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Main features 
Built upon 

• Ligero [AHIV17, AHIV23] 

• Threshold-Computation-in-the-Head [FR23, FR25] 

• Brakedown [GLS+23]
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Polynomial Commitment  
SchemeP

   
   
  

Commit (P) → 𝖼𝗈𝗆
Prove (P, e) → P(e), πe
Verif (𝖼𝗈𝗆, pe, πe) → 0/1
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If  not well defined, by Schwartz-Zippel lemma: Q
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Linear-map Vector 
Commitment Scheme (LVCS)

(Full-domain) PCS

Natural definition 

Techniques from  
Brakedown [GLS+23]

“Degree-enforcing CS” from TCitH [FR25],  
         variant of Ligero [AHIV17,AHIV23] 
Commit polynomial evaluations in a Merkle tree  
   + degree enforced in the commitment
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Application to Arithmetic Circuits
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10 000 gates     100 KB→ ≤ 4000 gates     100 KB→ ≤

Smaller than VOLEitH 
for #gates  ≥ 27

Smaller than VOLEitH 
for #gates  ≥ 24



Application to Lattices
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CAPSS Framework

𝒫
OWF

MT

XOF

SmallWood 
PCS

PACS 
PIOP+

SmallWood-ARK

Signature 
scheme

Fiat-Shamir transform, 
SNARK-friendly tweaks

Arithmetization

AO Permutation  
(e.g. Poseidon, Anemoi)

CAPSS: Compilation of Arithmetization-oriented  
Permutation into SNARK-friendly Signature



CAPSS Framework

# https://www.cryptoexperts.com/capss/

https://www.cryptoexperts.com/capss/


Conclusion

• SmallWood is a generic hash-based ZK-NARK (or ZKPoK)  

• SmallWood provides “compact” proofs for “relatively small” instances 

• Few (dozen) KBs for extended witness of size up to   

• Plan for our submission 

• Improve the design / proof size 

• Provide efficient implementations 

• Make it easy to use 

• Investigate further applications (e.g. PoK of signature, PoK of FHE plaintext, …)

∼ 216
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