High Order Side-Channel Security for Elliptic-Curve Implementations

Sonia Belaïd and <u>Matthieu Rivain</u>

CHES 2023, September 13, Prague

- Case study: SCA on Montgomery ladder & countermeasures
- Our solution for high-order side-channel security
- Formal model and security proof
- Application and performances

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow O$ 2. $R_1 \leftarrow P$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for 8. return R_0

Algorithm 1 Montgomery ladderInput:
$$P, k = (k_0, k_1, \dots, k_{n-1})_2$$
Output: $Q = [k]P$ Algebra1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow P$ 3. for $i = n - 1$ downto 0 do4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for8. return R_0

aic variables (EC points)

Algebraic variables (EC points) Index variables (scalar bits)

Algebraic variables (EC points) Index variables (scalar bits)

Algebraic variables (EC points) Index variables (scalar bits)

Algebraic variables (EC points) Index variables (scalar bits)

Leakage on $R_0 = [7]P$

 $k_{n-4} = 1$

Classic DPA Attack

Compute correlation with [0]P, ..., [15]P

 \Rightarrow Best correlation for [7]P

$$\Rightarrow (k_{n-1}, \dots, k_{n-3}) = (0, 1, 1, 1)$$

Algebraic variables (EC points) Index variables (scalar bits)

Leakage on $R_0 = [7]P$

N

 $k_{n-4} = 1$

Classic DPA Attack

Compute correlation with [0]P, ..., [15]P

 \Rightarrow Best correlation for [7]*P*

$$\Rightarrow (k_{n-1}, \dots, k_{n-3}) = (0, 1, 1, 1)$$

Solution: Randomizing algebraic variables

Algorithm 1 Montgomery ladderInput: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow P$ 3. for i = n - 1 downto 0 do4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for8. return R_0

CARLEN LANDO CHARLEN THE CARLEN LANDO CHARLEN THE CARLEN THE CARLEN THE CARLEN THE CARLEN THE CARLEN THE CARLEN

Algorithm 1 Montgomery ladderInput:
$$P, k = (k_0, k_1, \dots, k_{n-1})_2$$
Output: $Q = [k]P$ 1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow P$ 3. for $i = n - 1$ downto 0 do4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for8. return R_0

mization

Algorithm 1 Montgomery ladderInput:
$$P, k = (k_0, k_1, \dots, k_{n-1})_2$$
Output: $Q = [k]P$ 1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow P$ 3. for $i = n - 1$ downto 0 do4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for8. return R_0

$$k_{n-1} = 0$$

$$k_{n-2} = 1$$

$$k_n$$

- mization
- ation of
- omization
- lomization)

Algorithm 1 Montgomery ladderInput:
$$P, k = (k_0, k_1, \dots, k_{n-1})_2$$
Output: $Q = [k]P$ 1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow P$ 3. for $i = n - 1$ downto 0 do4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for8. return R_0

$$k_{n-1} = 0 \qquad k_{n-2} = 1 \qquad k_{n-3} = 1$$

- mization
- ation of omization lomization)

Leakage on randomized R_0

w

 $k_{n-4} = 1$

Algorithm 1 Montgomery ladderInput:
$$P, k = (k_0, k_1, \dots, k_{n-1})_2$$
Output: $Q = [k]P$ 1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow P$ 3. for $i = n - 1$ downto 0 do4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for8. return R_0

$$k_{n-1} = 0 \qquad k_{n-2} = 1 \qquad k_{n-3} = 1$$

- mization
- ation of omization lomization)

Randomization techniques

- <u>Randomization of the projective / Jacobian coordinates:</u>

$$\blacktriangleright \text{ Random } r \leftarrow \mathbb{F}, \quad \begin{cases} X' := r \cdot X \\ Y' := r \cdot Y \\ Z' := r \cdot Z \end{cases}$$

▶ Point P = (x, y) represented as $P \equiv (X : Y : Z)$ s.t. x = X/Z and y = Y/Z

$\implies (X':Y':Z') \equiv P$

Randomization techniques

- <u>Randomization of the projective / Jacobian coordinates:</u>

$$\blacktriangleright \text{ Random } r \leftarrow \mathbb{F}, \quad \begin{cases} X' := r \cdot X \\ Y' := r \cdot Y \\ Z' := r \cdot Z \end{cases}$$

- <u>Randomisation of coordinates (field elements):</u>

 - ► Random $r \leftarrow [0,h), x' := x + r \cdot p \pmod{hp} \implies x' \equiv x \pmod{p}$

▶ Point P = (x, y) represented as $P \equiv (X : Y : Z)$ s.t. x = X/Z and y = Y/Z

$$\implies (X':Y':Z') \equiv P$$

• Elements of \mathbb{F}_p (integers mod p) are represented modulo hp for some h

Randomization techniques

- <u>Randomization of the projective / Jacobian coordinates:</u>

$$\blacktriangleright \text{ Random } r \leftarrow \mathbb{F}, \quad \begin{cases} X' := r \cdot X \\ Y' := r \cdot Y \\ Z' := r \cdot Z \end{cases}$$

- <u>Randomisation of coordinates (field elements):</u>
 - Elements of \mathbb{F}_p (integers mod p) are represented modulo hp for some h
 - ► Random $r \leftarrow [0,h)$, $x' := x + r \cdot p \pmod{hp} \implies x' \equiv x \pmod{p}$

Intuition: hard to break with common SC leakage

▶ Point P = (x, y) represented as $P \equiv (X : Y : Z)$ s.t. x = X/Z and y = Y/Z

$$\implies (X':Y':Z') \equiv P$$

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow \boldsymbol{P}$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for 8. return R_0

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow \boldsymbol{P}$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ $R_b \leftarrow 2 \cdot R_b$ 6. 7. end for 8. return R_0

 K_i

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow \boldsymbol{P}$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ $R_b \leftarrow 2 \cdot R_b$ 6. 7. **end for** 8. return R_0

 k_i

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow \boldsymbol{P}$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ $R_b \leftarrow 2 \cdot R_b$ 6. 7. end for 8. return R_0

Precomputed template for $k_i = 0$

Precomputed template for $k_i = 1$

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow \boldsymbol{P}$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ $R_b \leftarrow 2 \cdot R_b$ 6. 7. end for 8. return R_0

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow \boldsymbol{P}$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ $R_{1-b} \leftarrow R_{1-b} + R_b$ 5. $R_b \leftarrow 2 \cdot R_b$ 6. 7. end for 8. return R_0

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow \boldsymbol{P}$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ $R_{1-b} \leftarrow R_{1-b} + R_b$ 5. $R_b \leftarrow 2 \cdot R_b$ 6. 7. end for 8. return R_0

Algorithm 1 Montgomery ladder Input: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow \boldsymbol{P}$ 3. for i = n - 1 downto 0 do 4. $b \leftarrow k_i$ $R_{1-b} \leftarrow R_{1-b} + R_b$ 5. $R_b \leftarrow 2 \cdot R_b$ 6. 7. end for 8. return R_0

• <u>Scalar blinding:</u>

$$k' \leftarrow k + r \cdot |E(\mathbb{F}_p)| =$$

is a company the second s

with $|E(\mathbb{F}_p)|$ the order of the EC

$\Rightarrow \quad [k]P = [k']P$

• <u>Scalar blinding:</u>

$$k' \leftarrow k + r \cdot |E(\mathbb{F}_p)| =$$

ATTA TATA A TO BE SULLEY

with $|E(\mathbb{F}_p)|$ the order of the EC

• <u>Scalar splitting:</u>

$$\begin{cases} Q_1 = [k - r]P\\ Q_2 = [r]P \end{cases}$$

$\implies [k]P = Q_1 + Q_2$

• <u>Scalar blinding:</u>

$$k' \leftarrow k + r \cdot |E(\mathbb{F}_p)| =$$

with $|E(\mathbb{F}_p)|$ the order of the EC

• <u>Scalar splitting:</u>

$$\begin{cases} Q_1 = [k - r]P\\ Q_2 = [r]P \end{cases}$$

! Still vulnerable to single trace attack

$\implies [k]P = Q_1 + Q_2$

to an a stand when the second and the second and the second second second second second second second second s

• <u>Boolean masking:</u>

Algorithm 1 Montgomery ladderInput: $P, k = (k_0, k_1, \dots, k_{n-1})_2$ Output: Q = [k]P1. $R_0 \leftarrow \mathcal{O}$ 2. $R_1 \leftarrow P$ 3. for i = n - 1 downto 0 do4. $b \leftarrow k_i$ 5. $R_{1-b} \leftarrow R_{1-b} + R_b$ 6. $R_b \leftarrow 2 \cdot R_b$ 7. end for8. return R_0

The distance of the state

elabel
$$\begin{cases} T_0 := R_b \\ T_1 := R_{1-b} \end{cases}$$

$$(+T_0 + T_0)$$

 $(-T_0 + T_0)$
1) then Swap (T_0, T_1)

Conditional swap

$$\frac{\text{CSwap}(T_0, T_1, b):}{1. (S_0, S_1) \leftarrow (T_0, T_1)}$$
$$2. T_0 = S_b$$
$$3. T_1 = S_{1-b}$$

Conditional swap

$$\frac{\text{CSwap}(T_0, T_1, b):}{1. (S_0, S_1) \leftarrow (T_0, T_1)}$$
$$2. T_0 = S_b$$
$$3. T_1 = S_{1-b}$$

Solv operation manipulating $b = k_i$

► Masking the scalar $(b^0, b^1) := (b \oplus r, r)$ for random bit $r \leftarrow \{0, 1\}$ ► Masked CSwap: $\begin{cases} \mathsf{CSwap}(T_0, T_1, b^0) \\ \mathsf{CSwap}(T_0, T_1, b^1) \end{cases} \iff \mathsf{CSwap}(T_0, T_1, b) \end{cases}$

What can go wrong now?!

2nd-order attack on masked scalar bits

Leakage (b^0) + Leakage (b^1) depends on b \implies 2nd-order address-bit / template attack

- 2nd-order attack on masked scalar bits
 - Leakage (b^0) + Leakage (b^1) depends on b
- 2nd-order masking: $b = b^0 \oplus b^1 \oplus b^2$

 $\begin{cases} \mathsf{CSwap}(T_0, T_1, b^0) \\ \mathsf{CSwap}(T_0, T_1, b^1) & \Longleftrightarrow & \mathsf{CSwap}(T_0, T_1, b) \\ \mathsf{CSwap}(T_0, T_1, b^2) \end{cases}$

 \implies 2nd-order address-bit / template attack

- 2nd-order attack on masked scalar bits
 - Leakage (b^0) + Leakage (b^1) depends on b
- 2nd-order masking: $b = b^0 \oplus b^1 \oplus b^2$

 $\begin{cases} \mathsf{CSwap}(T_0, T_1, b^0) \\ \mathsf{CSwap}(T_0, T_1, b^1) \\ \mathsf{CSwap}(T_0, T_1, b^2) \end{cases} \iff \mathsf{CSwap}(T_0, T_1, b) \end{cases}$

 \checkmark 3rd-order attack \Rightarrow \checkmark 3rd-order masking \Rightarrow ... \Rightarrow \checkmark d-th order attack

 \implies 2nd-order address-bit / template attack

- 2nd-order attack on masked scalar bits
 - Leakage (b^0) + Leakage (b^1) depends on b \implies 2nd-order address-bit / template attack
- 2nd-order masking: $b = b^0 \oplus b^1 \oplus b^2$

 $\begin{cases} \mathsf{CSwap}(T_0, T_1, b^0) \\ \mathsf{CSwap}(T_0, T_1, b^1) & \Longleftrightarrow \\ \mathsf{CSwap}(T_0, T_1, b^2) \end{cases}$

$$\mathsf{CSwap}(T_0, T_1, b)$$

- 2nd-order attack on masked scalar bits
 - Leakage (b^0) + Leakage (b^1) depends on b \implies 2nd-order address-bit / template attack
- 2nd-order masking: $b = b^0 \oplus b^1 \oplus b^2$

 $\begin{cases} \mathsf{CSwap}(T_0, T_1, b^0) \\ \mathsf{CSwap}(T_0, T_1, b^1) & \Longleftrightarrow \\ \mathsf{CSwap}(T_0, T_1, b^2) \end{cases}$

$$\mathsf{CSwap}(T_0, T_1, b)$$

- 2nd-order attack on masked scalar bits
 - Leakage (b^0) + Leakage (b^1) depends on b \implies 2nd-order address-bit / template attack
- 2nd-order masking: $b = b^0 \oplus b^1 \oplus b^2$

 $\begin{cases} \mathsf{CSwap}(T_0, T_1, b^0) \\ \mathsf{CSwap}(T_0, T_1, b^1) \\ \mathsf{CSwap}(T_0, T_1, b^2) \end{cases} \Leftrightarrow$

But 2nd order "collision" leakage remains

$$\mathsf{CSwap}(T_0, T_1, b)$$

My MM m

$$\underbrace{Iteration \ i - 1}_{T_1 \leftarrow T_1 + T_0} \quad CSwap$$

Leakage on T_0 before CSwap (result of doubling)

in a satural satural satura

 \fbox Requires collision attack of order d + 1

- <u>Computation model</u>: "Randomized Regular Algebraic Program" (RRAP)
 - Two types of variables
 - Algebraic variables $X_1, \ldots X_{\ell_x} \in \mathbb{A}$
 - Index variables $k_1, \ldots, k_{\ell_k} \in \mathbb{Z}$
 - Three types of operations
 - $k_{i_1} \leftarrow \operatorname{op}(k_{i_2}, k_{i_3})$
 - $X_{j_1} \leftarrow \operatorname{Op}(X_{j_2}, X_{j_3})$
 - $X_{j_1} \leftarrow \mathsf{R}(X_{j_1})$

with $j_1, j_2, j_3 \in \{k_1, \dots, k_{\ell_k}\} \cup \{1, \dots, \ell_X\}$

- <u>Computation model</u>: "Randomized Regular Algebraic Program" (RRAP)
 - Two types of variables
 - Algebraic variables $X_1, \ldots X_{\ell_X} \in \mathbb{A}$
 - Index variables $k_1, \ldots, k_{\ell_k} \in \mathbb{Z}$
 - Three types of operations
 - $k_{i_1} \leftarrow \mathsf{op}(k_{i_2}, k_{i_3})$
 - $X_{j_1} \leftarrow \mathsf{Op}(X_{j_2}, X_{j_3})$
 - $X_{j_1} \leftarrow \mathsf{R}(X_{j_1})$

with $j_1, j_2, j_3 \in \{k_1, \dots, k_{\ell_k}\} \cup \{1, \dots, k_{\ell_k}\}$

$$\ell_X$$
}

- <u>Computation model</u>: "Randomized Regular Algebraic Program" (RRAP)
 - Two types of variables
 - Algebraic variables $X_1, \ldots X_{\ell_X} \in \mathbb{A}$
 - Index variables $k_1, \ldots, k_{\ell_k} \in \mathbb{Z}$
 - Three types of operations

•
$$k_{i_1} \leftarrow \operatorname{op}(k_{i_2}, k_{i_3})$$

• $X_{j_1} \leftarrow \operatorname{Op}(X_{j_2}, X_{j_3})$
• $X_{j_1} \leftarrow \operatorname{R}(X_{j_1})$

with $j_1, j_2, j_3 \in \{k_1, \dots, k_{\ell_k}\} \cup \{1, \dots, \ell_X\}$

- <u>Computation model</u>: "Randomized Regular Algebraic Program" (RRAP)
 - Two types of variables
 - Algebraic variables $X_1, \ldots X_{\ell_X} \in \mathbb{A}$
 - Index variables $k_1, \ldots, k_{\ell_k} \in \mathbb{Z}$
 - Three types of operations

•
$$k_{i_1} \leftarrow \operatorname{op}(k_{i_2}, k_{i_3})$$

• $X_{j_1} \leftarrow \operatorname{Op}(X_{j_2}, X_{j_3})$
• $X_{j_1} \leftarrow \operatorname{R}(X_{j_1})$

with $j_1, j_2, j_3 \in \{k_1, \dots, k_{\ell_k}\} \cup \{1, \dots, \ell_X\}$

Hiddenness assumption (simple version)

- Let f a (noisy) leakage function
- Let $R : \mathbb{A} \to \mathbb{A}$ a rand. operation
- The pair (f, \mathbf{R}) is ε -hiding if

$$\forall x: f(\mathsf{R}(x)) \approx_{\varepsilon} f(U)$$

with U uniform r.v. over A

Hiddenness assumption (simple version)

- Let f a (noisy) leakage function
- Let $R : A \rightarrow A$ a rand. operation
- The pair (f, \mathbf{R}) is ε -hiding if

$$\forall x: f(\mathsf{R}(x)) \approx_{\varepsilon} f(U)$$

with U uniform r.v. over A

<u>Complete version</u>: adapted to multiple muti-input operations

Hiddenness assumption (simple version)

- Let f a (noisy) leakage function
- Let $R : A \rightarrow A$ a rand. operation
- The pair (f, \mathbf{R}) is ε -hiding if

$$\forall x: f(\mathsf{R}(x)) \approx_{\varepsilon} f(U)$$

with U uniform r.v. over \mathbb{A}

<u>Complete version</u>: adapted to multiple muti-input operations

Experiments:

KL divergence between $f(\mathbf{R}(x))$ and f(U)(Hamming weight + Gaussian noise model)

R = field element randomization

 $\mathbf{R} = randomization$ of projective coord.

Hiddenness assumption (simple version)

- Let f a (noisy) leakage function
- Let $R : A \rightarrow A$ a rand. operation
- The pair (f, \mathbf{R}) is ε -hiding if

$$\forall x: f(\mathsf{R}(x)) \approx_{\varepsilon} f(U)$$

with U uniform r.v. over \mathbb{A}

<u>Complete version</u>: adapted to multiple muti-input operations

Experiments:

KL divergence between $f(\mathbf{R}(x))$ and f(U)(Hamming weight + Gaussian noise model)

randomization

R = field element R = randomizationof projective coord.

Leakage resilience:

A RRAP is γ -leakage resilient if \exists a simulator s.t. Sim() $\approx_{\gamma} \text{Leak}(\vec{k})$

Leakage resilience:

A RRAP is γ -leakage resilient if \exists a simulator s.t. Sim() $\approx_{\gamma} \text{Leak}(\vec{k})$

Security theorem:

Our generic countermeasure is γ -leakage resilient with:

 $\gamma \leq (cst_1 \cdot \delta)^{d+1} + cst_2 \cdot \varepsilon$

Leakage resilience:

A RRAP is γ -leakage resilient if \exists a simulator s.t. Sim() $\approx_{\gamma} \text{Leak}(\vec{k})$

Security theorem:

Our generic countermeasure is γ -leakage resilient with:

 $\gamma \leq (cst_1 \cdot \delta)^{d+1} + cst_2 \cdot \varepsilon$

 δ -noisy leakage masking order d functions

Leakage resilience:

A RRAP is γ -leakage resilient if \exists a simulator s.t. Sim() $\approx_{\gamma} \text{Leak}(\vec{k})$

Security theorem:

 $\gamma \leq CSt_1$

Our generic countermeasure is γ -leakage resilient with:

 δ -noisy leakage functions

masking order d

CSt₂

constants related to # operations

Leakage resilience:

A RRAP is γ -leakage resilient if \exists a simulator s.t. Sim() $\approx_{\gamma} \text{Leak}(\vec{k})$

Security theorem:

 $\gamma \leq (CSt_1)$

Our generic countermeasure is γ -leakage resilient with:

 δ -noisy leakage functions

masking order d

CSt

constants related to # operations

Proof sketch:

 Apply *ɛ*-hiddenness to replace re-randomized variables by new uniform variables

 $\rightarrow cst_2 \cdot \epsilon$ gap

2. Replace noisy leakage by random probing leakage

→ no gap → $(cst_1 \cdot \delta)^{d+1}$ probability of simulation failure

- Generic algorithm applicable to any RRAP
- Several ECC scalar mult. algorithms expressed in our framework:
 - Montgomery ladder (point level & coordinate level)
 - Joye ladder
 - Signed binary ladder
 - Fixed-window scalar multiplication
- PoC smart card implementation
 - (signed binary ladder with XY-only co-Z coordinates)

	order 1	order 2	order 4	order 8
	Our countermea	asure (overhea	ad)	
$R_1 - h = 32$	1,35	1,39	$1,\!47$	$1,\!64$
$R_1 - h = 64$	1,73	1,81	1,98	2,31
$R_1 - h = 128$	2,58	2,75	$3,\!08$	3,75
R_2	3	4	6	10
R_1 & R_2 - $h=32$	5,48	7,59	11,81	$20,\!25$
$R_1 \& R_2 - h = 64$ 6,77		9,38	$14,\!58$	25
$R_1 \& R_2 - h = 128$	9,75	$13,\!5$	21	36
C	Other counterme	asures (overh	ead)	
scalar splitting 2		3	5	9
naive ISW	4	9	25	81

* Assume 12 multiplications per loop iteration ** Neglect add / sub vs. multiplications

	order 1	order 2	order 4	order 8		
Our countermeasure (overhead)						
R_1 - $h=32$	$1,\!35$	$1,\!39$	$1,\!47$	$1,\!64$		
$R_1 - h = 64$	1,73	1,81	$1,\!98$	$2,\!31$		
R_1 - $h=128$	2,58	2,75	$3,\!08$	$3,\!75$		
R_2	3	4	6	10		
R_1 & R_2 - $h=32$	$5,\!48$	7,59	11,81	20,25		
$R_1 \& R_2 - h = 64$	6,77	9,38	$14,\!58$	25		
$R_1 \& R_2 - h = 128$	9,75	$13,\!5$	21	36		
Other countermeasures (overhead)						
scalar splitting	2	3	5	9		
naive ISW	4	9	25	81		

* Assume 12 multiplications per loop iteration ** Neglect add / sub vs. multiplications

Field element randomization

	order 1	order 2	order 4	order 8		
Our countermeasure (overhead)						
R_1 - $h=32$	$1,\!35$	$1,\!39$	$1,\!47$	$1,\!64$		
$R_1 - h = 64$	1,73	1,81	1,98	$2,\!31$		
${\sf R}_1$ - $h = 128$	2,58	2,75	$3,\!08$	$3,\!75$		
R_2	3	4	6	10		
R_1 & R_2 - $h=32$	$5,\!48$	7,59	11,81	$20,\!25$		
$R_1 \& R_2 - h = 64$	6,77	9,38 14,58		25		
$R_1 \& R_2 - h = 128$	9,75	$13,\!5$	21	36		
Other countermeasures (overhead)						
scalar splitting	2	3	5	9		
naive ISW	4	9	25	81		

* Assume 12 multiplications per loop iteration ** Neglect add / sub vs. multiplications

Field element randomization Jacobian coordinate randomization

	order 1	order 2	order 4	order 8			
	Our countermeasure (overhead)						
R_1 - $h=32$	1,35	$1,\!39$	$1,\!47$	$1,\!64$			
$R_1 - h = 64$	1,73	1,81	$1,\!98$	$2,\!31$			
${\sf R}_1$ - $h = 128$	2,58	2,75	$3,\!08$	$3,\!75$			
R_2	3	4	6	10			
$R_1\ \&\ R_2$ - $h=32$	5,48	$7,\!59$	$11,\!81$	$20,\!25$			
$R_1 \& R_2 - h = 64$	6,77	9,38	$14,\!58$	25			
${\sf R}_1 \ \& \ {\sf R}_2$ - $h = 128$	9,75	$13,\!5$	21	36			
Other countermeasures (overhead)							
scalar splitting	2	3	5	9			
naive ISW	4	9	25	81			

* Assume 12 multiplications per loop iteration ** Neglect add / sub vs. multiplications

Field element randomization Jacobian coordinate randomization

Double randomization

	order 1	order 2	order 4	order 8		
Our countermeasure (overhead)						
R_1 - $h=32$	$1,\!35$	$1,\!39$	$1,\!47$	$1,\!64$		
$R_1 - h = 64$	1,73	1,81	1,98	$2,\!31$		
${\sf R}_1$ - $h = 128$	$2,\!58$	2,75	$3,\!08$	$3,\!75$		
R_2	3	4	6	10		
$R_1\ \&\ R_2$ - $h=32$	$5,\!48$	$7,\!59$	$11,\!81$	$20,\!25$		
$R_1 \& R_2 - h = 64$	6,77	9,38	$14,\!58$	25		
${\sf R}_1 \ \& \ {\sf R}_2 \ \ - \ h = 128$	9,75	$13,\!5$	21	36		
Other countermeasures (overhead)						
scalar splitting	2	3	5	9		
naive ISW	4	9	25	81		

* Assume 12 multiplications per loop iteration ** Neglect add / sub vs. multiplications

Field element randomization Jacobian coordinate randomization

Double randomization

 $[k]P = [k_0]P + \dots + [k_d]P$

	order 1	order 2	order 4	order 8			
	Our countermeasure (overhead)						
R_1 - $h = 32$	1,35	$1,\!39$	$1,\!47$	$1,\!64$			
$R_1 - h = 64$	1,73	1,81	$1,\!98$	$2,\!31$			
$R_1 - h = 128$	2,58	2,75	$3,\!08$	$3,\!75$			
R_2	3	4	6	10			
$R_1\ \&\ R_2$ - $h=32$	$5,\!48$	$7,\!59$	$11,\!81$	$20,\!25$			
$R_1 \& R_2 - h = 64$	6,77	9,38	$14,\!58$	25			
${\sf R}_1 \ \& \ {\sf R}_2 \ \ - \ h = 128$	9,75	$13,\!5$	21	36			
Other countermeasures (overhead)							
scalar splitting	2	3	5	9			
naive ISW	4	9	25	81			

* Assume 12 multiplications per loop iteration ** Neglect add / sub vs. multiplications

Field element randomization Jacobian coordinate randomization Double randomization

 $[k]P = [k_0]P + \dots + [k_d]P$ ISW applied to all mult.

	order 1	order 2	order 4	order 8	
	Our countermea	asure (overhe	ad)	•	
R_1 - $h=32$	1,35	1,39	1,47	$1,\!64$	- Field element
$R_1 - h = 64$	1,73	1,81	1,98	2,31	
$R_1 - h = 128$	2,58	2,75	3,08	3,75	randomization
R_2	3	4	6	10	Jacobian coordinate
$R_1\ \&\ R_2$ - $h=32$	$5,\!48$	$7,\!59$	11,81	$20,\!25$	randomization
${\sf R}_1 \ \& \ {\sf R}_2 \ \ - \ h = 64$	6,77	9,38	14,58	25	Double randomizatio
${\sf R}_1 \ \& \ {\sf R}_2$ - $h = 128$	9,75	$13,\!5$	21	36	
C	Other counterme	asures (overh	lead)		
scalar splitting	2	3	5	9	$[k]P = [k_0]P + \dots + [$
naive ISW	4	9	25	81	ISW applied to all m

* Assume 12 multiplications per loop iteration ** Neglect add / sub vs. multiplications

Less secure than our solution (provided that hiddenness holds)

Conclusion

- Formal model for regular exponentiation-like algorithms (with randomization)
- Formalisation of the hiddenness assumption
- Generic provably secure countermeasure
- Application to several ECC scalar mult. algorithms
- Perspectives:
 - Challenge the hiddenness assumption in practice
 - Applications to other algorithms / randomization techniques
 - Practical implementations and attacks