High Order Side-Channel Security for Elliptic-Curve Implementations

Sonia Belaïd and Matthieu Rivain

CHES 2023, September 13, Prague

CRYPTOEXPERTS ${ }^{\text {吅 }}$
We innovate to secure your business

Roadmap

- Case study: SCA on Montgomery ladder \& countermeasures
- Our solution for high-order side-channel security
- Formal model and security proof
- Application and performances

Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(\quad b \leftarrow k_{i}\)
    5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{b}\)
    6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```


Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(\quad b \leftarrow k\)
    5. \(R_{1-b} \leftarrow R_{1-b}+R_{b}\)
    6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```


Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\) Algebraic variables (EC points)
    1. \(\begin{aligned} & R_{0} \leftarrow \boldsymbol{O} \\ & R_{1} \leftarrow \boldsymbol{P}\end{aligned} \quad\) Index variables (scalar bits)
    3. for \(i=n \quad 1\) downto 0 do
    4. \(b \leftarrow k_{i}\)
    5. \(R_{R_{1-b}} \leftarrow R_{1_{1-b}}+R_{\bar{b}}\)
    6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```


Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P} \quad\) Algebraic variables (EC points)
    1. \(R_{0} \leftarrow \boldsymbol{\mathcal { O }}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n \quad 1\) downto 0 do
    4. \(b \leftarrow k_{i}\)
    5. \(R_{1-b} \leftarrow R_{l_{1-b}}+R_{\frac{b}{b}}\)
    6. \(\quad R_{b} \stackrel{\rightharpoonup}{ } \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```


Case study: Montgomery ladder

Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    Index variables (scalar bits)
    for \(i=n-1\) downto 0 do
4. \(b \leftarrow k_{i}\)
5. \(R_{1-b} \leftarrow R_{1-b}+R_{\underline{b}}\)
6. \(R_{b} \leftarrow 2 \cdot R_{b}\)
7. end for
Leakage on \(R_{0}=[7] P\)
```


Compute correlation with $[0] P, \ldots,[15] P$

Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\) Algebraic variables (EC points)
    \(R_{0} \leftarrow \boldsymbol{\mathcal { O }}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(b \leftarrow k_{i}\)
    5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{b b}\)
        \(R_{b} \leftarrow 2 \cdot R_{b}\)
    end for
                            \(R_{0}\)
                Index variables (scalar bits)
    Compute correlation
    with \([0] P, \ldots,[15] P\)
    \(\Rightarrow\) Best correlation for [7]P
    Leakage on \(R_{0}=[7] P\)
    \(\Rightarrow\left(k_{n-1}, \ldots, k_{n-3}\right)=(0,1,1,1)\)
```


Case study: Montgomery ladder

Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}, \ldots, k_{n-1}\) Algebraic variables (EC points)
    1. \(\begin{aligned} & R_{0} \leftarrow \boldsymbol{\mathcal { O }} \\ & \text { 2. } \\ & R_{1} \leftarrow \boldsymbol{P}\end{aligned} \quad\) Index variables (scalar bits)
    for \(i=n-1\) downto 0 do
        \(b \leftarrow k_{i}\)
        \(R_{1-b} \leftarrow R_{1-b}+R_{b b}\)
        \(R_{b} \leftarrow 2 \cdot R_{b}\)
    end for
Classic DPA Attack
    return \(R_{0}\)
```

Index variables (scalar bits)
Leakage on $R_{0}=[7] P$
Leakage on $R_{0}=[7] P$ R_{0}

Compute correlation with $[0] P, \ldots,[15] P$
\Rightarrow Best correlation for [7] P
$\Rightarrow\left(k_{n-1}, \ldots, k_{n-3}\right)=(0,1,1,1)$

Solution: Randomizing algebraic variables

Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(b \leftarrow k_{i}\)
    5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{b}\)
    6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```


Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    Initial randomization
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(\quad b \leftarrow k\)
    5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{b}\)
    6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```


Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    Initial randomization
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(\quad b \leftarrow k_{i}\)
    5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{b}\)
        Propagation of
        the randomization
6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
7. end for
    (or re-randomization)
    8. return \(R_{0}\)
```


Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
        Initial randomization
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(b \leftarrow k_{i}\)
                                    Propagation of
    5. \(\quad b \leftarrow k_{i} \quad R_{1-b} \leftarrow R_{1-b}+R_{b} \quad\) the randomization
    6. \(\begin{array}{ll}\text { 7. end for } & R_{b} \leftarrow 2 \cdot R_{b} \\ \text { (or re-randomization) }\end{array}\)
    \(R_{0}\)
```



``` Initial randomization
8. return \(R_{0}\)
```

```
-
```



```- \(R_{0}\)
```

```Inial randomization
```

\qquad

``` Propagation of (or re-randomization)
```

\qquad

Case study: Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
        Initial randomization
    \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(\quad b \leftarrow k_{i}\)
                                    Propagation of
    5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{b}\)
                                    the randomization
        \(R_{b} \leftarrow 2 \cdot R_{b}\)
7. end for
                            (or re-randomization)
    8. return \(R_{0}\)
```

 Initial randomization
2. $R_{1} \leftarrow \boldsymbol{P}$
3. for $i=n-1$ downto 0 do
4. $b \leftarrow k_{i}$ $-R_{1-b}+R_{b}$
 Propagation of the randomization (or re-randomization)

```
解 \(\quad \square\) -
```

(3) No correlation anymore

Randomization techniques

- Randomization of the projective / Jacobian coordinates:
- Point $P=(x, y)$ represented as $P \equiv(X: Y: Z)$ s.t. $x=X / Z$ and $y=Y / Z$
- Random $r \leftarrow \mathbb{F},\left\{\begin{array}{l}X^{\prime}:=r \cdot X \\ Y^{\prime}:=r \cdot Y \quad \\ Z^{\prime}:=r \cdot Z\end{array} \quad \Longrightarrow \quad\left(X^{\prime}: Y^{\prime}: Z^{\prime}\right) \equiv P\right.$

Randomization techniques

- Randomization of the projective / Jacobian coordinates:
- Point $P=(x, y)$ represented as $P \equiv(X: Y: Z)$ s.t. $x=X / Z$ and $y=Y / Z$
- Random $r \leftarrow \mathbb{F},\left\{\begin{array}{l}X^{\prime}:=r \cdot X \\ Y^{\prime}:=r \cdot Y \quad \\ Z^{\prime}:=r \cdot Z\end{array} \quad \Longrightarrow \quad\left(X^{\prime}: Y^{\prime}: Z^{\prime}\right) \equiv P\right.$
- Randomisation of coordinates (field elements):
- Elements of $\mathbb{F}_{p}($ integers $\bmod p)$ are represented modulo $h p$ for some h
- Random $r \leftarrow[0, h), \quad x^{\prime}:=x+r \cdot p(\bmod h p) \Longrightarrow x^{\prime} \equiv x(\bmod p)$

Randomization techniques

- Randomization of the projective / Jacobian coordinates:
- Point $P=(x, y)$ represented as $P \equiv(X: Y: Z)$ s.t. $x=X / Z$ and $y=Y / Z$
- Random $r \leftarrow \mathbb{F},\left\{\begin{array}{l}X^{\prime}:=r \cdot X \\ Y^{\prime}:=r \cdot Y \quad \\ Z^{\prime}:=r \cdot Z\end{array} \quad \Longrightarrow \quad\left(X^{\prime}: Y^{\prime}: Z^{\prime}\right) \equiv P\right.$
- Randomisation of coordinates (field elements):
- Elements of $\mathbb{F}_{p}($ integers $\bmod p)$ are represented modulo $h p$ for some h
- Random $r \leftarrow[0, h), \quad x^{\prime}:=x+r \cdot p(\bmod h p) \Longrightarrow x^{\prime} \equiv x(\bmod p)$

8 Intuition: hard to break with common SC leakage

Back to Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(b \leftarrow k_{i}\)
    5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{[b}\)
    6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```


Back to Montgomery ladder

Input: $\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}$
Output: $\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}$

1. $R_{0} \leftarrow \mathcal{O}$
2. $R_{1} \leftarrow \boldsymbol{P}$
3. for $i=n-1$ downto 0 do
4. $b \leftarrow k_{i}$
5. $\quad R_{\underline{1-b}} \leftarrow R_{1-b}+R_{\text {b }}$
6. $R_{b} \leftarrow 2 \cdot R_{b}$
7. end for
8. return R_{0}

Back to Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(b \leftarrow k_{i}\)
    5. \(\quad R_{\underline{1-b}} \leftarrow R_{1-b}+R_{\text {(b }}\)
    6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```


$Q_{\Delta} k_{i} \neq k_{i-1} \Rightarrow$ leakage diff. at
manipulation of bits / register
addresses
"Address-bit DPA Attack"

Back to Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \boldsymbol{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
4. \(b \leftarrow k_{i}\)
5. \(\quad R_{|-b|} \leftarrow R_{l_{1-b}}+R_{[b}\)
6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
7. end for
8. return \(R_{0}\)
```

Precomputed template for $k_{i}=1$

Back to Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
4. \(b \leftarrow k_{i}\)
5. \(R_{1-b} \leftarrow R_{1-b}+R_{\text {b }}\)
6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
7. end for
8. return \(R_{0}\)
```


Precomputed template for $k_{i}=1$

Back to Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \boldsymbol{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
4. \(b \leftarrow k_{i}\)
5. \(R_{R_{\mid-b}} \leftarrow R_{l_{1-b}}+R_{\text {b }}\)
6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
7. end for
8. return \(R_{0}\)
```


Precomputed
template for $k_{i}=1$

Maximum likelihood $\Rightarrow k_{i}$
Template Attack

Back to Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
4. \(b \leftarrow k_{i}\)
5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{b}\)
6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
7. end for
8. return \(R_{0}\)
```

Precomputed

$$
\text { template for } k_{i}=0
$$

Precomputed
template for $k_{i}=1$

Maximum likelihood $\Rightarrow k_{i}$
Template Attack
! Single trace attack

Back to Montgomery ladder

```
Algorithm 1 Montgomery ladder
Input: \(\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}\)
Output: \(\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}\)
    1. \(R_{0} \leftarrow \mathcal{O}\)
    2. \(R_{1} \leftarrow \boldsymbol{P}\)
    3. for \(i=n-1\) downto 0 do
    4. \(b \leftarrow k_{i}\)
    5. \(\quad R_{1-b} \leftarrow R_{1-b}+R_{b}\)
    6. \(\quad R_{b} \leftarrow 2 \cdot R_{b}\)
    7. end for
    8. return \(R_{0}\)
```

Precomputed

$$
\text { template for } k_{i}=0
$$

Precomputed
template for $k_{i}=1$

Maximum likelihood $\Rightarrow k_{i}$
Template Attack
! Single trace attack

Solution: Randomizing the scalar

Scalar randomization

- Scalar blinding:

$$
k^{\prime} \leftarrow k+r \cdot\left|E\left(\mathbb{F}_{p}\right)\right| \quad \Longrightarrow \quad[k] P=\left[k^{\prime}\right] P
$$

with $\left|E\left(\mathbb{F}_{p}\right)\right|$ the order of the EC

Scalar randomization

- Scalar blinding:

$$
k^{\prime} \leftarrow k+r \cdot\left|E\left(\mathbb{F}_{p}\right)\right| \quad \Longrightarrow \quad[k] P=\left[k^{\prime}\right] P
$$

with $\left|E\left(\mathbb{F}_{p}\right)\right|$ the order of the EC

- Scalar splitting:

$$
\left\{\begin{array}{l}
Q_{1}=[k-r] P \\
Q_{2}=[r] P
\end{array} \quad \Longrightarrow \quad[k] P=Q_{1}+Q_{2}\right.
$$

Scalar randomization

- Scalar blinding:

$$
k^{\prime} \leftarrow k+r \cdot\left|E\left(\mathbb{F}_{p}\right)\right| \quad \Longrightarrow \quad[k] P=\left[k^{\prime}\right] P
$$

with $\left|E\left(\mathbb{F}_{p}\right)\right|$ the order of the EC

- Scalar splitting:

$$
\left\{\begin{array}{l}
Q_{1}=[k-r] P \\
Q_{2}=[r] P
\end{array} \quad \Longrightarrow \quad[k] P=Q_{1}+Q_{2}\right.
$$

! Still vulnerable to single trace attack

Scalar randomization

- Boolean masking:

```
Algorithm }1\mathrm{ Montgomery ladder
Input: P},\boldsymbol{k}=(\mp@subsup{k}{0}{},\mp@subsup{k}{1}{},\ldots,\mp@subsup{k}{n-1}{}\mp@subsup{)}{2}{
Output: Q = [k]P
    1. }\mp@subsup{R}{0}{}\leftarrow\mathcal{O
    2. }\mp@subsup{R}{1}{}\leftarrow\boldsymbol{P
    3. for }i=n-1 downto 0 do
    4. }b\leftarrow\mp@subsup{k}{i}{
5. }\quad\mp@subsup{R}{1-b}{}\leftarrow\mp@subsup{R}{1-b}{}+\mp@subsup{R}{b}{
6. }\quad\mp@subsup{R}{b}{}\leftarrow2\cdot\mp@subsup{R}{b}{
    . end for
8. return }\mp@subsup{R}{0}{
```


Scalar randomization

- Boolean masking:

$$
\begin{aligned}
& \text { Algorithm } 1 \text { Montgomery ladder } \\
& \text { Input: } \boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2} \\
& \text { Output: } \boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P} \\
& \text { 1. } R_{0} \leftarrow \mathcal{O} \\
& \text {. } R_{1} \leftarrow \boldsymbol{P} \\
& \text { for } i=n-1 \text { downto } 0 \text { do } \\
& \text { 4. } \quad b \leftarrow k_{i} \quad \text { 5. } R_{1-b} \leftarrow R_{1-b}+R_{b} \\
& T_{1} \leftarrow T_{1}+T_{0} \\
& T_{0} \leftarrow 2 \cdot T_{0} \\
& \text { If }(b=1) \text { then } \operatorname{Swap}\left(T_{0}, T_{1}\right) \\
& R_{b} \leftarrow 2 \cdot R_{b} \\
& \text {. end tor }
\end{aligned}
$$

return R_{0}

Scalar randomization

- Boolean masking:

Conditional swap
$\operatorname{CSwap}\left(T_{0}, T_{1}, b\right)$:

1. $\left(S_{0}, S_{1}\right) \leftarrow\left(T_{0}, T_{1}\right)$
2. $T_{0}=S_{b}$
3. $T_{1}=S_{1-b}$

Scalar randomization

- Boolean masking:

Conditional swap

$\operatorname{CSwap}\left(T_{0}, T_{1}, b\right)$:

1. $\left(S_{0}, S_{1}\right) \leftarrow\left(T_{0}, T_{1}\right)$
2. $T_{0}=S_{b}$
3. $T_{1}=S_{1-b}$
© Only operation manipulating $b=k_{i}$

Scalar randomization

- Boolean masking:

Algorithm 1 Montgomery ladder
Input: $\boldsymbol{P}, \boldsymbol{k}=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)_{2}$
Output: $\boldsymbol{Q}=[\boldsymbol{k}] \boldsymbol{P}$
$R_{0} \leftarrow \mathcal{O}$
$R_{1} \leftarrow \boldsymbol{P}$
for $i=n-1$ downto 0 do
$b \leftarrow k_{i}$
$R_{b} \leftarrow 2 \cdot R_{b}$
end for
return R_{0}

Conditional swap
$\operatorname{CSwap}\left(T_{0}, T_{1}, b\right)$:

1. $\left(S_{0}, S_{1}\right) \leftarrow\left(T_{0}, T_{1}\right)$
2. $T_{0}=S_{b}$
3. $T_{1}=S_{1-b}$
© Only operation manipulating $b=k_{i}$

- Masking the scalar $\left(b^{0}, b^{1}\right):=(b \oplus r, r)$ for random bit $r \leftarrow\{0,1\}$
- Masked CSwap: $\left\{\begin{array}{l}\operatorname{CSwap}\left(T_{0}, T_{1}, b^{0}\right) \\ \operatorname{CSwap}\left(T_{0}, T_{1}, b^{1}\right)\end{array} \Longleftrightarrow \operatorname{CSwap}\left(T_{0}, T_{1}, b\right)\right.$

What can go wrong now?!

4. 2nd-order attack on masked scalar bits

$$
\text { Leakage }\left(b^{0}\right)+\text { Leakage }\left(b^{1}\right) \text { depends on } b
$$

\Longrightarrow 2nd-order address-bit / template attack

What can go wrong now?!

2nd-order attack on masked scalar bits

$$
\begin{aligned}
& \text { Leakage }\left(b^{0}\right)+\text { Leakage }\left(b^{1}\right) \text { depends on } b \\
& \Longrightarrow \text { 2nd-order address-bit / template attack }
\end{aligned}
$$

\%i. 2nd-order masking: $b=b^{0} \oplus b^{1} \oplus b^{2}$

$$
\left\{\begin{array}{l}
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{0}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{1}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{2}\right)
\end{array} \quad \Longleftrightarrow \quad \operatorname{CSwap}\left(T_{0}, T_{1}, b\right)\right.
$$

What can go wrong now?!

:1. 2nd-order attack on masked scalar bits

$$
\begin{aligned}
& \text { Leakage }\left(b^{0}\right)+\text { Leakage }\left(b^{1}\right) \text { depends on } b \\
& \Longrightarrow \text { 2nd-order address-bit / template attack }
\end{aligned}
$$

\%i. 2nd-order masking: $b=b^{0} \oplus b^{1} \oplus b^{2}$

$$
\left\{\begin{array}{l}
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{0}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{1}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{2}\right)
\end{array} \Longleftrightarrow \operatorname{CSwap}\left(T_{0}, T_{1}, b\right)\right.
$$

3rd-order attack \Rightarrow 3rd-order masking $\Rightarrow \ldots \Rightarrow d$-th order attack

What can go wrong now?!

:1. 2nd-order attack on masked scalar bits

$$
\begin{aligned}
& \text { Leakage }\left(b^{0}\right)+\text { Leakage }\left(b^{1}\right) \text { depends on } b \\
& \Longrightarrow \text { 2nd-order address-bit / template attack }
\end{aligned}
$$

©i: 2nd-order masking: $b=b^{0} \oplus b^{1} \oplus b^{2}$

$$
\left\{\begin{array}{l}
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{0}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{1}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{2}\right)
\end{array} \Longleftrightarrow \operatorname{CSwap}\left(T_{0}, T_{1}, b\right)\right.
$$

exponentially hard in d
3rd-order attack \Rightarrow 3rd-order masking $\Rightarrow \ldots \Rightarrow d$-th order attack

What can go wrong now?!

:1. 2nd-order attack on masked scalar bits

$$
\begin{aligned}
& \text { Leakage }\left(b^{0}\right)+\text { Leakage }\left(b^{1}\right) \text { depends on } b \\
& \Longrightarrow \text { 2nd-order address-bit / template attack }
\end{aligned}
$$

\%i. 2nd-order masking: $b=b^{0} \oplus b^{1} \oplus b^{2}$

$$
\left\{\begin{array}{l}
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{0}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{1}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{2}\right)
\end{array} \quad \Longleftrightarrow \quad \operatorname{CSwap}\left(T_{0}, T_{1}, b\right)\right.
$$

exponentially hard in d
3rd-order attack \Rightarrow 3rd-order masking $\Rightarrow \ldots \Rightarrow d$-th order attack
(3) High order security
(3)

Linear complexity in d (only for swaps)

What can go wrong now?!

:1. 2nd-order attack on masked scalar bits

$$
\begin{aligned}
& \text { Leakage }\left(b^{0}\right)+\text { Leakage }\left(b^{1}\right) \text { depends on } b \\
& \Longrightarrow \text { 2nd-order address-bit / template attack }
\end{aligned}
$$

\%i. 2nd-order masking: $b=b^{0} \oplus b^{1} \oplus b^{2}$

$$
\left\{\begin{array}{l}
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{0}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{1}\right) \\
\operatorname{CSwap}\left(T_{0}, T_{1}, b^{2}\right)
\end{array} \Leftrightarrow \operatorname{CSwap}\left(T_{0}, T_{1}, b\right)\right.
$$

exponentially hard in d
3rd-order attack \Rightarrow 3rd-order masking $\Rightarrow \ldots \Rightarrow d$-th order attack

But 2nd order "collision" leakage remains
(3) High order security
(3)

Linear complexity in d (only for swaps)

Collision attacks

Our solution

-2,

Our solution

Our solution

Our solution

Our solution

(5.) Requires collision attack of order $d+1$

Our solution

Requires collision attack of order $d+1$
(3) How to formally prove this high order security?

Formal model

- Computation model: "Randomized Regular

Algebraic Program" (RRAP)

- Two types of variables
- Algebraic variables $X_{1}, \ldots X_{\ell_{X}} \in \mathbb{A}$
- Index variables $k_{1}, \ldots, k_{\ell_{k}} \in \mathbb{Z}$
- Three types of operations
- $k_{i_{1}} \leftarrow \mathrm{op}\left(k_{i_{2}}, k_{i_{3}}\right)$
- $X_{j_{1}} \leftarrow \operatorname{Op}\left(X_{j_{2}}, X_{j_{3}}\right)$
- $X_{j_{1}} \leftarrow \mathrm{R}\left(X_{j_{1}}\right)$

$$
\text { with } j_{1}, j_{2}, j_{3} \in\left\{k_{1}, \ldots k_{\ell_{k}}\right\} \cup\left\{1, \ldots, \ell_{X}\right\}
$$

- Capture regular algorithms for ECC / RSA / pairings

Formal model

- Computation model: "Randomized Regular Algebraic Program" (RRAP)
- Two types of variables
- Algebraic variables $X_{1}, \ldots X_{\ell_{X}} \in \mathbb{A}$
- Index variables $k_{1}, \ldots, k_{\ell_{k}} \in \mathbb{Z}$
- Three types of operations
- $k_{i_{1}} \leftarrow \mathrm{op}\left(k_{i_{i}}, k_{i_{3}}\right)$
- $X_{j_{1}} \leftarrow \operatorname{Op}\left(X_{j_{2}}, X_{j_{3}}\right)$
- $X_{j_{1}} \leftarrow \mathrm{R}\left(X_{j_{1}}\right)$

$$
\text { with } j_{1}, j_{2}, j_{3} \in\left\{k_{1}, \ldots k_{\ell_{k}}\right\} \cup\left\{1, \ldots, \ell_{X}\right\}
$$

- Capture regular algorithms for ECC / RSA / pairings
- Leakage model:
- Noisy leakage model

Formal model

- Computation model: "Randomized Regular Algebraic Program" (RRAP)
- Two types of variables
- Algebraic variables $X_{1}, \ldots X_{\ell_{X}} \in \mathbb{A}$
- Index variables $k_{1}, \ldots, k_{\ell} \in \mathbb{Z}$
- Three types of operations

-

- $X_{j_{1}} \leftarrow \mathrm{R}\left(X_{j_{1}}\right)$

$$
\text { with } j_{1}, j_{2}, j_{3} \in\left\{k_{1}, \ldots k_{\ell_{k}}\right\} \cup\left\{1, \ldots, \ell_{X}\right\}
$$

- Capture regular algorithms for ECC / RSA / pairings
- Leakage model:
- Noisy leakage model
\rightarrow Leaks $f\left(k_{i_{2}}, k_{i_{3}}\right)$
\rightarrow Leaks $f\left(j_{1}, j_{2}, j_{3}, X_{j_{2}}, X_{j_{3}}\right)$
Leaks $f\left(j_{1}, X_{j_{1}}, R\left(X_{j_{1}}\right)\right)$
with f a δ-noisy leakage function:

$$
\mathrm{SD}(U ;(U \mid f(U)) \leq \delta
$$

Formal model

- Computation model: "Randomized Regular Algebraic Program" (RRAP)
- Two types of variables
- Algebraic variables $X_{1}, \ldots X_{\ell_{X}} \in$ A
- Index variables $k_{1}, \ldots, k_{\ell} \in \mathbb{Z}$
- Three types of operations

-

- $X_{j_{1}} \leftarrow \mathrm{R}\left(X_{j_{1}}\right)$

$$
\text { with } j_{1}, j_{2}, j_{3} \in\left\{k_{1}, \ldots k_{\ell_{k}}\right\} \cup\left\{1, \ldots, \ell_{X}\right\}
$$

- Capture regular algorithms for ECC / RSA / pairings
- Leakage model:
- Noisy leakage model
\rightarrow Leaks $f\left(k_{i_{2}}, k_{i_{3}}\right)$
\rightarrow Leaks $f\left(j_{1}, j_{2}, j_{3}, X_{j_{2}}, X_{j_{3}}\right)$
Leaks $f\left(j_{1}, X_{j_{1}}, R\left(X_{j_{1}}\right)\right)$
with f a δ-noisy leakage function:

$$
\mathrm{SD}(U ;(U \mid f(U)) \leq \delta
$$

- Hiddenness assumption

Capture that $x \mapsto f \circ \mathrm{R}(x)$
hides the information on x

Hiddenness assumption

T Hiddenness assumption
(simple version)

- Let f a (noisy) leakage function
- Let $\mathrm{R}: \mathrm{A} \rightarrow \mathrm{A}$ a rand. operation
- The pair (f, R) is ε-hiding if

$$
\forall x: f(\mathrm{R}(x)) \approx_{\varepsilon} f(U)
$$

with U uniform r.v. over \mathbb{A}

Hiddenness assumption

- Hiddenness assumption
(simple version)
- Let f a (noisy) leakage function
- Let $\mathrm{R}: \mathrm{A} \rightarrow \mathrm{A}$ a rand. operation
- The pair (f, R) is ε-hiding if

$$
\forall x: f(\mathrm{R}(x)) \approx_{\varepsilon} f(U)
$$

with U uniform r.v. over A

Complete version: adapted to multiple muti-input operations

Hiddenness assumption

- Hiddenness assumption
(simple version)
- Let f a (noisy) leakage function
- Let $\mathrm{R}: \mathrm{A} \rightarrow \mathrm{A}$ a rand. operation
- The pair (f, R) is ε-hiding if

$$
\forall x: f(\mathrm{R}(x)) \approx_{\varepsilon} f(U)
$$

with U uniform r.v. over \mathbb{A}

Complete version: adapted to multiple muti-input operations

Experiments:

KL divergence between $f(\mathrm{R}(x))$ and $f(U)$ (Hamming weight + Gaussian noise model)

$R=$ field element randomization
$\mathrm{R}=$ randomization
of projective coord.

Hiddenness assumption

T Hiddenness assumption
(simple version)

- Let f a (noisy) leakage function
- Let $\mathrm{R}: \mathrm{A} \rightarrow \mathrm{A}$ a rand. operation
- The pair (f, R) is ε-hiding if

$$
\forall x: f(\mathrm{R}(x)) \approx_{\varepsilon} f(U)
$$

with U uniform r.v. over \mathbb{A}

Complete version: adapted to multiple muti-input operations

Experiments:

KL divergence between $f(\mathrm{R}(x))$ and $f(U)$ (Hamming weight + Gaussian noise model)

$R=$ field element randomization

$\mathrm{R}=$ randomization
of projective coord.

Security proof

Leakage resilience:

A RRAP is γ-leakage resilient if \exists a simulator s.t. $\operatorname{Sim}() \approx_{\gamma} \operatorname{Leak}(\vec{k})$

Security proof

Leakage resilience:

A RRAP is γ-leakage resilient if \exists a simulator s.t. $\operatorname{Sim}() \approx_{\gamma} \operatorname{Leak}(\vec{k})$

Security theorem:

Our generic countermeasure is γ-leakage resilient with:

$$
\gamma \leq\left(c s t_{1} \cdot \delta\right)^{d+1}+\operatorname{cst}_{2} \cdot \varepsilon
$$

Security proof

Security proof

Security proof

Proof sketch:

1. Apply ε-hiddenness to replace re-randomized variables by new uniform variables

$$
\rightarrow \text { cst }_{2} \cdot \varepsilon \text { gap }
$$

2. Replace noisy leakage by random probing leakage
\rightarrow no gap
$\rightarrow\left(\text { cst } t_{1} \cdot \delta\right)^{d+1}$ probability of simulation failure

Application

- Generic algorithm applicable to any RRAP
- Several ECC scalar mult. algorithms expressed in our framework:
- Montgomery ladder (point level \& coordinate level)
- Joye ladder
- Signed binary ladder
- Fixed-window scalar multiplication
- PoC smart card implementation
- (signed binary ladder with XY-only co-Z coordinates)

Performance estimations

	order 1	order 2	order 4	order 8
Our countermeasure (overhead)				
$\mathrm{R}_{1}-h=32$	1,35	1,39	1,47	1,64
$\mathrm{R}_{1}-h=64$	1,73	1,81	1,98	2,31
$\mathrm{R}_{1}-h=128$	2,58	2,75	3,08	3,75
R_{2}	3	4	6	10
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=32$	5,48	7,59	11,81	20,25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=64$	6,77	9,38	14,58	25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=128$	9,75	13,5	21	36
Other countermeasures (overhead)				
scalar splitting	2	3	5	9
naive ISW	4	9	25	81

* Assume 12 multiplications per loop iteration
** Neglect add / sub vs. multiplications

Performance estimations

	order 1	order 2	order 4	order 8
Our countermeasure (overhead)				
$\mathrm{R}_{1}-h=32$	1,35	1,39	1,47	1,64
$\mathrm{R}_{1}-h=64$	1,73	1,81	1,98	2,31
$\mathrm{R}_{1}-h=128$	2,58	2,75	3,08	3,75
R_{2}	3	4	6	10
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=32$	5,48	7,59	11,81	20,25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=64$	6,77	9,38	14,58	25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=128$	9,75	13,5	21	36
Other countermeasures (overhead)				
scalar splitting	2	3	5	9
naive ISW	4	9	25	81

Field element randomization

* Assume 12 multiplications per loop iteration
** Neglect add / sub vs. multiplications

Performance estimations

	order 1	order 2	order 4	order 8
Our countermeasure (overhead)				
$\mathrm{R}_{1}-h=32$	1,35	1,39	1,47	1,64
$\mathrm{R}_{1}-h=64$	1,73	1,81	1,98	2,31
$\mathrm{R}_{1}-h=128$	2,58	2,75	3,08	3,75
R_{2}	3	4	6	10
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=32$	5,48	7,59	11,81	20,25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=64$	6,77	9,38	14,58	25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=128$	9,75	13,5	21	36
Other countermeasures (overhead)				
scalar splitting	2	3	5	9
naive ISW	4	9	25	81

Field element randomization

Jacobian coordinate randomization

[^0]
Performance estimations

	order 1	order 2	order 4	order 8
Our countermeasure (overhead)				
$\mathrm{R}_{1}-h=32$	1,35	1,39	1,47	1,64
$\mathrm{R}_{1}-h=64$	1,73	1,81	1,98	2,31
$\mathrm{R}_{1}-h=128$	2,58	2,75	3,08	3,75
R_{2}	3	4	6	10
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=32$	5,48	7,59	11,81	20,25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=64$	6,77	9,38	14,58	25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=128$	9,75	13,5	21	36
	Other countermeasures (overhead)			
scalar splitting	2	3	5	9
naive ISW	4	9	25	81

Field element randomization

Jacobian coordinate randomization

Double randomization

[^1]
Performance estimations

	order 1	order 2	order 4	order 8
Our countermeasure (overhead)				
$\mathrm{R}_{1}-h=32$	1,35	1,39	1,47	1,64
$\mathrm{R}_{1}-h=64$	1,73	1,81	1,98	2,31
$\mathrm{R}_{1}-h=128$	2,58	2,75	3,08	3,75
R_{2}	3	4	6	10
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=32$	5,48	7,59	11,81	20,25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=64$	6,77	9,38	14,58	25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=128$	9,75	13,5	21	36
Other countermeasures (overhead)				
scalar splitting	2	3	5	9
naive ISW	4	9	25	81

Field element randomization

Jacobian coordinate randomization

Double randomization
$[k] P=\left[k_{0}\right] P+\cdots+\left[k_{d}\right] P$

* Assume 12 multiplications per loop iteration
** Neglect add / sub vs. multiplications

Performance estimations

	order 1	order 2	order 4	order 8
Our countermeasure (overhead)				
$\mathrm{R}_{1}-h=32$	1,35	1,39	1,47	1,64
$\mathrm{R}_{1}-h=64$	1,73	1,81	1,98	2,31
$\mathrm{R}_{1}-h=128$	2,58	2,75	3,08	3,75
R_{2}	3	4	6	10
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=32$	5,48	7,59	11,81	20,25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=64$	6,77	9,38	14,58	25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=128$	9,75	13,5	21	36
Other countermeasures (overhead)				
scalar splitting	2	3	5	9
naive ISW	4	9	25	81

Field element randomization

Jacobian coordinate randomization

Double randomization
$[k] P=\left[k_{0}\right] P+\cdots+\left[k_{d}\right] P$
ISW applied to all mult.

* Assume 12 multiplications per loop iteration
** Neglect add / sub vs. multiplications

Performance estimations

	order 1	order 2	order 4	order 8
Our countermeasure (overhead)				
$\mathrm{R}_{1}-h=32$	1,35	1,39	1,47	1,64
$\mathrm{R}_{1}-h=64$	1,73	1,81	1,98	2,31
$\mathrm{R}_{1}-h=128$	2,58	2,75	3,08	3,75
R_{2}	3	4	6	10
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=32$	5,48	7,59	11,81	20,25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=64$	6,77	9,38	14,58	25
$\mathrm{R}_{1} \& \mathrm{R}_{2}-h=128$	9,75	13,5	21	36
Other countermeasures (overhead)				
scalar splitting	2	3	5	9
naive ISW	4	9	25	81

Field element randomization Jacobian coordinate randomization

Double randomization

* Assume 12 multiplications per loop iteration
** Neglect add / sub vs. multiplications

Less secure than our solution (provided that hiddenness holds)

Conclusion

- Formal model for regular exponentiation-like algorithms (with randomization)
- Formalisation of the hiddenness assumption
- Generic provably secure countermeasure
- Application to several ECC scalar mult. algorithms
- Perspectives:
- Challenge the hiddenness assumption in practice
- Applications to other algorithms / randomization techniques
- Practical implementations and attacks

[^0]: * Assume 12 multiplications per loop iteration
 ** Neglect add / sub vs. multiplications

[^1]: * Assume 12 multiplications per loop iteration
 ** Neglect add / sub vs. multiplications

