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Brief History

2007: [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Ratail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

2016: [GMO16] "ZKBoo: Faster Zero-Knowledge for Boolean Circuits” (Usenix 2016)
2017: Picnic submission to NIST
» MPCitH applied to LowMC

2017 — today: Active area of research
> Drastic improvements

» Application to various PQ problems
2023: NIST call for additional PQ signatures
» /7 (to 9) MPCitH schemes / 40 round-1 candidates
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Assumption lpk| sig| Ipk| + [sig| Sign Verify
RSA Factorisation 272 B 256 B 528 B 27 Mc 45 kc
EdDSA Discret Log 32B 64 B 96 B 42 kc 130 kc
Dilithium 1312B 2420 B 37328B 333 ke 118 kc
Falcon 897 B 666 B 1563 B 1.0 Mc 81 kc
/] 856 B /] 888 B 4 682 Mc 1.7 M«
SPHINCS+ Hash 328B —
17 088 B 17 120B | 239 Mc | 129 M
(typically)
: 5-10 kB
Conservative / Small: recently) e (typically) | (typically)
M PCItH unstructured 32 B - y , ~10-50 same as
. AES: 4-6 kB | as Isigl .
assumptions | ~100B |\, ~ o o) o Mc sign

Rank: ~3 kB




Introduction to
Zero-Knowledge Proofs




Interactive Proof



dx s.t. y = C(x)

Verifier

Ok 84/ Nok @




Verifier

dx s.t. y = C(x)

Ok 84/ Nok @

P[ | d x s.t. C(x)zy] = 1



Verifier

dx s.t. y = C(x)

Ok 4 / Nok @

P[\Elxs.t.C(x)zy] = 1 P[\ﬂxs.t.C(x)=y] < €



Verifier

dx s.t. y = C(x)

Ok 4 / Nok @

P[\Elxs.t.C(x)zy] = 1 P[\les.t.C(x):y] <

soundness error



Verifier

dx s.t. y = C(x)

Ok 4 / Nok @

@

the witness

the statement

P[\Elxs.t.C(x)zy] = 1 P[\les.t.C(x):y] <

soundness error



Proof of Knowledge
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Knowledge Soundness
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Knowledge Soundness Zero Knowledge
If 3 Prover s.t. P[ Verifier ] > ¢ 3 Simulator producing
then 3 Extractor which recovers x genuine transcripts
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Extractor

Simulator
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Q. Why this doesn’t work?

A. Simulator only outputs &
Prover is stateful, it can be copied and forked.
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Extraction

(1) Start interaction Known as

(2-)special soundness

(2) Copy the Prover

(3) Continue with # questions

(4) Recover x from
(Ca Q19 al) and (Ca qza Clz)




Verifier




Verifier




Verifier




Verifier

k< $ C
c = gk
) q g« $
X a




Verifier

k<3S c
c = gk
4 q g« $
A a
a=qgx—+k >






Verifier

k< 8§ C »
c=g"
< q q<_$
X a
a=qgx+k >

Q. Why is Schnorr protocol zero-knowledge?
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Simulator &

g < $
a<— 9
c = g%y1

(c,a,q)

%;

commitment

Verifier

q <93

>

Check g¢=y7-¢

Knowing the question (a.k.a. challenge) before
the commitment enables perfect simulation.






Verifier
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Q. Why is Schnorr protocol knowledge sound?
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Answer

2-Special Knowledge Soundness

Extractor
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Extractor

~xtractor gets x.

£ don't know x, they can produce
at most one such transcript.

= Soundness error = P[ 'getting the right g ]
= 7—lql
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Non-Interactive Proof



| know X
s.t. y = C(x)

Verifier

Verif :
Ok ¥4 / No

4=




Public-coin
ITier
1] Verifi
Prover < a, »
-2
< az




C
qd RGN g, = Hash(o)
Prover >




C
d » g, = Hash(c)
Prover <
q ¢, = Hash(c, a,)

>

‘ .
a




C
d » g, = Hash(c)
Prover <
q ¢, = Hash(c, a,)

2N . = Hash(c,a,a,)
. @
; &)

>




C
d » g, = Hash(c)
Prover <
q » ¢, = Hash(c, a,)

%) »
2N . = Hash(c,a,a,)
< qn
d

> n=(ca,....a,)



C
d » g, = Hash(c)
Prover <
q ¢, = Hash(c, a,)

dy

HASH g, = Hash(c, a,, a,)
< qn
an

> n=(ca,....a,)

checks z by recomputing the hashs

%P instead of randomly picking the g/'s



C
d » g, = Hash(c)
Prover <
q ¢, = Hash(c, a,)

¢

2N . = Hash(c,a,a,)
< qn
an

> n=(ca,....a,)

Hash( - ) behaves as a random tfunction. checks 7 by recomputing the hashs

< Security in the Random Oracle Model (ROM).

YR instead of randomly picking the g;'s
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Sequential Parallel
repetition repetition

Q. With Fiat-Shamir, which one is better and why?
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Try new ¢; until g; = Hash(c;)
can be answered = 1/¢ trials

Try new ¢, until 4> = HaSh(Cl, dq, Cz)
can be answered = 1/¢ trials

Try new ¢, until g. = Hash(c, ay, ..., c,)
can be answered = 1/¢ trials

. Forgeintime 7 - (1/¢) = sequential
repetition is weak with Fiat Shamir.
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HASH

Try 1/€* times to get T questions

that can all be answered at the
same time.

Parallel repetition Is
secure with Fiat Shamir.
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a = Answer(x, ¢, q)
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Signature Security

® Security in the Random Oracle Mode|
» EUF-CMA adversary = algorithm to recover x
® Zero Knowledge = signatures do not leak information on x
» /K Simulator — Signature oracle in the EUF-CMA game
® Knowledge Soundness = x can be extracted from an EUF-CMA adversary

» Extractor — Recovers x from forged signatures (1, 2, a few)
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Secret Sharing

[xI = ([xI;,....0x1) €FY

e Random generation: [x]] <« Generate(x, $)
® Deterministic reconstruction: x = Reconstruct([[x]])
® Privacy: [[x]] is £-private
& any set of £ shares {[[x]].} is statistically independent of x

& any set of £ shares {[[x]].} can be perfectly simulated w/o x



Secret Sharing

Example: additive secret sharing

® Reconstruction:

X = Zil xll.

® (Generation:

TR A S B N N !
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Q. Additive sharing is £-private for which £ 7

A. Additive sharing is (N — 1)-private.
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Q. How to construct a simple binding and hiding
commitment scheme using symmetric cryptography?

A. Hash commitment:

l X I := Hash(x || p) with p < $ ~Q = (x,p)

> Biding by collision resistance

> Hiding in the ROM
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® |nput: the parties receive a sharing [[x]|

[[x]l ! ! Mx]] ® MPC: the parties jointly compute
— 2
y = C(x)
%

® /-privacy: the views of any ¢ parties
reveal no information on x
a. ® Semi-honest model: the parties follow
@
' the steps of the protocol
[[x]]3
[[X]]s

L —

My view = my input share, my internal

Hxﬂ4

randomness and all the messages | receive
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Generate [[x]]
Run MPC protocol

Challenge: parties to reveal
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randomness,
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Challenge: parties to reveal

Response: open views

<

Q. This protocol is zero-knowledge if the MPC protocol is ... ?

A. 2-private.
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Challenge: parties to reveal

Response: open views
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(1) Check commitments:

> —
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2) Check view consistency:

14_.

3) Check result:

i—’y

>y

. doesn’t know x then
parties receive [[X]] with X # x

and MPC([[X]]) # v.

Therefore either
(1) o1

for some party

(2) —— a

for two parties

(3) ——y

for some party
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Commitment of views
o i Rk

Challenge: parties to reveal

Response: open views

<

Q. What is the soundness error of this protocol?

A. It the prover cheat on a single message )'_')

the verifier detects the cheat only if the challenge is @ @

| 2
Z s ; We can do much better Soundness error = 1 — P[detection] = 1
o’ (See you tomorrow!) NN - 1)
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MPC for Arithmetic Circuits

® Computation C composed of (+ ) and ( X )¢

® Additions = local computation

[x+y1 = ([xD; + [yDy, - DDy + DyTly)
® Multiplications — require communication between parties

> Common technique: using multiplication triples

> Assume the parties have pre-generated/distributed random

triples [la]l, [[P]l, [[c]] such that [[c]] = [[a - P]]
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» let a=x+a and f=y+b
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® Multiplication of [x]] and [[y]] using [all, [Z], [c]l
» let a=x+a and f=y+b
> We have
x-y = (a—a)f—-—0b) = aff — pa—ab+ ab
> Giving
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® Protocol:
1. Parties locally compute [a]l = [[x]] + [[a]l and [[£]] = [y] + [»]l
2. Parties broadcast [[a]] and [[/]]

3. Parties reconstruct @ and ff and compute [[xy]] as above



MPC for Arithmetic Circuits

® Multiplication of [x]] and [[y]] using [all, [Z], [c]l Compiling this protocol
» let a=x+a and f=y+b @ with MPCitH, we get a ZK
PoK fory = C(x).
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> Qiving

[xy]l = af — pllall — allbll + [l

® Protocol:
1. Parties locally compute [a]l = [[x]] + [[a]l and [[£]] = [y] + [»]l
2. Parties broadcast [[a]] and [[/]]

3. Parties reconstruct @ and ff and compute [[xy]] as above
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® Multiplication of [x]] and [[y]l using [all, [£1l, [c]] Compi

» let a=x+a and f=y+b @ with M
» We have
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°CitH, we get a ZK

PoK fory = C(x).

what do you do for

(See you tomorrow!)

® Protocol:
1. Parties locally compute [a]l = [[x]] + [[a]l and [[£]] = [y] + [»]l
2. Parties broadcast [[a]] and [[/]]

3. Parties reconstruct @ and ff and compute [[xy]] as above



