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random oracle * Zero-knowledge: & brings no info on w

* Knowledge soundness: valid 7 — valid w (extraction)

Main features

| | | Built upon
® Conservative security, plausibly post-quantum
® F[ast prover, faster veritier ® |igero [AHIV17, AHIV23]
® Compact proofs for “relatively small instances” ® Threshold-Computation-in-the-Head [FR23, FR25]

® Extended witness from ~ 500 B to 500 KB ® Brakedown [GLS+23]
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Small-domain PCS "Degree-enforcing CS” from TCitH [FR25],
variant of Ligero [AHIV17,AHIV23]
Commit polynomial evaluations in a Merkle tree
+ degree enforced in the commitment

Natural definition

Linear-map Vector
Commitment Scheme (LVCS)

\ (Full-domain) PCS

Techniques from -
Brakedown [GLS+23]
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LWE Instance

LWE Parameters

SmallWood-ARK

Comparison

q n m 15, TCitH-MT | VOLEitH

Toy Example 1| ~ 232 | 2048 | 512 | 1 16977 B 38081 B | 39072 B’
Toy Example 2|| ~ 2°' | 4096 | 1024 |1/2 21356 B 57409 B | 51470 B’
Kyber512 3329 [2 x 256|2 x 256| 3 14115 B 21185 B | 11754 B
Kyber768 3329 (3 x 2563 x 256| 2 15004 B 24938 B | 15519 B
Kyber1024 3329 |4 x 256|4 x 256 2 16 455 B 28241 B | 19637 B
Dilithium2 [|8380417|4 x 256|4 x 256| 2 17514 B 40100 B | 36241 B
Dilithium3 [[8380417|5 x 256(6 x 256] 4 22076 B 57526 B | 45727 B
Dilithium5 [[8380417|7 x 256|8 x 256| 2 22700 B 58088 B | 60527 B
Subset-Sum || =~ 2%°° | 256 1 [1/2 12557 B : 13484 B
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Arithmetization

/

OWF SmallWood-ARK

(e.g. Poseidon, Anemoi) MT g PCS T PIOP

AO Permutation @ R SmallWood PACS

XOF

Fiat-Shamir transform,
— SNARK-friendly tweaks

CAPSS: Compilation of Arithmetizatién—riente
N Permutation into SNARK-friendly Signature

Signature
scheme




Signature Scheme Sig. Size #R1CS |Signing Time|Verif. Time Assumptions
SPHINCS™s 8 KB ~ 460 K ~ 200 ms ~ 1 ms Hash
SPHINCS™f 16 KB ~ 1400 K ~ 14 ~ 2 ms Hash

Picnicl 32 KB ~ 3500 K ~1—2ms | ~1—2ms LowMC 4 Hash
Picnic3 12KB ~ 21600 K ~ 5 ms ~ 4 ms LowMC + Hash
LegRoast 16 KB ~ 1100 K ~ 3 ms ~ 3 ms Leg. PRF + Hash
Banquet 12 KB ~ 11800 K ~ 40 ms ~ 40 ms AES + Hash
Rainer 8 KB ~ 26100 K ~ 1 ms ~ 1 ms Rain 4 Hash
FAEST ~4—95 KB — ~0.5—4ms [~0.5—4ms AES + Hash
Loquat-128 (Keccak) [ZSE™24] 57 KB — 5.0s 0.2s Legendre PRF + Keccak
Loquat-128 (Griffin) [ZSE™24] 57 KB ~ 150 K 105 s 11 s Legendre PRF + Griffin
Loquat™-128 (Keccak) [ZSE*24 114 KB — 5.0 s 0.2s Legendre PRF + Keccak
Loquat -128 (Griffin) [ZSE'24 114 KB ~ 300 K 214 s 25 s Legendre PRF + Griffin
RescuePrime + STARKs [AdSGK24] | 80-100 KB — 9-23 ms 1 ms RescuePrime (4 Blake3)
RescuePrime + STARKs [AdSGK24| | 80-100 KB — 94-370 ms 21-27 ms RescuePrime
CAPSS-Anemoi 9-16KB | 24K - 36K | 400ms — 6s | 22-28ms Anemoi
CAPSS-Griffin 10-16 KB | 20K — 32K | 200ms — 6s~ | 12-17ms Griffin
CAPSS-Poseidon 1626 KB | 40K - 71K | 100ms — 3s | 4-7ms Poseidon
CAPSS-RescuePrime 11-17KB | 40K -~ 64K |500ms — 14s~ | 31-47ms RescuePrime

<~ https://www.cryptoexperts.com/capss/



https://www.cryptoexperts.com/capss/

Conclusion

® SmallWood is a generic hash-based ZK-NARK (or ZKPoK)

® SmallWood provides “compact” proofs for “relatively small” instances

® Few (dozen) KBs for extended witness of size up to ~ 21
® Plan for our submission

® Improve the design / proof size

® Provide efficient implementations

® Make it easy to use

® |nvestigate further applications (e.g. PoK of signature, PoK of FHE plaintext, ...)
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