
Masking against Side-Channel
Attacks: a Formal Security Proof

Matthieu Rivain

Joint work with Emmanuel Prouff

EUROCRYPT 2013 – May 27th

Outline

1 � Introduction and Previous Works

2 � Our Contribution

3 � Model of Leaking Computation

4 � Overview of the Proof

5 � Conclusion and Perspectives

Outline

1 � Introduction and Previous Works

2 � Our Contribution

3 � Model of Leaking Computation

4 � Overview of the Proof

5 � Conclusion and Perspectives

Side-Channel Attacks

� Attacks exploiting physical information leakage
I timing [Kocher. CRYPTO’96]
I power consumption [Kocher et al. CRYPTO’99]
I electromagnetic emanations [Gandolfi et al. CHES’01]

Leakage
measurements Statistical

treatment

Secret key

Masking

� [Chari et al. CRYPTO’99] [Goubin-Patarin. CHES’99]

� Apply secret sharing to internal variables

� A sensitive variable x is shared into d+ 1 variables

x0 ⊕ x1 ⊕ · · · ⊕ xd = x

� Computing on each share separately

Masking Schemes
� A lot of first-order masking schemes have been published

I [Kocher et al. US Patent 1999] [Goubin-Patarin. CHES’99]
[Messerges. FSE’00] [Akkar-Giraud. CHES’01]
[Blomer et al. SAC’04] [Oswald et al. FSE’05]
[Prouff et al. CHES’06] [Prouff-Rivain. WISA’07]

� Used in current smart cards products

� Limitation: vulnerable to second-order SCA

Masking Schemes
� Increasing masking order
⇒ increasing attack order
⇒ increasing attack difficulty

� Soundness [Chari et al. CRYPTO’99]

I Noisy leakage model: Li ∼ xi +N (µ, σ2)

I Distinguishing
(
(Li)i|x = 0

)
from

(
(Li)i|x = 1

)
takes q

samples:
q ≥ cst · σd

� Higher-order masking schemes
I [Rivain-Prouff. CHES’10] [Kim et al. CHES’11]

[Carlet et al. FSE’12] [Coron et al. FSE’13]

� Limitation: no security proof against an adversary using the
whole leakage of the computation

Physically Observable Cryptography

� [Micali-Reyzin. TCC’04]

� Framework for leaking computation

� Assumption: Only Computation Leaks (OCL)

� Computation divided into subcomputations y ← C(x)

� Each subcomputation leaks a function of its input f(x)

Leakage Functions

� Leakage-Resilience model [Dziembowski-Pietrzak. STOC’08]

I bounded-range leakage functions

f : {0, 1}n → {0, 1}λ with λ� n

� Leakage model for circuits [Faust et al. EUROCRYPT’10]

I computationally bounded leakage functions: f ∈ AC0
(computable by a circuit of constant depth)

I noisy leakage functions: f(x) = x⊕ ε
with ε being some sparse error vector

Limitations
� In practice the leakage is far bigger than n bits (λ� n)

Figure: Power consumption of a DES computation.

� The leakage result from the switching activity of logic gates

I it can hardly be modeled by an AC0 function

I noise can hardly be modeled as the xor of an error vector

State of the Art
� Lack of practically relevant leakage models

� Masking widely used without formal proof

My leakage model
looks relevant

My implementation
is provably secure

My leakage model
is practically relevant

My implementation
looks secure

PRACTITIONER
THOUGHTS

THEORETICIAN
THOUGHTS

Our Goal
� A step toward:

Our leakage model
is practically relevant

Our implementation
is provably secure

Outline

1 � Introduction and Previous Works

2 � Our Contribution

3 � Model of Leaking Computation

4 � Overview of the Proof

5 � Conclusion and Perspectives

Our Contribution

� Leakage model

I OCL assumption [Micali-Reyzin. TCC’04]

I subcomputations = elementary calculations
(a few CPU intructions, small inputs)

� New class of noisy leakage functions
I f(x) implies a bounded bias in the distribution of x

Our Contribution

� Formal security proof for a block cipher computation
I negligible entropy loss on the key (w.r.t. masking order)

� Need for a leak-free component (for mask refreshing)

x = (x0, x1, . . . , xd)︸ ︷︷ ︸⊕
i xi=x

7−→ x′ = (x′0, x
′
1, . . . , x

′
d)︸ ︷︷ ︸⊕

i x
′
i=x

with (x | x) and (x′ | x) mutually independent.

Outline

1 � Introduction and Previous Works

2 � Our Contribution

3 � Model of Leaking Computation

4 � Overview of the Proof

5 � Conclusion and Perspectives

Notion of Bias
� Bias of X given Y = y:

β(X|Y = y) = ‖P[X]− P[X|Y = y]‖

with ‖ · ‖ = Euclidean norm.

� Bias of X given Y :

β(X|Y) =
∑
y∈Y

P[Y = y] β(X|Y = y) .

� Related to MI by:

MI(X;Y) ≤ N

ln 2
β(X|Y) (with N = |X |)

Model of Leaking Computation

� Every elementary calculation leaks a noisy function of its input

I noise modeled by a fresh random tape argument

� f adaptively chosen by the adversary in N (1/ψ)

β
(
X|f(X)

)
<

1

ψ

� ψ is some noise parameter

� Capture any form of noisy leakage

� Assumtpion: ψ can be set by the designer (linear in the
security parameter)

Outline

1 � Introduction and Previous Works

2 � Our Contribution

3 � Model of Leaking Computation

4 � Overview of the Proof

5 � Conclusion and Perspectives

Overview of the Proof

� Consider a SPN computation

Figure: Example of SPN round.

Overview of the Proof
� Classical implementation protected with masking

Figure: Example of SPN round protected with masking.

S-Box Computation

� [Carlet et al. FSE’12]

� Polynomial evaluation over GF(2n)

� Two types of elementary calculations:
I linear functions (additions, squares, multiplication by

coefficients)
I multiplications over GF(2n)

Linear Functions
� Given a sharing X = X0 ⊕X1 ⊕ · · · ⊕Xd

X0

�(X0)

� � �

X1

�(X1) �(Xd)

Xd

· · ·

� Apply mask-refreshing on output sharing

Linear Functions
� Given a sharing X = X0 ⊕X1 ⊕ · · · ⊕Xd

f0(X0)

X0

�(X0)

� � �

X1

�(X1) �(Xd)
f1(X1) fd(Xd)

Xd

· · ·

� Apply mask-refreshing on output sharing

Linear Functions

� For f0, f1, . . . , fd ∈ N (1/ψ), we show

β
(
X
∣∣f0(X0), f1(X1), . . . , fd(Xd)

)
≤ N

d
2

ψd+1
.

� Taking ψ ∼ N 1
2 ω we get

MI
(
X; (f0(X0), f1(X1), . . . , fd(Xd))

)
≤ 1

ωd+1

� Result in accordance with [Chari et al. CRYPTO’99]

Multiplications

� Given two sharings A =
⊕

iAi and B =
⊕

iBi

A×B =
(⊕

i
Ai

)(⊕
i
Bi

)
=
⊕

i,j
AiBj

� First step: cross-products

A0 ⇥B0 A0 ⇥B1 · · · A0 ⇥Bd

A1 ⇥B0 A1 ⇥B1 · · · A1 ⇥Bd

...
...

. . .
...

Ad ⇥B0 Ad ⇥B1 · · · Ad ⇥Bd

Multiplications

� Given two sharings A =
⊕

iAi and B =
⊕

iBi

A×B =
(⊕

i
Ai

)(⊕
i
Bi

)
=
⊕

i,j
AiBj

� First step: cross-products

A0 ⇥B0 A0 ⇥B1 · · · A0 ⇥Bd

A1 ⇥B0 A1 ⇥B1 · · · A1 ⇥Bd

...
...

. . .
...

Ad ⇥B0 Ad ⇥B1 · · · Ad ⇥Bd

f0,0(A0, B0) f0,1(A0, B1) · · · f0,d(A0, Bd)
f1,0(A1, B0) f1,1(A1, B1) · · · f1,d(A1, Bd)

...
...

. . .
...

fd,0(Ad, B0) fd,1(Ad, B1) · · · fd,d(Ad, Bd)

Multiplications

� We have A = g(X) and B = h(X) where X = s-box input

� Bias given cross-product leakages:

For fi,j ∈ N (1/ψ) we show

β
(
X|(fi,j(Ai, Bj))i,j

)
≤ 2N

3d+7
2

(λ1d+ λ0
ψ

)d+1

with λ1 ∈ [1; 2] and λ2 ∈ [1; 3].

� Taking ψ ∼ N 3
2 (λ1d+ λ0)ω we get

MI
(
X; (fi,j(Ai, Bj))i,j

)
≤ 1

ωd+1

� The noise parameter must be roughly multiplied by d

Multiplications

� Second step: refreshing

� Apply on each column and one row of

A0 ⇥B0 A0 ⇥B1 · · · A0 ⇥Bd

A1 ⇥B0 A1 ⇥B1 · · · A1 ⇥Bd

...
...

. . .
...

Ad ⇥B0 Ad ⇥B1 · · · Ad ⇥Bd

� We get a fresh (d+ 1)2-sharing of A×B

V0,0 V0,1 · · · V0,d
V1,0 V1,1 · · · V1,d

...
...

. . .
...

Vd,0 Vd,1 · · · Vd,d

Multiplications

� Third step: summing rows

Zi ← Vi,0 ⊕ Vi,1 ⊕ · · · ⊕ Vi,d
� Takes d elementary calculations (XORs) per row:

Ti,1 Vi,0 � Vi,1

Ti,2 Ti,1 � Vi,2

...

Ti,d Ti,d�1 � Vi,d

(with Zi = Ti,d)

� Then (Z0, Z1, . . . , Zd) is a sharing of A×B
I Apply mask-refreshing

Multiplications

� Third step: summing rows

Zi ← Vi,0 ⊕ Vi,1 ⊕ · · · ⊕ Vi,d
� Takes d elementary calculations (XORs) per row:

...

Ti,1 Vi,0 � Vi,1

Ti,2 Ti,1 � Vi,2

...

Ti,d Ti,d�1 � Vi,d

fi,d(Ti,d�1, Vi,d)

fi,1(Vi,0, Vi,1)

fi,2(Ti,1, Vi,2)

(with Zi = Ti,d)

� Then (Z0, Z1, . . . , Zd) is a sharing of A×B
I Apply mask-refreshing

Multiplications

� For fi,j ∈ N (1/ψ) we show

β
(
X|F0(Z0), F1(Z1), . . . , Fd(Zd)

)
≤ N 3d+5

2

(2
ψ

)d+1

where Fi(Zi) =
(
fi,1(Vi,0, Vi,1), fi,2(Ti,1, Vi,2), . . . , fi,d(Ti,d−1, Vi,d)

)
� Taking ψ ∼ 2N

3
2ω we get

MI
(
X; (F0(Z0), F1(Z1), . . . , Fd(Zd))

)
≤ 1

ωd+1

Putting everything together

� Several subsequences of elementary calculations

� Each provides some leakage Lt about Xt = gt(M,K)

� Lt are mutually independent given (M,K)

MI
(
(M,K); (L1, L2, . . . , LT)

)
≤

T∑
t=1

MI(Xt;Lt) ≤
T

ωd+1

Outline

1 � Introduction and Previous Works

2 � Our Contribution

3 � Model of Leaking Computation

4 � Overview of the Proof

5 � Conclusion and Perspectives

Conclusion and Perspectives

Conclusion:

� New practically relevant leakage model

� Formal security for masking against SCA

Perspectives and open issues:

� Practical estimation of the noise parameter ψ

� Relax proof assumptions:

I fixed noise parameter

I no leak-free component

Conclusion and Perspectives

� What about efficiency?

My implementation
runs in polynomial

time

My implementation
runs in 300 ms
on a smartcard

PRACTITIONER
THOUGHTS

THEORETICIAN
THOUGHTS

	Introduction and Previous Works
	Our Contribution
	Model of Leaking Computation
	Overview of the Proof
	Conclusion and Perspectives

