On the provable security of cryptographic implementations

Matthieu Rivain

Habilitation defense
June 21, 2022, École normale supérieure

WE INNOVATE TO SECURE YOUR BUSINESS

1. Introduction

A crypto story

Alice

Bob

A crypto story

The adversary

Alice

Bob

A crypto story

crypto algorithm

A crypto story

crypto algorithm

A crypto story

crypto algorithm

Provable security

Provable security

security proof

Provable security

The "black-box model"

security proof

Side-channel attacks

Side-channel attacks

Side-channel attacks

Side-channel attacks

Provable security in the presence of leakage

security proof

2. A tell of masks
 (4.

P 2

Masking

Chari, Jutla, Rao, Rohatgi - CRYPTO'99
Apply secret sharing at the computation level

$$
x=x_{1}+\cdots+x_{n}
$$

Goubin, Patarin - CHES'99

Patents by Kocher, Jaffe, Jun (1998)

Masking

Chari, Jutla, Rao, Rohatgi - CRYPTO'99

Goubin, Patarin - CHES'99

Patents by Kocher, Jaffe, Jun (1998)

$$
x=x_{1}+\cdots+x_{n}
$$

Masking of block ciphers

Source: https://www.iacr.org/authors/tikz/

> Jérémy Jean

Masking of block ciphers

Source: https://www.iacr.org/authors/tikz/ Jérémy Jean

Masking of block ciphers

Source: https://www.iacr.org/authors/tikz/ Jérémy Jean

Masking of block ciphers

Masking of block ciphers

Source: https://www.iacr.org/authors/tikz/ Jérémy Jean

Back before 2010:

- Solutions based on table randomisation
- First (or second) order masking only
- Any masking order: open problem?

The ISW scheme

Probing model

The ISW scheme

Probing model

The ISW scheme

Masking an AND gate
split into n shares
$\begin{aligned} & \boldsymbol{c}_{1} \\ & \boldsymbol{c}_{2} \\ & \vdots\end{aligned} \quad+\left(\begin{array}{ccc}0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0\end{array}\right)$
$c_{n} \quad$ add fresh randomness

Efficient application to block ciphers

Rivain, Prouff - CHES 2010

Carlet, Goubin, Prouff, Quisquater, Rivain - FSE 2012

- Represent an m-bit s-box as an algebraic circuit on $\operatorname{GF}\left(2^{m}\right)$
- Use ISW scheme for GF(2^{m}) multiplications
- Observation:
- Linear operation $\Rightarrow \mathcal{O}(n)$ complexity
- Multiplication $\Rightarrow \mathcal{O}\left(n^{2}\right)$ complexity
- S-box representations with the minimum number of multiplications
\Rightarrow optimal circuit for AES / efficient heuristics for general s-boxes

Tight probing security

Tight probing security

Tight probing security

independent input sharings

non-independent input sharings

Many follow-up works

- Formal composition security notions
- Secure refresh gadgets
- Methods for placing refresh gadgets
- Efficient heuristics to minimise non-linear operations

Many follow-up works

- Formal composition security notions
- Secure refresh gadgets
- Methods for placing refresh gadgets
- Efficient heuristics to minimise non-linear operations

End of the story?

Limitation of probing security

Limitation of probing security

3. Provable security vs. noisy leakage

The noisy leakage model

Micali, Reyzin - TCC 2004
Prouff, Rivain - EUROCRYPT 2013

"Only computation leaks" assumption Noisy leakage functions

The noisy leakage model

Memory

Computation

The noisy leakage model
 mancormun-

Micali, Reyzin - TCC 2004
Prouff, Rivain - EUROCRYPT 2013
"Only computation leaks" assumption
Noisy leakage functions

Memory

Computation

The noisy leakage model
 -10

Micali, Reyzin - TCC 2004
Prouff, Rivain - EUROCRYPT 2013

```
"Only computation leaks" assumption
```

Noisy leakage functions

The noisy leakage model

Micali, Reyzin - TCC 2004
Prouff, Rivain - EUROCRYPT 2013

```
"Only computation leaks" assumption
```

Noisy leakage functions

Noisy leakage functions

A function is δ-noisy if (for $X \sim \mathscr{U}$):

$$
\mathbb{E}_{y}[\Delta(X ;(X \mid f(X)=y))] \leq \delta
$$

Noisy leakage functions

A function is δ-noisy if (for $X \sim \mathscr{U}$):

$$
\mathbb{E}_{y}[\Delta(X ;(X \mid f(X)=y)] \leq \delta
$$

statistical distance between X and X and given $f(X)=y$

Noisy leakage functions

Noisy leakage functions

more noise

$$
\Rightarrow \text { smaller } \delta
$$

A function is δ-noisy if (for $X \sim \mathscr{U}$):
expectation on the possible
statistical distance
leakage values between X and X and given $f(X)=y$

Masking security in the noisy leakage model

- Generalised soundness of masking

Masking security in the noisy leakage model

- Generalised soundness of masking

- Formal proof for masked block cipher
- leak-free refresh gadget !

The DDF reduction

Region probing model

The DDF reduction

Region probing model

Region probing model

Random probing model

Region probing model

Random probing model

The DDF reduction

DDF reduction:

r-region probing security \Rightarrow
p-random probing security

$$
\text { with } p=\Theta(r)
$$

$$
\Rightarrow
$$

δ-noisy leakage security with $\delta=\Theta(p)$

State of the art

- State-of-the-art noisy-leakage-secure schemes
- most schemes with at least $\mathcal{O}\left(n^{2}\right)$ complexity
- a few schemes with $\mathcal{O}(1)$ leakage rate, but constant not explicit

State of the art

- State-of-the-art noisy-leakage-secure schemes
- most schemes with at least $\mathcal{O}\left(n^{2}\right)$ complexity
- a few schemes with $\mathcal{O}(1)$ leakage rate, but constant not explicit
- In what follows
- region probing security in quasilinear complexity
- random probing security with explicit constant leakage rate

4. Security in quasilinear complexity

Quasilinear masking

Goudarzi, Joux, Rivain - ASIACRYPT 2018

Goudarzi, Prest, Rivain, Vergnaud - TCHES 2021

A \vec{v}-sharing of x

$$
\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \quad \text { s.t. } \quad\langle\vec{v}, \vec{x}\rangle=x
$$

Quasilinear masking

Goudarzi, Joux, Rivain - ASIACRYPT 2018

Goudarzi, Prest, Rivain, Vergnaud - TCHES 2021

A \vec{v}-sharing of x

$$
\begin{aligned}
& \left.\left.\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \quad \text { s.t. } \overparen{v}\right) \vec{x}\right\rangle=x \\
& \vec{v}=\left(1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right) \text { for } \omega \stackrel{\$ \mathbb{F}}{ } .
\end{aligned}
$$

Quasilinear masking

Goudarzi, Joux, Rivain - ASIACRYPT 2018

Goudarzi, Prest, Rivain, Vergnaud - TCHES 2021

Polynomial $P_{\vec{x}}(\omega)$

 (shares $=$ coefficients)A \vec{v}-sharing of x

$$
\begin{aligned}
& \left.\left.\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \quad \text { s.t. } \widehat{v}, \vec{x}\right\rangle=x=\sum_{i=0}^{n-1} x_{i} \cdot \omega^{i}\right) \\
& \vec{v}=\left(1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right) \quad \text { for } \quad \omega \stackrel{\$}{\leftarrow} \mathbb{F}
\end{aligned}
$$

Efficient multiplication

- Let \vec{t} such that

$$
P_{\vec{t}}=P_{\vec{x}} \cdot P_{\vec{y}}
$$

- We get

$$
P_{\vec{t}}(\omega)=\sum_{i=0}^{2 n-1} t_{i} \omega^{i}=x \cdot y
$$

Efficient multiplication

- Let \vec{t} such that

$$
P_{\vec{t}}=P_{\vec{x}} \cdot P_{\vec{y}}
$$

- We get

$$
P_{\vec{t}}(\omega)=\sum_{i=0}^{2 n-1} t_{i} \omega^{i}=x \cdot y
$$

Efficient multiplication

- Let \vec{t} such that

$$
P_{\vec{t}}=P_{\vec{x}} \cdot P_{\vec{y}}
$$

- We get

$$
P_{\vec{t}}(\omega)=\sum_{i=0}^{2 n-1} t_{i} \omega^{i}=x \cdot y
$$

- Compression:

$$
\vec{z}=\left(t_{0}, \ldots, t_{n-1}\right)+\omega^{n} \cdot\left(t_{n}, \ldots, t_{2 n-1}\right)
$$

Multiplication gadget

$$
\vec{x}-{ }^{F F T} \vec{r}
$$

Multiplication gadget

Probing security

\& FFT computes linear combinations of the x_{i} 's

$$
\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{t}
\end{array}\right)=[A] \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{t}
\end{array}\right)
$$

Probing security
 anownerner

8 FFT computes linear combinations of the $x_{i}{ }^{\prime}$ s

$$
\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{t}
\end{array}\right)=[A] \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{t}
\end{array}\right)
$$

Lemma 1

$$
\text { If } \vec{v}=\left(\begin{array}{c}
\omega^{0} \\
\omega^{1} \\
\vdots \\
\omega^{n-1}
\end{array}\right) \notin\left\langle\left[\begin{array}{ll}
A &]\rangle \text { then }\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{t}
\end{array}\right) \sim \mathscr{U}\left(\mathbb{F}^{t}\right)
\end{array} \begin{array}{l}
\text { (assuming } A \\
\text { full rank wlog) }
\end{array}\right.\right.
$$

Probing security

Lemma 2

$$
\exists \text { at most } t \text { values of } \omega \in \mathbb{F} \text { s.t. } \vec{v}=\left(\begin{array}{c}
\omega \\
\omega^{1} \\
\vdots \\
\omega^{n-1}
\end{array}\right) \in\left\langle\left[\begin{array}{l}
A
\end{array}\right]\right\rangle
$$

Probing security
 maneremen

Lemma 2
\exists at most t values of $\omega \in \mathbb{F}$ s.t. $\vec{v}=\left(\begin{array}{c}\omega^{1} \\ \vdots \\ \omega^{n-1}\end{array}\right) \in\langle[A]\rangle$

Lemma 1 + Lemma 2

$$
P\left[\left(w_{1}, \ldots, w_{t}\right) \text { cannot be simulated }\right] \leq \frac{t}{|\mathbb{F}|}<\frac{n}{|\mathbb{F}|}
$$

Composition security

\Rightarrow region probing security

5. Security with constant leakage rate

The expansion strategy

- Idea: bootstrap constant-size gadgets
- Amplification of random probing security

$$
p \longrightarrow f(p)
$$

The expansion strategy

- Idea: bootstrap constant-size gadgets
- Amplification of random probing security

$$
p \longrightarrow f(p) \longrightarrow f(f(p))
$$

The expansion strategy

- Idea: bootstrap constant-size gadgets
- Amplification of random probing security

$$
p \longrightarrow f(p) \longrightarrow f(f(p)) \longrightarrow \cdots \longrightarrow f^{(k)}(p)
$$

The expansion strategy

- Idea: bootstrap constant-size gadgets
- Amplification of random probing security

$$
p \longrightarrow f(p) \longrightarrow f(f(p)) \longrightarrow \cdots \longrightarrow f^{(k)}(p)
$$

Belaïd, Coron, Prouff, Rivain, Taleb - CRYPTO 2020
Belaïd, Rivain, Taleb - EUROCRYPT 2021

- Formalise new composition / expansion notions
- Obtain lower complexity / tolerate higher leakage rate

The expansion strategy

The expansion strategy

The expansion strategy

Random probing expandability (RPE)

RPE threshold $t:|J| \leq t$,
$\left(\left|I_{1}\right|>t\right.$ or $\left.\left|I_{2}\right|>t\right)=$ simulation failure
if $|J|>t$, sim. can choose
J^{\prime} s.t. $\left|J^{\prime}\right|=n-1$

Random probing expandability (RPE)

- Failure events:

$$
\mathscr{F}_{1}:=\left(\left|I_{1}\right|>t\right) \quad \mathscr{F}_{2}:=\left(\left|I_{2}\right|>t\right)
$$

- The gadget is ε-RPE if

$$
\operatorname{Pr}\left(\mathscr{F}_{1}\right) \leq \varepsilon, \quad \operatorname{Pr}\left(\mathscr{F}_{2}\right) \leq \varepsilon, \quad \operatorname{Pr}\left(\mathscr{F}_{1} \cap \mathscr{F}_{2}\right) \leq \varepsilon^{2}
$$

$\forall J$ and w.r.t. random $W \leftarrow$ LeakingWires (p)

Random probing expandability (RPE)

- Failure events:

$$
\mathscr{F}_{1}:=\left(\left|I_{1}\right|>t\right) \quad \mathscr{F}_{2}:=\left(\left|I_{2}\right|>t\right)
$$

- The gadget is ε-RPE if

$$
\operatorname{Pr}\left(\mathscr{F}_{1}\right) \leq \varepsilon, \quad \operatorname{Pr}\left(\mathscr{F}_{2}\right) \leq \varepsilon, \quad \operatorname{Pr}\left(\mathscr{F}_{1} \cap \mathscr{F}_{2}\right) \leq \varepsilon^{2}
$$

$\forall J$ and w.r.t. random $W \leftarrow$ LeakingWires (p)

- The gadget if f-RPE if $\varepsilon=f(p)$

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\} f$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Now what if a failure occurs?

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Now what if a failure occurs?

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Now what if a failure occurs?

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

Base gadget $\{G\}$-RPE \Rightarrow expanded gadgets $\left\{G^{(2)}\right\} f^{2}$-RPE

Expansion security

- Failure probability:

$$
\operatorname{Pr}\left(\operatorname{Sim}-G^{(2)} \text { fails }\right)=\operatorname{Pr}\left(\text { Sim- } G \text { fails on } W_{\text {base }}\right)
$$

Expansion security

\sim LeakingWires (ε)

- Failure probability:

$$
\operatorname{Pr}\left(\text { Sim }-G^{(2)} \text { fails }\right)=\operatorname{Pr}\left(\text { Sim- } G \text { fails on } W_{\text {base }}\right)
$$

Expansion security

\sim LeakingWires (ε)

- Failure probability:

$$
\begin{aligned}
\operatorname{Pr}\left(\text { Sim- } G^{(2)} \text { fails }\right) & =\operatorname{Pr}\left(\operatorname{Sim}-G \text { fails on } W_{\text {base }}\right) \\
& =f(\varepsilon)=f(f(p))
\end{aligned}
$$

Expansion security

\sim LeakingWires (ε)

- Failure probability:

$$
\begin{aligned}
\operatorname{Pr}\left(\text { Sim- } G^{(2)} \text { fails }\right) & =\operatorname{Pr}\left(\text { Sim- } G \text { fails on } W_{\text {base }}\right) \\
& =f(\varepsilon)=f(f(p))
\end{aligned}
$$

- $G^{(2)}$ is $f^{(2)}$-RPE

Expansion security

\sim LeakingWires (ε)

- Failure probability:

$$
\begin{aligned}
\operatorname{Pr}\left(\text { Sim- } G^{(2)} \text { fails }\right) & =\operatorname{Pr}\left(\text { Sim- } G \text { fails on } W_{\text {base }}\right) \\
& =f(\varepsilon)=f(f(p))
\end{aligned}
$$

- $G^{(2)}$ is $f^{(2)}$-RPE
- By induction $G^{(k)}$ is $f^{(k)}$-RPE

Complexity analysis

Choosing k s.t. $f^{(k)}(p) \leq 2^{-\kappa}$

$$
\Rightarrow \quad|\hat{C}|=\mathcal{O}\left(|C| \cdot \kappa^{e}\right) \quad \text { with } \quad e=\frac{\log \lambda_{\max }}{\log d}
$$

Complexity analysis

Choosing k s.t. $f^{(k)}(p) \leq 2^{-k}$

$$
\Rightarrow \quad|\hat{C}|=\mathcal{O}\left(|C| \cdot \kappa^{e}\right) \quad \text { with } \quad e=\frac{\log \lambda_{\max }}{\log d}
$$

Complexity analysis

Complexity analysis

Complexity analysis

Design guidelines:

- maximize amplification order d
- minimize max eigenvalue $\lambda_{\max }$

Complexity analysis

Design guidelines:

$$
\text { - Upper bound: } d \leq \frac{n+1}{2}
$$

- maximize amplification order(d)
- minimize max eigenvalue $\lambda_{\max }$

Complexity analysis

Design guidelines:

$$
\text { - Upper bound: } d \leq \frac{n+1}{2}
$$

- maximize amplification order(d)
- minimize max eigenvalue $\lambda_{\max }$

$$
M=\left(\begin{array}{cccc}
a a & a c & * & 0 \\
c a & c c & * & 0 \\
0 & 0 & n^{2} & 0 \\
* & * & * & n
\end{array}\right) \quad \Rightarrow\left\{\begin{array}{l}
\left(\lambda_{1}, \lambda_{2}\right)=\mathrm{ev}\left(\begin{array}{ll}
a a & a c \\
c a & c c
\end{array}\right) \\
\lambda_{3}=n^{2}, \quad \lambda_{4}=n
\end{array}\right.
$$

Complexity analysis

Design guidelines:

$$
\text { - Upper bound: } d \leq \frac{n+1}{2}
$$

- maximize amplification order(d)
- minimize max eigenvalue $\lambda_{\max }$

$$
M=\left(\begin{array}{cccc}
c a a & a c & * & 0 \\
c a & c c & * & 0 \\
\hdashline 0 & 0 & n^{2} & 0 \\
* & * & * & n
\end{array}\right) \quad \Rightarrow\left\{\begin{array}{l}
\left(\lambda_{1}, \lambda_{2}\right)=\mathrm{ev}\left(\begin{array}{cc}
a a & a c \\
c a & c c
\end{array}\right. \\
\lambda_{3}=n^{2}, \\
\lambda_{4}=n
\end{array}\right.
$$

Complexity analysis

Design guidelines:

- maximize amplification order(d)
- minimize max eigenvalue $\lambda_{\max }$

Generic constructions

$$
\begin{aligned}
& \text { + }+\begin{array}{l}
\downarrow \downarrow \downarrow \\
G_{\oplus}(\vec{x}, \vec{y})=G_{\mathrm{R}}(\vec{x})+G_{\mathrm{R}}(\vec{y}) \\
G_{\lambda}(\vec{x})=\left(G_{\mathrm{R}}(\vec{x}), G_{\mathrm{R}}(\vec{x})\right)
\end{array}
\end{aligned}
$$

Generic constructions

$$
\underbrace{\substack{\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow}}_{\downarrow \downarrow \downarrow} G_{\otimes}(\vec{x}, \vec{y}) \mapsto\left(\begin{array}{c}
x_{1} \cdot G_{\mathrm{R}}(\vec{y}) \\
x_{2} \cdot G_{\mathrm{R}}(\vec{y}) \\
\vdots \\
x_{n} \cdot G_{\mathrm{R}}(\vec{y})
\end{array}\right)+\text { greedy use of randomness }
$$

Generic constructions

- Optimal amplification order $d=\frac{n+1}{2}$
- Max eigenvalue:

$$
M=\left(\begin{array}{cccc}
a a & a c & * & 0 \\
c a & c c & * & 0 \\
0 & 0 & n^{2} & 0 \\
* & * & * & n
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{ev}\left(\begin{array}{cc}
a a & a c \\
c a & c c
\end{array}\right) \\
\left(\lambda_{3}=n^{2}\right) \lambda_{4}=n
\end{array} \begin{array}{c}
n^{2} \Rightarrow \begin{array}{l}
\text { asymptotic } \\
\text { bottleneck }
\end{array}
\end{array}\right.
$$

- Complexity $\mathcal{O}\left(|C| \cdot \kappa^{e}\right)$ with $e=\frac{\log \lambda_{\max }}{\log d} \xrightarrow{n \rightarrow \infty} 2$

Generic constructions

- Optimal amplification order $d=\frac{n+1}{2}$

For some large enough \mathbb{F}

- Max eigenvalue:

Belaïd, Rivain, Taleb, Vergnaud - ASIACRYPT 2021

$$
M=\left(\begin{array}{cccc}
a a & a c & * & 0 \\
c a & c c & * & 0 \\
0 & 0 & n^{2} & 0 \\
* & * & * & n
\end{array}\right)
$$

Efficient instantiations

$$
\left.\begin{array}{rl}
\hline \text { 3-share gadgets } \\
\hline G_{\mathrm{R}}: z_{1} & \leftarrow r_{1}+x_{1} \\
z_{2} & \leftarrow r_{2}+x_{2} \\
z_{3} & \leftarrow\left(r_{1}+r_{2}\right)+x_{3}
\end{array}\right\} \Rightarrow O\left(|C| \kappa^{3.9}\right), \quad p_{\max }=2^{-7.5}
$$

5-share gadgets

$$
\begin{aligned}
G_{\mathrm{R}}: z_{1} & \leftarrow\left(r_{1}+r_{2}\right)+x_{1} \\
z_{2} & \leftarrow\left(r_{2}+r_{3}\right)+x_{2} \\
z_{3} & \leftarrow\left(r_{3}+r_{4}\right)+x_{3} \\
z_{4} & \leftarrow\left(r_{4}+r_{5}\right)+x_{4} \\
z_{5} & \leftarrow\left(r_{5}+r_{1}\right)+x_{5}
\end{aligned}
$$

Conclusion

Contributions

- Efficient tight probing-secure masked implementations
- Formalisation of noisy side-channel leakage
- Provable security against noisy leakage

Perspectives

- Bridging the gap between theory and practice
- Improving the practical efficiency of noisy-leakage secure schemes
- Formal verification methods for noisy-leakage secure schemes
- Provable security against more powerful adversary (fault attacks / white-box model)

