
SmallWood: Hash-Based Zero-Knowledge Arguments
for Relatively Small Instances

Matthieu Rivain

Join work with Thibauld Feneuil

NIST Workshop on Multi-Party Threshold Schemes 2026

January 29, 2026

1. Intro

2. Design paradigm: PIOP + PCS

3. SmallWood PIOP / PACS constraint system

4. SmallWood PCS

5. Applications

Roadmap

SmallWood: Hash-based ZK-NARK

H ZK-NARK
⚙

modelled as a
random oracle

(or ZKPoK)

SmallWood: Hash-based ZK-NARK

H ZK-NARK
⚙

modelled as a
random oracle Zero-knowledge: brings no info on

 Knowledge soundness: valid valid (extraction)
⋆ π w
⋆ π → w

=
Prove Verif

π

x

w

x

0 / 1

(or ZKPoK)

SmallWood: Hash-based ZK-NARK

H ZK-NARK
⚙

modelled as a
random oracle

Main features

• Conservative security, plausibly post-quantum

• Fast prover, faster verifier

• Compact proofs for “relatively small instances“

• Extended witness from 500 B to 500 KB ≈

Prove Verif
π

x

w

x

0 / 1

 Zero-knowledge: brings no info on
 Knowledge soundness: valid valid (extraction)

⋆ π w
⋆ π → w

=

(or ZKPoK)

SmallWood: Hash-based ZK-NARK

H ZK-NARK
⚙

(or ZKPoK)modelled as a
random oracle

Main features
Built upon

• Ligero [AHIV17, AHIV23]

• Threshold-Computation-in-the-Head [FR23, FR25]

• Brakedown [GLS+23]

 Zero-knowledge: brings no info on
 Knowledge soundness: valid valid (extraction)

⋆ π w
⋆ π → w

=

• Conservative security, plausibly post-quantum

• Fast prover, faster verifier

• Compact proofs for “relatively small instances“

• Extended witness from 500 B to 500 KB ≈

Prove Verif
π

x

w

x

0 / 1

PIOP + PCS

PIOP + PCS

Polynomial Interactive
Oracle Proof

P

PIOP + PCS

Polynomial Interactive
Oracle Proof

Polynomial Commitment
SchemeP

Commit (P) → 𝖼𝗈𝗆
Prove (P, e) → P(e), πe
Verif (𝖼𝗈𝗆, pe, πe) → 0/1

PIOP + PCS

Statement , secret witness x w Statement x

(1) Check (e.g. ?)

(2) Oracle queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E : pe = P (e)

Q(e) = Ψ(pe, x, c)

PIOP + PCS

P
polynomial oracle Statement , secret witness x w Statement x

(1) Check (e.g. ?)

(2) Oracle queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E : pe = P (e)

Q(e) = Ψ(pe, x, c)

r ← $
(w, r) ↦ P

PIOP + PCS

P
polynomial oracle

c

Statement , secret witness x w Statement x

 c ← $

(1) Check (e.g. ?)

(2) Oracle queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E : pe = P (e)

Q(e) = Ψ(pe, x, c)

r ← $
(w, r) ↦ P

PIOP + PCS

P
polynomial oracle

c

Q

Statement , secret witness x w Statement x

 c ← $

(1) Check (e.g. ?)

(2) Oracle queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E : pe = P (e)

Q(e) = Ψ(pe, x, c)

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

PIOP + PCS

P
polynomial oracle

c

Q

Statement , secret witness x w Statement x

 c ← $

(1) Check (e.g. ?)

(2) Oracle queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E : pe = P (e)

Q(e) = Ψ(pe, x, c)
P

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

PIOP + PCS

P
polynomial oracle

c

Q

Statement , secret witness x w Statement x

 c ← $

(1) Check (e.g. ?)

(2) Oracle queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E : pe = P (e)

Q(e) = Ψ(pe, x, c)
P

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

If well defined: (1) satisfied
 valid (w.o.p.)

Q
⟺ w

PIOP + PCS

P
polynomial oracle

c

Q

Statement , secret witness x w Statement x

 c ← $

(1) Check (e.g. ?)

(2) Oracle queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E : pe = P (e)

Q(e) = Ψ(pe, x, c)
P

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

If well defined: (1) satisfied
 valid (w.o.p.)

Q
⟺ w

If not well defined, by Schwartz-Zippel lemma: Q
Pr[(2) OK] ≤ (dQ/ |𝔽 |)|E|

PIOP + PCS

 𝖼𝗈𝗆 = PCS.Commit (P)

c

Q

Statement , secret witness x w Statement x

 c ← $

(1) Check (e.g. ?)

(2) Evaluation queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E :

Q(e) = Ψ(pe, x, c)

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

PIOP + PCS

 𝖼𝗈𝗆 = PCS.Commit (P)

c

Q

Statement , secret witness x w Statement x

 c ← $

(1) Check (e.g. ?)

(2) Evaluation queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E :

Q(e) = Ψ(pe, x, c)

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

 E

PIOP + PCS

 𝖼𝗈𝗆 = PCS.Commit (P)

c

Q

Statement , secret witness x w Statement x

 c ← $

(1) Check (e.g. ?)

(2) Evaluation queries:

 check

Q Q(0) = 0

E ⊆ 𝔽 ← $
∀e ∈ E :

Q(e) = Ψ(pe, x, c)

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

 PCS.Verif(𝖼𝗈𝗆, pe, πe) {pe, πe}

 E

∀e ∈ E : pe = P(e)
πe ← PCS.Prove(𝖼𝗈𝗆, P, e)

PIOP + PCS

 𝖼𝗈𝗆 = PCS.Commit (P)

c

Statement , secret witness x w

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

 {pe, πe}

 E

∀e ∈ E : pe = P(e)
πe ← PCS.Prove(𝖼𝗈𝗆, P, e)

H

H
 Q

Fiat-Shamir :
PIOP + PCS NARK↦

PIOP + PCS

 𝖼𝗈𝗆 = PCS.Commit (P)

c

Statement , secret witness x w

r ← $
(w, r) ↦ P

 Q = Ψ(P, x, c)

 {pe, πe}

 E

∀e ∈ E : pe = P(e)
πe ← PCS.Prove(𝖼𝗈𝗆, P, e)

H

H
 Q

ZK PIOP + ZK PCS ZK NARK↦

Fiat-Shamir :
PIOP + PCS NARK↦

PACS

Parallel and Aggregated Constraint System
(generalisation of Ligero)

PACS
Extended witness

w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s

PACS

⋮

Extended witness

Parallel polynomial constraint

w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f(, cs) = 0

f(, c1) = 0

PACS

⋮

Extended witness

Parallel polynomial constraint

f′ (, c1)w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f′ (, cs)

Aggregated parallel polynomial constraint

⋮
+

+

= 0

w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f(, cs) = 0

f(, c1) = 0

PACS

⋮

Extended witness

Parallel polynomial constraint

f′ (, c1)w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f′ (, cs)

Aggregated parallel polynomial constraint

⋮
+

+

= 0

w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f(, cs) = 0

w1,1 … w1,s r1,1 … r1,ℓ.
⋮ ⋮ ⋮ ⋮.

wn,1 … wn,s rn,1 … rn,ℓ

P1.
⋮.
Pn

= P⋮

randomness

Lagrange
interpolation

 : witness support
witness =
Ω

{P(ω)}ω∈Ω

f(, c1) = 0

PACS

⋮

Extended witness

Parallel polynomial constraint

f′ (, c1)w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f′ (, cs)

Aggregated parallel polynomial constraint

⋮
+

+

= 0

w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f(, cs) = 0

w1,1 … w1,s r1,1 … r1,ℓ.
⋮ ⋮ ⋮ ⋮.

wn,1 … wn,s rn,1 … rn,ℓ

P1.
⋮.
Pn

= P⋮

randomness

Lagrange
interpolation

 Q(X) = f(P(X), c(X)) ⟹ Q(ω) = 0 ∀ω ∈ Ω

 : witness support
witness =
Ω

{P(ω)}ω∈Ω

f(, c1) = 0

PACS

⋮

Extended witness

Parallel polynomial constraint

f′ (, c1)w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f′ (, cs)

Aggregated parallel polynomial constraint

⋮
+

+

= 0

w1,1 … w1,s.
⋮ ⋮.

wn,1 … wn,s f(, cs) = 0

w1,1 … w1,s r1,1 … r1,ℓ.
⋮ ⋮ ⋮ ⋮.

wn,1 … wn,s rn,1 … rn,ℓ

P1.
⋮.
Pn

= P⋮

randomness

Lagrange
interpolation

 Q(X) = f(P(X), c(X)) ⟹ Q(ω) = 0 ∀ω ∈ Ω

 : witness support
witness =
Ω

{P(ω)}ω∈Ω

 Q′ (X) = f′ (P(X), c′ (X)) ⟹ ∑
Ω

Q′ (ω) = 0

f(, c1) = 0

PACS PIOP

P, M

c

Q p.p. constraints

 a.p.p. constraints

f1, …, fm1

f′ 1, …, f′ m2

PACS PIOP

P, M

c

Q p.p. constraints

 a.p.p. constraints

f1, …, fm1

f′ 1, …, f′ m2

 Random masking

polynomial

s.t.

M

∑
ω∈Ω

M(ω) = 0

PACS PIOP

P, M

c

Q

 Q(X) = M(X) +∑
i

Γi(X) ⋅ fi(P(X), ci(X)) +∑
i

γi ⋅ f′ i(P(X), c′ i(X))

 p.p. constraints

 a.p.p. constraints

f1, …, fm1

f′ 1, …, f′ m2

 Random masking

polynomial

s.t.

M

∑
ω∈Ω

M(ω) = 0

PACS PIOP

P, M

c

Q

 Q(X) = M(X) +∑
i

Γi(X) ⋅ fi(P(X), ci(X)) +∑
i

γi ⋅ f′ i(P(X), c′ i(X))

challenge
c = {Γi(X)}, {γi}

Batching (aggregated)
p.p. constraints

 p.p. constraints

 a.p.p. constraints

f1, …, fm1

f′ 1, …, f′ m2

 Random masking

polynomial

s.t.

M

∑
ω∈Ω

M(ω) = 0

PACS PIOP

P, M

c

Q

 Q(X) = M(X) +∑
i

Γi(X) ⋅ fi(P(X), ci(X)) +∑
i

γi ⋅ f′ i(P(X), c′ i(X))

= 0 ∀x∈Ω ∑Ω = 0

challenge
c = {Γi(X)}, {γi}

Batching (aggregated)
p.p. constraints

 p.p. constraints

 a.p.p. constraints

f1, …, fm1

f′ 1, …, f′ m2

 Random masking

polynomial

s.t.

M

∑
ω∈Ω

M(ω) = 0

PACS PIOP

P, M

c

Q

 Q(X) = M(X) +∑
i

Γi(X) ⋅ fi(P(X), ci(X)) +∑
i

γi ⋅ f′ i(P(X), c′ i(X))

= 0 ∀x∈Ω ∑Ω = 0

challenge
c = {Γi(X)}, {γi}

 Random masking

polynomial

s.t.

M

∑
ω∈Ω

M(ω) = 0

⟹ ∑
ω∈Ω

Q(ω) = 0

Batching (aggregated)
p.p. constraints

 p.p. constraints

 a.p.p. constraints

f1, …, fm1

f′ 1, …, f′ m2

Example: Ligero’s Arithemtization

Checking a circuit
Let all the multiplications

in the computation s.t.

C(x, w) = 1
{(ai, bi, ci)}

ai ⋅ bi = ci

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

f : (a, b, c) ↦ a ⋅ b − c

Checking multiplications

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

Checking a circuit
Let all the multiplications

in the computation s.t.

C(x, w) = 1
{(ai, bi, ci)}

ai ⋅ bi = ci Parallel polynomial constraints

Example: Ligero’s Arithemtization

Parallel polynomial constraints

f : (a, b, c) ↦ a ⋅ b − c

Checking multiplications

Checking wiring

ai = ⟨αi , in ∥ (c1, …, cn)⟩

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

bi = ⟨βi , in ∥ (c1, …, cn)⟩
 constantsαi, βi

Checking a circuit
Let all the multiplications

in the computation s.t.

C(x, w) = 1
{(ai, bi, ci)}

ai ⋅ bi = ci

Example: Ligero’s Arithemtization

Parallel polynomial constraints

Aggregated p.p. constraints
(of degree 1)

f : (a, b, c) ↦ a ⋅ b − c

Checking multiplications

Checking wiring

ai = ⟨αi , in ∥ (c1, …, cn)⟩

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

⟨c′ 1, ⟩ + ⟨c′ 2, ⟩ + ⋯ + ⟨c′ s, ⟩ = 0

bi = ⟨βi , in ∥ (c1, …, cn)⟩
 constantsαi, βi

Checking a circuit
Let all the multiplications

in the computation s.t.

C(x, w) = 1
{(ai, bi, ci)}

ai ⋅ bi = ci

Example: Ligero’s Arithemtization

Parallel polynomial constraints

Aggregated p.p. constraints
(of degree 1)

f : (a, b, c) ↦ a ⋅ b − c

Checking multiplications

Checking wiring

ai = ⟨αi , in ∥ (c1, …, cn)⟩

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

⟨c′ 1, ⟩ + ⟨c′ 2, ⟩ + ⋯ + ⟨c′ s, ⟩ = 0

bi = ⟨βi , in ∥ (c1, …, cn)⟩
 constantsαi, βi

Checking a circuit
Let all the multiplications

in the computation s.t.

C(x, w) = 1
{(ai, bi, ci)}

ai ⋅ bi = ci

Example: Ligero’s Arithemtization

PACS enables a better
arithmetization, saving

33% of the extended witness
"

Parallel polynomial constraints

Aggregated p.p. constraints
(of degree 1)

f : (a, b, c) ↦ a ⋅ b − c

Checking multiplications

Checking wiring

ai = ⟨αi , in ∥ (c1, …, cn)⟩

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

a1 a2 a3 …
b1 b2 b3 …
c1 c2 c3 …

… an
… bn
… cn

⟨c′ 1, ⟩ + ⟨c′ 2, ⟩ + ⋯ + ⟨c′ s, ⟩ = 0

bi = ⟨βi , in ∥ (c1, …, cn)⟩
 constantsαi, βi

Checking a circuit
Let all the multiplications

in the computation s.t.

C(x, w) = 1
{(ai, bi, ci)}

ai ⋅ bi = ci

PACS enables gates
of higher degree &

of various fan-in / fan-out
"

Example: Ligero’s Arithemtization

PACS enables a better
arithmetization, saving

33% of the extended witness
"

SmallWood PCS

Small-domain PCS

Linear-map Vector
Commitment Scheme (LVCS)

(Full-domain) PCS

• Commit

• Prove for

P(X) ∈ (𝔽[X])n

P(e) = pe e ∈ 𝔼 ⊆ 𝔽

• Commit

• Prove for

⃗r1, …, ⃗rn ∈ 𝔽m

∑
i

ci ⋅ ⃗ri = ⃗v c1, …, cn ∈ 𝔽

• Commit

• Prove for

P(X) ∈ (𝔽[X])n

P(e) = pe e ∈ 𝔽

SmallWood PCS

Small-domain PCS “Degree-enforcing CS” from TCitH [FR25],
 variant of Ligero [AHIV17,AHIV23]
Commit polynomial evaluations in a Merkle tree
 + degree enforced in the commitment

SmallWood PCS

Small-domain PCS

Linear-map Vector
Commitment Scheme (LVCS)

Natural definition

“Degree-enforcing CS” from TCitH [FR25],
 variant of Ligero [AHIV17,AHIV23]
Commit polynomial evaluations in a Merkle tree
 + degree enforced in the commitment

SmallWood PCS

Small-domain PCS

Linear-map Vector
Commitment Scheme (LVCS)

(Full-domain) PCS

Natural definition

Techniques from
Brakedown [GLS+23]

“Degree-enforcing CS” from TCitH [FR25],
 variant of Ligero [AHIV17,AHIV23]
Commit polynomial evaluations in a Merkle tree
 + degree enforced in the commitment

Application to Arithmetic Circuits

25 27 29 211 213 215 217

Number of multiplications

0

100

200

300

400

500

600

700

800

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

Ligero

TCitH-¶Ligero

SmallWood-ARK

VOLEitH

Aurora

256-bit field

Application to Arithmetic Circuits

25 27 29 211 213 215 217

Number of multiplications

0

100

200

300

400

500

600

700

800

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

Ligero

TCitH-¶Ligero

SmallWood-ARK

VOLEitH

Aurora

≥ 216

256-bit field

Application to Arithmetic Circuits

25 27 29 211 213

Number of gates

0

25

50

75

100

125

150

175

200

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

TCitH-¶Ligero, N = 210 (deg=2)

TCitH-¶Ligero, N = 210 (deg=8)

TCitH-¶Ligero, N = 213 (deg=2)

TCitH-¶Ligero, N = 213 (deg=8)

SmallWood-ARK, N = 210 (deg=2)

SmallWood-ARK, N = 210 (deg=8)

SmallWood-ARK, N = 213 (deg=2)

SmallWood-ARK, N = 213 (deg=8)

VOLEitH (deg=2)

VOLEitH (deg=8)

25 27 29 211 213

Number of gates

0

25

50

75

100

125

150

175

200

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

TCitH-¶Ligero, N = 210 (deg=2)

TCitH-¶Ligero, N = 210 (deg=8)

TCitH-¶Ligero, N = 213 (deg=2)

TCitH-¶Ligero, N = 213 (deg=8)

SmallWood-ARK, N = 210 (deg=2)

SmallWood-ARK, N = 210 (deg=8)

SmallWood-ARK, N = 213 (deg=2)

SmallWood-ARK, N = 213 (deg=8)

VOLEitH (deg=2)

VOLEitH (deg=8)

64-bit field 256-bit field

Application to Arithmetic Circuits

25 27 29 211 213

Number of gates

0

25

50

75

100

125

150

175

200

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

TCitH-¶Ligero, N = 210 (deg=2)

TCitH-¶Ligero, N = 210 (deg=8)

TCitH-¶Ligero, N = 213 (deg=2)

TCitH-¶Ligero, N = 213 (deg=8)

SmallWood-ARK, N = 210 (deg=2)

SmallWood-ARK, N = 210 (deg=8)

SmallWood-ARK, N = 213 (deg=2)

SmallWood-ARK, N = 213 (deg=8)

VOLEitH (deg=2)

VOLEitH (deg=8)

25 27 29 211 213

Number of gates

0

25

50

75

100

125

150

175

200

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

TCitH-¶Ligero, N = 210 (deg=2)

TCitH-¶Ligero, N = 210 (deg=8)

TCitH-¶Ligero, N = 213 (deg=2)

TCitH-¶Ligero, N = 213 (deg=8)

SmallWood-ARK, N = 210 (deg=2)

SmallWood-ARK, N = 210 (deg=8)

SmallWood-ARK, N = 213 (deg=2)

SmallWood-ARK, N = 213 (deg=8)

VOLEitH (deg=2)

VOLEitH (deg=8)

64-bit field 256-bit field

Smaller than VOLEitH
for #gates ≥ 27

Smaller than VOLEitH
for #gates ≥ 24

Application to Arithmetic Circuits

25 27 29 211 213

Number of gates

0

25

50

75

100

125

150

175

200

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

TCitH-¶Ligero, N = 210 (deg=2)

TCitH-¶Ligero, N = 210 (deg=8)

TCitH-¶Ligero, N = 213 (deg=2)

TCitH-¶Ligero, N = 213 (deg=8)

SmallWood-ARK, N = 210 (deg=2)

SmallWood-ARK, N = 210 (deg=8)

SmallWood-ARK, N = 213 (deg=2)

SmallWood-ARK, N = 213 (deg=8)

VOLEitH (deg=2)

VOLEitH (deg=8)

25 27 29 211 213

Number of gates

0

25

50

75

100

125

150

175

200

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

TCitH-¶Ligero, N = 210 (deg=2)

TCitH-¶Ligero, N = 210 (deg=8)

TCitH-¶Ligero, N = 213 (deg=2)

TCitH-¶Ligero, N = 213 (deg=8)

SmallWood-ARK, N = 210 (deg=2)

SmallWood-ARK, N = 210 (deg=8)

SmallWood-ARK, N = 213 (deg=2)

SmallWood-ARK, N = 213 (deg=8)

VOLEitH (deg=2)

VOLEitH (deg=8)

64-bit field 256-bit field

4000 gates 50 KB→ ≤ 1000 gates 50 KB→ ≤Smaller than VOLEitH
for #gates ≥ 27

Smaller than VOLEitH
for #gates ≥ 24

Application to Arithmetic Circuits

25 27 29 211 213

Number of gates

0

25

50

75

100

125

150

175

200

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

TCitH-¶Ligero, N = 210 (deg=2)

TCitH-¶Ligero, N = 210 (deg=8)

TCitH-¶Ligero, N = 213 (deg=2)

TCitH-¶Ligero, N = 213 (deg=8)

SmallWood-ARK, N = 210 (deg=2)

SmallWood-ARK, N = 210 (deg=8)

SmallWood-ARK, N = 213 (deg=2)

SmallWood-ARK, N = 213 (deg=8)

VOLEitH (deg=2)

VOLEitH (deg=8)

25 27 29 211 213

Number of gates

0

25

50

75

100

125

150

175

200

A
rg

um
en

t
si
ze

(i
n

ky
lo

by
te

s)

TCitH-¶Ligero, N = 210 (deg=2)

TCitH-¶Ligero, N = 210 (deg=8)

TCitH-¶Ligero, N = 213 (deg=2)

TCitH-¶Ligero, N = 213 (deg=8)

SmallWood-ARK, N = 210 (deg=2)

SmallWood-ARK, N = 210 (deg=8)

SmallWood-ARK, N = 213 (deg=2)

SmallWood-ARK, N = 213 (deg=8)

VOLEitH (deg=2)

VOLEitH (deg=8)

64-bit field 256-bit field

4000 gates 50 KB→ ≤ 1000 gates 50 KB→ ≤
10 000 gates 100 KB→ ≤ 4000 gates 100 KB→ ≤

Smaller than VOLEitH
for #gates ≥ 27

Smaller than VOLEitH
for #gates ≥ 24

Application to Lattices

Application to Lattices

Application to Lattices

Application to Lattices

CAPSS Framework

𝒫
OWF

MT

XOF

SmallWood
PCS

PACS
PIOP+

SmallWood-ARK

Signature
scheme

Fiat-Shamir transform,
SNARK-friendly tweaks

Arithmetization

AO Permutation
(e.g. Poseidon, Anemoi)

CAPSS: Compilation of Arithmetization-oriented
Permutation into SNARK-friendly Signature

CAPSS Framework

https://www.cryptoexperts.com/capss/

https://www.cryptoexperts.com/capss/

Conclusion

• SmallWood is a generic hash-based ZK-NARK (or ZKPoK)

• SmallWood provides “compact” proofs for “relatively small” instances

• Few (dozen) KBs for extended witness of size up to

• Plan for our submission

• Improve the design / proof size

• Provide efficient implementations

• Make it easy to use

• Investigate further applications (e.g. PoK of signature, PoK of FHE plaintext, …)

∼ 216

References
• [ADK24] S. Atapoor, C. Delpech de Saint Guilhem, A. Kindi. STARK-based signatures from the RPO permutation. 2024.

https://eprint.iacr.org/2024/1553.pdf

• [AHIV17] S. Ames, C. Hazay, Y. Ishai, M. Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. CCS 2017.

• [AHIV23] S. Ames, C. Hazay, Y. Ishai, M. Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. Extended version. DCC 2023. https://eprint.iacr.org/2022/1608.pdf

• [BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, N. P. Ward. Aurora: Transparent Succinct Arguments
for R1CS. EUROCRYPT 2019. https://eprint.iacr.org/2018/828.pdf

• [FR23] T. Feneuil, M. Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. https://eprint.iacr.org/
2022/1407.pdf

• [FR25] T. Feneuil, M. Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and
Zero-Knowledge Arguments. Journal of Cryptology 2025. https://eprint.iacr.org/2023/1573.pdf

• [FR25b] T. Feneuil, M. Rivain. SmallWood: Hash-Based Polynomial Commitments and Zero-Knowledge Arguments for
Relatively Small Instances. https://eprint.iacr.org/2025/1085.pdf

• [FR25c] T. Feneuil, M. Rivain. CAPSS: A Framework for SNARK-Friendly Post-Quantum Signatures. 2025. https://
eprint.iacr.org/2025/061

• [GLS+23] A. Golovnev, J. Lee, S. T. V. Setty, J. Thaler, R. S. Wahby. Brakedown: Linear-time and field-agnostic SNARKs for
R1CS. CRYPTO 2023. https://eprint.iacr.org/2021/1043

• [ZSE+24] X. Zhang, R. Steinfeld, M. F. Esgin, J. K. Liu, D. Liu, S. Ruj. Loquat: A SNARK-Friendly Post-Quantum Signature
based on the Legendre PRF with Applications in Ring and Aggregate Signatures. CRYPTO 2024. https://eprint.iacr.org/
2024/868.pdf

https://eprint.iacr.org/2024/1553.pdf
https://eprint.iacr.org/2022/1608.pdf
https://eprint.iacr.org/2018/828.pdf
https://eprint.iacr.org/2022/1407.pdf
https://eprint.iacr.org/2022/1407.pdf
https://eprint.iacr.org/2023/1573.pdf
https://eprint.iacr.org/2025/1085.pdf
https://eprint.iacr.org/2025/061
https://eprint.iacr.org/2025/061
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2024/868.pdf
https://eprint.iacr.org/2024/868.pdf
https://eprint.iacr.org/2024/868.pdf
https://eprint.iacr.org/2024/868.pdf

