESk(·)

m c

� The bad news: seems very hard to achieve



Indistinguishability Obfuscation (IO)

� Notion restricted to straight-line programs

� For any (P1, P2) st P1 ≡ P2 and �P1� = �P2�
'O(P1)

(
0

1
O(P2)

(
0

1

� i.e. O(P1) and O(P2) are indistinguishable



Why is IO meaningful?

� IO⇔ Best Possible Obfuscation

� For any P ′:

O(P )

(
0

1
' S

(
0

1

P
0P ⌘

� O(P ) doesn’t reveal anything more than the
best obfuscated program P ′
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simple
AES

VBB
AES

iO
AES

?

Obfuscation scale

further white-box

security notions



White-box security notions

� Unbreakability: resistance to key extraction

WB-AESk k

� Basic requirement but insu�cient in practice

� Other security notions� [SWP09] Towards Security Notions for White-Box

Cryptography (ISC 2009)

� [DLPR13] White-Box Security Notions for

Symmetric Encryption Schemes (SAC 2013)



One-wayness

� One-wayness: hardness of inversion

WB-AESk

m

c

m

� Turns AES into a public-key cryptosystem

� PK crypto with light-weight private operations



Incompressibility

� Incompressibility: hardness of compression

WB-AESk

> 10 GB

AESk
< 10 KB

� Makes the implementation less convenient to
share at a large scale



Password

� Password: WB implem locked by password

WB-AESk,⇡

if (⇡̂ == ⇡)
return AESk(m)

else return ?

⇡̂ m

c

c = AESk(m)

max proba 2�|⇡|

� User password / application-dependent secret
(a.k.a binding)



Some relations

� If the underlying encryption scheme is secure:

VBB�

INC⇓

VBB ⇒

OW ⇒ UBK ⇐ PWD

⇐ VBB

� No UBK construction known for AES

⇒ no OW/INC/PWB/VBB construction either
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Some relations

� If the underlying encryption scheme is secure:

VBB�
INC⇓

VBB ⇒ OW ⇒ UBK ⇐ PWD ⇐ VBB

� No UBK construction known for AES

⇒ no OW/INC/PWB/VBB construction either



Further white-box notions
� [DLPR13] White-Box Security Notions for Symmetric Encryption

Schemes (SAC 2013)� Perturbation-Value Hiding (PVH) ⇒ traceability

� [AABM20] On the Security Goals of White-Box Cryptography

(CHES 2020)� Authenticated encryption

� Hardware binding, application binding

� [ABFJM21] Security Reductions for White-Box Key-Storage in

Mobile Payments (ASIACRYPT 2021)� Key derivation

� Payment application



White-box crypto in practice



Original white-box AES

� [CEJV02] White-Box Cryptography and an

AES Implementation (SAC 2002)

� First step: network of look-up tables

� Each round split in 4 sub-rounds

(x0, x5, x10, x15)�
�����
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

�����
⊗
�����
S(x0 ⊕ k0)
S(x5 ⊕ k5)
S(x10 ⊕ k10)
S(x15 ⊕ k15)

�����



Original white-box AES

� Computed as

T0[x0]⊕ T5[x5]⊕ T10[x10]⊕ T15[x15]
� Tables Ti ∶ 8 bits→ 32 bits

T0[x] = S(x⊕ k0) × (02 01 01 03)T
T5[x] = S(x⊕ k5) × (03 02 01 01)T
T10[x] = S(x⊕ k10) × (01 03 02 01)T
T15[x] = S(x⊕ k15) × (01 01 03 02)T

� XOR table: 8 bits→ 4 bits

Txor[x0��x1] = x0 ⊕ x1



Original white-box AES

� Second step: randomize look-up tables

� Each table T is replaced by

T
′ = g ○ T ○ f−1

where f, g are random encodings

� For two connected tables T , R

T ′ = g ○ T ○ f−1
R′ = h ○R ○ g−1 ⇒ R

′ ○T ′ = h○(R○T )○f−1



Original white-box AES

� Intuition: encoded tables bring no information

� True for a single (bijective) table g ○ T ○ f−1
� Not for the large picture

Illustration: J. Muir “A Tutorial on White-box AES” (ePrint 2013)



Many breaks

� First break: BGE attack� [BGE04] Cryptanalysis of a White Box AES

Implementation (SAC 2004)

� Generic attack on WB SPN ciphers� [MGH08] Cryptanalysis of a Generic Class of

White-Box Implementations (SAC 2008)

� Collision attack & improved BGE attack� [LRD+13] Two Attacks on a White-Box AES

Implementation (SAC 2013)



Example: collision attack

02 ⋅ S0(↵)⊕ 03 ⋅ S1(0) = 02 ⋅ S0(0)⊕ 03 ⋅ S1(�)
where S0(x) = S(P0(x)⊕ k0) and S1(x) = S(P1(x)⊕ k1)

Illustration: Y. De Mulder (presentation SAC 2013)



Patches and variants

� Perturbed WB-AES using MV crypto [BCD06] (ePrint 2006)

⇒ broken [DWP10] (INDOCRYPT 2010)

� WB-AES based on wide linear encodings [XL09] (CSA 2009)

⇒ broken [DRP12] (SAC 2012)

� WB-AES based on dual AES ciphers [Kar10] (ICISC 2010)

⇒ broken [LRD+13] (SAC 2013)

� Same situation with DES



Secret design paradigm

� Industrial need

� home-made solutions

� mix of several obfuscation
techniques

� secret designs

� Security evaluations by ITSEF labs

� Development of generic “gray-box” attacks
� Fault attacks, DCA

� Avoid costly reverse engineering e↵ort



Fault attacks

� Easy fault injection in the white-box context

� Plenty of e�cient FA techniques (on e.g. AES)

MC

SB SR

k10

k11

fault
injection

round 9

round 10

� Original white-box AES vulnerable to this attack



Di↵erential Computation Analysis

� Suggested by NXP / Riscure� Presentation at BalckHat 2015

� Best paper award CHES 2016

� Record data-dependent information at
execution ⇒ computation trace

Trace: J. Bos (presentation CHES 2016)

� Apply DPA techniques to computation traces



Di↵erential Computation Analysis
computation traces

...

predictions

S(x1 � k)

S(x2 � k)

...
S(xN � k)

correlation

⇢( · , · )

k 6= k⇤ k = k⇤



DCA in presence of encodings

� DCA can break the original white-box AES� [BHMT16] Di↵erential Computation Analysis (CHES 2016)

� Why?� [ABMT18] On the Ine↵ectiveness of Internal Encodings

(ACNS 2018)

� [RW09] Analysis and Improvement of Di↵erential

Computation Attacks against Internally-Encoded White-Box

Implementations (CHES 2019)



Countermeasures?

� Natural approach: use known SCA/FA
countermeasures

AESk

m

c

)
AESk

masking,
shu✏ing, ...

m

c

RNG

)
RNG

AESk

masking,
shu✏ing, ...

AESk

masking,
shu✏ing, ...

m

error

detection

c



Countermeasures?

Pseudo

RNG

AESk

masking,
shu✏ing, ...

AESk

masking,
shu✏ing, ...

m

error

detection

c

� Pseudo-randomness from m

� PRNG should be somehow secret



Countermeasures?

Pseudo

RNG

AESk

masking,
shu✏ing, ...

AESk

masking,
shu✏ing, ...

m

error

detection

c

On-top obfuscation

� Countermeasures hard to remove

� Pseudo-randomness / redundancy hard to
detect



New paradigm: gray-box attacks  
and countermeasures



Coming next...

• Case study 1: masking and shuffling 


• WhibOx contest 


• Case study 2: WhibOx 2017 winner 


• Linear Decoding Analysis


• Case study 3: WhibOx 2019 winners


• Data Dependency Analysis



Case study 1: masking and shuffling
• [BRVW19] Higher-Order DCA against Standard Side-Channel 

Countermeasures (COSADE 2019)




Case study 1: masking and shuffling
• [BRVW19] Higher-Order DCA against Standard Side-Channel 

Countermeasures (COSADE 2019)


!  ?x

Optimal attack 
complexity 

≥ (m
t )



Case study 1: masking and shuffling

• We obtain exponential security "

• But against a limited adversary


• Passive attack

• No reverse engineering


• The adversary can do more in the WB model !

• Detect / deactivate shuffling 

• Exploit data dependency

• Inject faults



Goal: confront designers and attackers 

of practical white-box crypto

WhibOx contets



WhibOx 
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aes.c
K

Designer
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of practical white-box crypto

WhibOx contets



WhibOx 
Server

aes.c
K

K

Designer Attacker

Goal: confront designers and attackers 

of practical white-box crypto

K

WhibOx contets



• 1st edition (2017)

• White-box AES ( < 20MB / runs < 1s )

• 94 submitted implementations / 877 breaks

• Everything broken / winner survived 29 days


• 2nd edition (2019)

• White-box AES ( < 20MB / runs < 1s )

• 27 submitted implementations / 124 breaks

• 3 survivors (broken few days after deadline)


• 3rd edition (2021)

• ECDSA ( < 20MB excl. GMP / runs < 3s )

• 97 submitted implementations / 898 breaks

• Everything broken is less than 48h


• https://whibox.io/contests/
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• Winner: challenge #777 (a.k.a. adoring_poitras)

• From Alex Biryukov, Aleksei Udovenko

• Boolean level masking, bitslicing, error detection, dummy 

operations, virtualisation, obfuscation

• Break from Louis Goubin, Pascal Paillier, Matthieu Rivain, Junwei 

Wang

• [GPRW18] How to Reveal the Secrets of an Obscure White-

Box Implementation (ePrint 2018, JCEN 2020)


• Human reverse engineering  SSA-format program (circuit)

• Circuit minimisation (detect dummy / constant / duplicate 

variables & pseudo-randomness)


• 600 K gates  280 K gates

⇒

⇒

Case study 2: WhibOx 2017 winner
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Data dependency graph (20% of the circuit)

Data dependency analysis



Data dependency graph (10% of the circuit)

Data dependency analysis



Data dependency graph (5% of the circuit)

Data dependency analysis



Data dependency graph (5% of the circuit)

Data dependency analysis

Initial pseudo-

randomness?

S-boxes?

MixColumn?



Large window 

encompassing 


one s-box

Data dependency analysis



Large window 

encompassing 


one s-box

Data dependency analysis

# Assumption:

contains variables 

encoding S(x ⊕ k)



Linear Decoding Analysis

s(1)
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⋮
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⋮
Sj(x(n) ⊕ k)

• Let  the variables in the window


• Record them for  executions

s1, …, sm

n
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Linear Decoding Analysis

s(1)
1 s(1)

2 ⋯ s(1)
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• Let  the variables in the window


• Record them for  executions

s1, …, sm

n

• # by assumption, we get a linear system

One output bit 

of the s-box

Plaintext byte

Unknown

key byte

Unknown

coefficients



LDA: generalisation

• LDA defeats WB implems based on additive sharing

• Generalisation to encoding of higher degrees

⃗v = (1 | ⃗s | ⃗s ⊗ ⃗s | ⃗s ⊗ ⃗s ⊗ ⃗s |…)
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• LDA defeats WB implems based on additive sharing
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degree-3 
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• Larger system

Complexity:  
Inverting a 

 matrix md × md

⇒ +(m2.8d )



LDA: mitigation
• Non-linear masking




• [BU18] Attacks and Countermeasures for White-box Designs 

(ASIACRYPT 2018)

• [SEL21] A White-Box Masking Scheme Resisting Computational 

and Algebraic Attacks (CHES 202)


• Use dummy shuffling


• [BU21] Dummy Shuffling against Algebraic Attacks in White-box 
Implementations (EUROCRYPT 2021)

x = x1 ⋅ x2 ⊕ x3
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• [BU18] Attacks and Countermeasures for White-box Designs 

(ASIACRYPT 2018)

• [SEL21] A White-Box Masking Scheme Resisting Computational 

and Algebraic Attacks (CHES 202)


• Dummy shuffling


• [BU21] Dummy Shuffling against Algebraic Attacks in White-box 
Implementations (EUROCRYPT 2021)

x = x1 ⋅ x2 ⊕ x3



• Winners: challenges #100, #111, #115

• From Alex Biryukov, Aleksei Udovenko

• Linear (high-order) masking, non-linear masking, 

shuffling, obfuscation, virtualisation


• Breaks from Louis Goubin, Matthieu Rivain, Junwei Wang 
/ Arnolds Kikusts, Artur Pchelkin

• [GRW20] Defeating State-of-the-Art White-Box 

Countermeasures with Advanced Gray-Box Attacks 
(CHES 2020)


• Human reverse engineering  SSA-format program⇒

Case study 3: WhibOx 2019 winners



Higher-order DCA
• From a trace / window    compute
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• Against -order masking + non-linear masking + -shuffling
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How to reduce the window size?
• # idea: exploit the locality of a masking gadget


• Multiplication gadget 


  randomness 


• Set of co-operands of any   all the shares 


• Data-dependency  HO-DCA


• Scanning all the gates of the circuit


• For each gate  :     (might contain  shares)


• Global -th order trace =   -th order trace (  ) 


• Apply DCA to global -th order traces

(x1, …, xt) ⊗ (y1, …, yt)
x1y1 x1y2 ⋯ x1yt
x2y1 x2y2 ⋯ x2yt

⋮ ⋮ ⋱ ⋮
xty1 xty2 ⋯ xtyt

+ → ∑ → (z1, …, zt)

xi ⇒ y1, …, yn

g ⃗sg = CoOperands(g) t

t ( t ⃗sg )∀g

t
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Data-dependency HO-DCA against #100, using 767 traces 

(18% of the circuit / target: 1st round s-box)

Data-dependency HO-DCA on #100

Good key 
guess !



Data-dependency analysis

• Clustering technique applicable to any gray-box attack in the 
white-box setting 


• Principle

• Scan the gates of the circuit / DD graph


• For each , record co-operands of  as potential window

• Apply a given gray-box attack to the recorded windows


• Possible extensions


• Include co-operands of degree   
(co-op. of co-op. of co-op. …)


• Include incoming / outgoing gates

g g

d



Conclusion

• Strong WBC (VBB / UBK) hard to achieve in practice


• Practical WBC relies on security through obscurity  
 countermeasures & obfuscation vs. gray-box attacks


• Exponential security can be obtained against some attacks 
  attack window must be large enough


• DDA very effective to reduce the attack window


• Open problem: how to thwart DDA attacks?


• Fault attacks: to be formalised / investigated more in WB 
setting


• WhibOx 2021 on ECDSA  WB session next Tuesday

⇒

⇒

⇒
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