Introduction to Zero-Knowledge Proofs
and the MPC-in-the-Head Paradigm

Matthieu Rivain
PQO-TLS Summer School
Jun 18, 2024, Anglet

O

CRYPTOCXPERTS -

WE INNOVATE TO SECURE YOUR BUSINESS

L

Roadmap

® Today:
> Quick Intro
> Introduction to Zero-Knowledge Proofs
> Introduction to the MPC-in-the-Head Paradigm

® [omorrow:

> Modern MPC-in-the-Head Techniques

> Specific Post-Quantum Signatures

® Today:

| Time to wake up!
> Quick Intro

> Introduction to Zero-Knowledge Proofs
> Introduction to the MPC-in-the-Head Paradigm

® [omorrow:

> Modern MPC-in-the-Head Techniques

> Specific Post-Quantum Signatures

Quick Intro to
MPC in the Head

One-way function
F:xmy

E.g. AES, MQ system,
Syndrome decoding

B e g - T e

One-way function , Multiparty computation (MPC)

. e ewsharng 1|

f f \ Joint evaluation of:

E.g. AES, MQ system, : S o . {Accept if F(x) =y
g(x) = '

Syndrome decoding | NV Reject if F) # y

B R D D O VR S I D D P P ¥ T Vi DR U Py Ly, " Lz e s S s Ak B Lo b2 i dee s B

o e e e e o s o o - T e - = o

One-way function ' Multiparty computation (MPC)

Fixisy o > @ Input sharing [[x]| ?'
f f \ Joint evaluation of:

E.g. AES, MQ system, . e Py Acce f — v]
: | j _ pt it F(x) =y |
Syndrome decoding \ / g(x) = {Reject fF@) £y

posm e ey —2as LR T y Al d el A i e m Aok B L _posma D T N B Ae s o ey £ Az B Lo _posna Sum e s A e Az 8 poama

Zero-knowledge prooft

X _— — Y
. < . |
T— — — OK you

Prover Verifier know x

S T T P 7 N A St e g T N PP PR S TP - e

v v

One-way function Multiparty computation (MPC)

' ; : @ <« > @]
: F:xmy 5 ; Input sharing [[x]| |
| i f \ Joint evaluation of: .
. E.g. AES, MQ system, R S ° Accent i Fo) = v |
| | pt it F(x)=y |

Syndrome decoding NV {Reject fF0) #y |

i b2 pdm s A —2as LR T y T B v s Aot B Lo _posna gD T N 2 Ma s o i e Ach B Lo o2 2 Ma s o i Ach S poama

Signature scheme Zero-knowledge P"OO‘C

msg
, e

Hash ¢ < i
function : T — — OKyou
\‘_._, \', . Prover Verifier know x

signature

-

|

e ARa g o D T N Sutm e s o — Mgy B Lo _p-s2 St Al el A = Ak A Lia Lo e s o ey Ach B L famn

— o P TP B D P S e) s S Ay e e S e e G R T \ g

One-way function Multiparty computation (MPC)
0 < X '
F:x—y ‘ Input sharing [[x]|
f \ Joint evaluation of:
E.g. AES, MQ system, : o o Accept if _
. | B ot if F(x) =y
Syndrome decoding \./ g(x) = {Reject £) % y
| | MPC in the Head
Signature Scheme ZerO-kﬂOW|edge prOOf
e msg
L X _— — Y
E Hash < .
7 |function f; T — — OK you
\\-'—v | Verifier know x

signature

b sRa g o D T N Sutm e s o — Azp B Lo _posn Sasim s o = At B Lo _posna Eds M s A = Ach B Lo b2

Brief History

2007: [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Ratail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

2016: [GMO16] "ZKBoo: Faster Zero-Knowledge for Boolean Circuits” (Usenix 2016)
2017: Picnic submission to NIST
» MPCitH applied to LowMC

2017 — today: Active area of research
> Drastic improvements

» Application to various PQ problems
2023: NIST call for additional PQ signatures
» /7 (to 9) MPCitH schemes / 40 round-1 candidates

Assumption lpk| |sig| Ipk| + [sig| Sign Verify
RSA Factorisation 272 B 256 B 528 B 45 kc
EJADSA Discret Log 32B 64 B 96 B 42 kc 130 kc
Dilithium 1312 8B 2420 B 3732B 333 kc 118 kc
Falcon 897 B 666 B 1 563 B 1.0 Mc 81 kc
4 682 Mc
SPHINCS+ Hash 32B
17 088 B 17 120 B | 239 Mc

Assumption lpk| sig| Ipk| + [sig| Sign Verify
RSA Factorisation 272 B 256 B 528 B 45 kc
EdDSA Discret Log 32B 64 B 96 B 42 kc 130 kc
Dilithium 13128B 2420 B 37328B 333 ke 118 kc
Falcon 897 B 666 B 1563 B 1.0 Mc 81 kc

SPHINCS+ Hash 32B 4682 Me

17088B | 17120B | 239 Mc
Conservative /
MPCitH unstructured

assumptions

Assumption lpk| sig| Ipk| + [sig| Sign Verify
RSA Factorisation 272 B 256 B 528 B 45 kc
EdDSA Discret Log 32B 64 B 96 B 42 kc 130 kc
Dilithium 13128B 2420 B 37328B 333 ke 118 kc
Falcon 897 B 666 B 1563 B 1.0 Mc 81 kc
SPHINCSH Hash 32B 4682 Me
17088B | 17120B | 239 Mc
Conservative / Small:
MPCitH unstructured 32B -
~ 100 B

assumptions

Assumption lpk| sig| Ipk| + [sig| Sign Verify
RSA Factorisation 272 B 256 B 528 B 45 kc
EdDSA Discret Log 32B 64 B 96 B 42 kc 130 kc
Dilithium 13128B 2420 B 37328B 333 kc 118 kc
Falcon 897 B 666 B 1563 B 1.0 Mc 81 kc
SPHINCSH Hash 32B 4682 Me
17088B | 17120B | 239 Mc
(typically)
Conservative / Small: 10 KE
MPCitH unstructured 32B -
~ 100 B

assumptions

Assumption lpk| sig| Ipk| + [sig| Sign Verify
RSA Factorisation 272 B 256 B 528 B 2 45 kc
EJdDSA Discret Log 32B 64 B 96 B 42 kc 130 kc
Dilithium 1312B 2420 B 3732B 333 kc 118 kc
Falcon 897 B 666 B 1563 B 1.0 Mc 81 kc
; ; 4 682 Mc
SPHINCS+ Hash 32B *
17 088 B 17 120 B | 239 Mc | 2.
(typically)
Conservative / Small: (5'10 If)
MPCitH unstructured 32 B - recently
. AES: 4-6 kB
assumptions | ~100B |\, ~ o o) o

Rank: ~3 kB

Assumption lpk| sig| Ipk| + [sig| Sign Verify
RSA Factorisation 272 B 256 B 528 B 27 Mc 45 kc
EdDSA Discret Log 32B 64 B 96 B 42 kc 130 kc
Dilithium 1312 B 2420 B 37328B 333 ke 118 kc
Falcon 897 B 666 B 1563 B 1.0 Mc 81 kc
B B |4682Mc Mc
SPHINCS+ Hash 32B —
17 088 B 17120B | 239 Mc | 129 M
(typically)
Conservative / Small: (5'10 If)
MPCitH unstructured 32 B - recently Sarme
. AES: 4-6 kB | as Isigl
assumptions | ~100B |\, ~ o o) o

Rank: ~3 kB

Assumption lpk| sig| Ipk| + [sig| Sign Verify
RSA Factorisation 272 B 256 B 528 B 27 Mc 45 kc
EdDSA Discret Log 32B 64 B 96 B 42 kc 130 kc
Dilithium 1312B 2420 B 37328B 333 ke 118 kc
Falcon 897 B 666 B 1563 B 1.0 Mc 81 kc
/] 856 B /] 888 B 4 682 Mc 1.7 M«
SPHINCS+ Hash 328B —
17 088 B 17 120B | 239 Mc | 129 M
(typically)
: 5-10 kB
Conservative / Small: recently) e (typically) | (typically)
M PCItH unstructured 32 B - y , ~10-50 same as
. AES: 4-6 kB | as Isigl .
assumptions | ~100B |\, ~ o o) o Mc sign

Rank: ~3 kB

Introduction to
Zero-Knowledge Proofs

Interactive Proof

dx s.t. y = C(x)

Verifier

Ok 84/ Nok @

Verifier

dx s.t. y = C(x)

Ok 84/ Nok @

P[| d x s.t. C(x)zy] = 1

Verifier

dx s.t. y = C(x)

Ok 4 / Nok @

P[\Elxs.t.C(x)zy] = 1 P[\ﬂxs.t.C(x)=y] < €

Verifier

dx s.t. y = C(x)

Ok 4 / Nok @

P[\Elxs.t.C(x)zy] = 1 P[\les.t.C(x):y] <

soundness error

Verifier

dx s.t. y = C(x)

Ok 4 / Nok @

@

the witness

the statement

P[\Elxs.t.C(x)zy] = 1 P[\les.t.C(x):y] <

soundness error

Proof of Knowledge

| know x
s.t. y = C(x)

Verifier

Ok 84/ Nok @

| know x
s.t. y = C(x)

Verifier

<

E

Ok 4 / Nok @

Knowledge Soundness

Verifier

If 4 Prover s.t.
P[Verifier] > €

Verifier

If 4 Prover s.t.
P[Verifier] > €

then d Extractor —
Ok 4

which recovers x

Extractor

If 4 Prover s.t.
P[Verifier] > €

then 1 Extractor

which recovers x

Extractor

Verifier

Ok 4

o

| know k s.t. y = AES,(0)

~

J

Verifier

Verifier

o

| know k s.t. y = AES,(0)

~

J

-

o

Indeed, y = AES,(0)

~

J

Prover Verifier

Prover Verifier

learns nothing about x

Prover Verifier

b \ Transcript /

The - h

Theore e kndofudon And they

Rveroeope it 0.

ou o pute them, daagee wth

them,ghrdyorublythom Abcut

e ol thgapucomt o e

A b Ay , ’

—_—

learns nothing about x -
verif. time < [x|, | C|, | y|

Zero Knowledge Proof

Prover Verifier

< m ‘
The ones: et Sferenthy.
Theyre ot fond of ules. And they
howe o respect for the status quo.
c hem. & h
g >

the onky thing gou can't do is spore
tham e s thas e ot .

< \ Transcript /

S

Zero Knowledge Proof

Prover Verifier

Simulator Zero Knowledge

<

d a Si

perfectly / statistically / computationally
indistinguishable from the right H.

mulator producing a B that is

Zero Knowledge Proof

Prover Verifier

Simulator (Honest Verifier) Zero Knowledge

<

that is

perfectly / statistically / computationally
indistinguishable from the right H.

3 a Simulator producing a &

Back to Knowledge Soundness

Knowledge Soundness Zero Knowledge
If 3 Prover s.t. P[Verifier] > ¢ 3 Simulator producing
then 3 Extractor which recovers x genuine transcripts

Extractor Simulator

Back to Knowledge Soundness

Knowledge Soundness Zero Knowledge
If 3 Prover s.t. P[Verifier] > ¢ 3 Simulator producing
then 3 Extractor which recovers x genuine transcripts

Extractor Simulator
S

Extractor

Simulator
=]

Extractor

Simulator

<&

Q. Why this doesn’t work?

A. Simulator only outputs &
Prover is stateful, it can be copied and forked.

Extraction

Extraction

(1) Start interaction

Extraction

(1) Start interaction

(1) Start interaction

(2) Copy the Prover

(3) Continue with # questions

(1) Start interaction

(2) Copy the Prover

(3) Continue with # questions

(4) Recover x from
(Ca Q19 al) and (Ca QZ9 612)

Extraction

(1) Start interaction Known as

(2-)special soundness

(2) Copy the Prover

(3) Continue with # questions

(4) Recover x from
(Ca Q19 al) and (Ca qza Clz)

Verifier

Verifier

Verifier

Verifier

k< $ C
c = gk
) q g« $
X a

Verifier

k<3S c
c = gk
4 q g« $
A a
a=qgx—+k >

Verifier

k< 8§ C »
c=g"
< q q<_$
X a
a=qgx+k >

Q. Why is Schnorr protocol zero-knowledge?

Verifier

Simulator &

k< $ C »
c=g"
« q g < $
X a
a=qgx+k >

Simulator &

g < $
a<— 9
c = g%y1

(c,a,q)

Verifier

Simulator &

g < $
a<— 9
c = g%y1

(c,a,q)

%;

commitment

Verifier

q <93

>

Check g¢=y7-¢

Knowing the question (a.k.a. challenge) before
the commitment enables perfect simulation.

Verifier

k< 8§ C »
c=g"
< q q<_$
X a
a=qgx+k >

Q. Why is Schnorr protocol knowledge sound?

| -
O
e
O
O
) -
)
X
LI

Answer

2-Special Knowledge Soundness

Extractor

Extractor

~xtractor gets x.

Extractor

~xtractor gets x.

[don’t know x, they can produce
at most one such transcript.

Extractor

~xtractor gets x.

£ don't know x, they can produce
at most one such transcript.

= Soundness error = P['getting the right g]
= 7—lql

Verifier

£=P[]

. Might be non-negligible!

Verifier

.= p[@)

Verifier

X £2=P[twice]

Verifier

£=P[]
X
e=P|| e =P times |
- e=P|4

Verifier

£=P[]
X
e=P|| e =P times |
- e=P|4

Verifier

Verifier

€T=P[T times]

Non-Interactive Proof

| know X
s.t. y = C(x)

Verifier

Verif :
Ok ¥4 / No

4=

Public-coin
ITier
1] Verifi
Prover < a, »
-2
< az

C
qd RGN g, = Hash(o)
Prover >

C
d » g, = Hash(c)
Prover <
q ¢, = Hash(c, a,)

>

‘ .
a

C
d » g, = Hash(c)
Prover <
q ¢, = Hash(c, a,)

2N . = Hash(c,a,a,)
. @
; &)

>

C
d » g, = Hash(c)
Prover <
q » ¢, = Hash(c, a,)

%) »
2N . = Hash(c,a,a,)
< qn
d

> n=(ca,....a,)

C
d » g, = Hash(c)
Prover <
q ¢, = Hash(c, a,)

dy

HASH g, = Hash(c, a,, a,)
< qn
an

> n=(ca,....a,)

checks z by recomputing the hashs

%P instead of randomly picking the g/'s

C
d » g, = Hash(c)
Prover <
q ¢, = Hash(c, a,)

¢

2N . = Hash(c,a,a,)
< qn
an

> n=(ca,....a,)

Hash(-) behaves as a random tfunction. checks 7 by recomputing the hashs

< Security in the Random Oracle Model (ROM).

YR instead of randomly picking the g;'s

——3
Sequential Parallel
repetition repetition

Q. With Fiat-Shamir, which one is better and why?

Try new ¢; until g; = Hash(c;)
can be answered = 1/¢ trials

@ Try new ¢, until ¢, = Hash(c,)
can be answered = 1/¢ trials

@ Try new ¢, until 4> = HaSh(Cl, dq, Cz)

can be answered = 1/¢ trials

HASH

HASH

Try new ¢; until g; = Hash(c;)
can be answered = 1/¢ trials

HASH

can be answered = 1/¢ trials
HASH

Try new ¢, until g. = Hash(c, ay, ..., c,)

@ Try new ¢, until 4> = HaSh(Cl, dq, Cz)

can be answered = 1/¢ trials

Try new ¢; until g; = Hash(c;)
can be answered = 1/¢ trials

Try new ¢, until 4> = HaSh(Cl, dq, Cz)
can be answered = 1/¢ trials

Try new ¢, until g. = Hash(c, ay, ..., c,)
can be answered = 1/¢ trials

. Forgeintime 7 - (1/¢) = sequential
repetition is weak with Fiat Shamir.

6

HASH

Try 1/€* times to get T questions

that can all be answered at the
same time.

6

HASH

Try 1/€* times to get T questions

that can all be answered at the
same time.

Parallel repetition Is
secure with Fiat Shamir.

¢ :
-
X
-
., —
a 5
— > Verif Proof(y, ¢, g, a) —» @/ @

a = Answer(x, ¢, q)

X
T
_) . '

a .
—>

—

a = Answer(x, ¢, q)

X
T
_) . '
a .
—>
—

a = Answer(x, ¢, q)

X
—_—_— _
- signature
° > >
—> o:=(c,a)
—

a = Answer(x, ¢, q)

Verif Sig (v, 0. msg):

A 1. G = Hash(msg,)
. > > >
- —>. signature 2. Verif Proof(y, ¢, g, a)
— > oo:=(C,a)

—

a = Answer(x, ¢, q)

Signature Security

® Security in the Random Oracle Mode|

» EUF-CMA adversary = algorithm to recover x

Signature Security

® Security in the Random Oracle Mode|
» EUF-CMA adversary = algorithm to recover x
® Zero Knowledge = signatures do not leak information on x

» /K Simulator — Signature oracle in the EUF-CMA game

Signature Security

® Security in the Random Oracle Mode|
» EUF-CMA adversary = algorithm to recover x
® Zero Knowledge = signatures do not leak information on x
» /K Simulator — Signature oracle in the EUF-CMA game
® Knowledge Soundness = x can be extracted from an EUF-CMA adversary

» Extractor — Recovers x from forged signatures (1, 2, a few)

Introduction to the
MPC-in-the-Head Paradigm

Secret Sharing

[[X]] — ([[x]]la cc [[x]]N) & [_

Secret Sharing

Ixll = dxly,...,0xly) € =

e Random generation: [[x]] « Generate(x, $)

® Deterministic reconstruction: x = Reconstruct(|[x])

Secret Sharing

[xI = ([xI;,....0x1) €FY

e Random generation: [x]] <« Generate(x, $)
® Deterministic reconstruction: x = Reconstruct(|[x])
® Privacy: [[x]] is £-private

& any set of £ shares {[[x]].} is statistically independent of x

Secret Sharing

[xI = ([xI;,....0x1) €FY

e Random generation: [x]] <« Generate(x, $)
® Deterministic reconstruction: x = Reconstruct([[x]])
® Privacy: [[x]] is £-private
& any set of £ shares {[[x]].} is statistically independent of x

& any set of £ shares {[[x]].} can be perfectly simulated w/o x

Secret Sharing

Example: additive secret sharing

® Reconstruction:

X = Zil xll.

® (Generation:

TR A S B N N !

Q. Additive sharing is £-private for which £ 7

Q. Additive sharing is £-private for which £ 7

A. Additive sharing is (N — 1)-private.

Prover Verifier

® Binding: no way | X I can be opened to x" # x

® Binding: no way | X I can be opened to x" # x

¢ Hiding: | X I does not reveal information about x (without =@)

Q. How to construct a simple binding and hiding
commitment scheme using symmetric cryptography?

Q. How to construct a simple binding and hiding
commitment scheme using symmetric cryptography?

A. Hash commitment:

l X I := Hash(x || p) with p < $ ~Q = (x,p)

Q. How to construct a simple binding and hiding
commitment scheme using symmetric cryptography?

A. Hash commitment:

l X I := Hash(x || p) with p < $ ~Q = (x,p)

> Biding by collision resistance

> Hiding in the ROM

® |nput: the parties receive a sharing [[x]|

® MPC: the parties jointly compute

y = C(x)

® |nput: the parties receive a sharing [[x]|

[[x]l ﬂ , Mx]] ® MPC: the parties jointly compute
—> 2
y = C(x)

® /-privacy: the views of any ¢ parties
reveal no information on x
%
2 %
[[x]]
1 \ / :

L —

My view = my input share, my internal

Hxﬂ4

randomness and all the messages | receive

® |nput: the parties receive a sharing [[x]|

[[x]l ! ! Mx]] ® MPC: the parties jointly compute
— 2
y = C(x)
%

® /-privacy: the views of any ¢ parties
reveal no information on x
a. ® Semi-honest model: the parties follow
@
' the steps of the protocol
[[x]]3
[[X]]s

L —

My view = my input share, my internal

Hxﬂ4

randomness and all the messages | receive

Generate [x]]
Run MPC protocol

Generate [x]]
Run MPC protocol

IIIII

a
at
at
“

.
*
 J
 J
.
‘O
*

randomness,
received messages

'. — //,/
view @ = input share, X

,% view commitment

Commitment of views

Generate [[x]]
Run MPC protocol

IIIII

a
at
et
“

randomness,
received messages

view @ = input share, X

,% view commitment

Commitment of views

o i 2 2

Generate [[x]]
Run MPC protocol

Challenge: parties to reveal

IIIII

a
at
et
“

randomness,
received messages

view @ = input share, X

,% view commitment

Commitment of views

o i a2

Generate [x]]
Run MPC protocol

Challenge: parties to reveal

IIIII

a
at
at
"

Response: open views

. . >
view @ = input share, X

randomness,

received messages

,% view commitment

Commitment of views

o i 2 2

Generate [[x]]
Run MPC protocol

Challenge: parties to reveal

IIIII

a
at
et
“

Response: open views

<

view @ = input share, X > y’C h

randomness,

received messages
(1) Check commitments: 2) Check view consistency: 3) Check result:

o ®©— i)—» y
, % view commitment 3 a
—)

—

Commitment of views

N 2N) N y/

Challenge: parties to reveal

Response: open views

<

Commitment of views

N 2N) N y/

Challenge: parties to reveal

Response: open views

<

Q. This protocol is zero-knowledge if the MPC protocol is ... ?

A. 2-private.

Commitment of views

o e e e

Challenge: parties to reveal

Response: open views

<

(1) Check commitments:

®—i=

—

2) Check view consistency:

14_.

3) Check result:

)—’y

>y

L doesn’t know x then

parties receive [[X]] with X # x

and MPC([[X]]) # v.

Commitment of views

o e e e

Challenge: parties to reveal

Response: open views

<

(1) Check commitments:

> —

—

2) Check view consistency:

14_.

3) Check result:

i—’y

>y

. doesn’t know x then
parties receive [[X]] with X # x

and MPC([[X]]) # v.

Therefore either
(1) o1

for some party

Commitment of views

o e e e

Challenge: parties to reveal

Response: open views

<

(1) Check commitments:

> —

—

2) Check view consistency:

14_.

3) Check result:

i—’y

>y

L doesn’t know x then

parties receive [[X]] with X # x

and MPC([[X]]) # v.

Therefore either
(1) o1

for some party

(2) —— a

for two parties

Commitment of views

o e e e

Challenge: parties to reveal

Response: open views

<

(1) Check commitments:

> —

—

2) Check view consistency:

14_.

3) Check result:

i—’y

>y

. doesn’t know x then
parties receive [[X]] with X # x

and MPC([[X]]) # v.

Therefore either
(1) o1

for some party

(2) —— a

for two parties

(3) ——y

for some party

Commitment of views

o i a2

Challenge: parties to reveal

Response: open views

<

Commitment of views
>
Challenge: parties to reveal

Response: open views

<

Q. What is the soundness error of this protocol?

A. It the prover cheat on a single message)'_')

the verifier detects the cheat only if the challenge is @ @
2

N(N — 1)

Soundness error = 1 — P[detection] = 1

Commitment of views
o i Rk

Challenge: parties to reveal

Response: open views

<

Q. What is the soundness error of this protocol?

A. It the prover cheat on a single message)'_')

the verifier detects the cheat only if the challenge is @ @

| 2
Z s ; We can do much better Soundness error = 1 — P[detection] = 1
o’ (See you tomorrow!) NN - 1)

MPC for Arithmetic Circuits

® Computation C composed of (+) and (X)¢

MPC for Arithmetic Circuits

® Computation C composed of (+) and (X)¢

® Additions = local computation

[x+y1 = ([xD; + [yDy, - DDy + DyTly)

MPC for Arithmetic Circuits

® Computation C composed of (+) and (X)¢

® Additions = local computation

[x+y1 = ([xD; + [yDy, - DDy + DyTly)

® Multiplications = require communication between parties

MPC for Arithmetic Circuits

® Computation C composed of (+) and (X)¢

® Additions = local computation

[x+y1 = ([xD; + [yDy, - DDy + DyTly)
® Multiplications — require communication between parties

> Common technique: using multiplication triples

> Assume the parties have pre-generated/distributed random

triples [la]l, [[P]l, [[c]] such that [[c]] = [[a - P]]

MPC for Arithmetic Circuits

® Multiplication of [x]] and [[y]] using [all, [Z], [c]l
» let a=x+a and f=y+b
> We have
x-y = (a—a)f—-—0b) = aff — pa—ab+ ab
> Giving
[xyll = af = pllall — allb]l + [l

MPC for Arithmetic Circuits

® Multiplication of [x]] and [[y]] using [all, [Z], [c]l
» let a=x+a and f=y+b
> We have
x-y = (a—a)f—-—0b) = aff — pa—ab+ ab
> Giving
[xyll = af = pllall — allb]l + [l
® Protocol:
1. Parties locally compute [a]l = [[x]] + [[a]l and [[£]] = [y] + [»]l
2. Parties broadcast [[a]] and [[/]]

3. Parties reconstruct @ and ff and compute [[xy]] as above

MPC for Arithmetic Circuits

® Multiplication of [x]] and [[y]] using [all, [Z], [c]l Compiling this protocol
» let a=x+a and f=y+b @ with MPCitH, we get a ZK
PoK fory = C(x).
> We have
x-y = (a—a)f—-—0b) = aff — pa—ab+ ab
> Qiving

[xy]l = af — pllall — allbll + [l

® Protocol:
1. Parties locally compute [a]l = [[x]] + [[a]l and [[£]] = [y] + [»]l
2. Parties broadcast [[a]] and [[/]]

3. Parties reconstruct @ and ff and compute [[xy]] as above

MPC for Arithmetic Circuits

® Multiplication of [x]] and [[y]l using [all, [£1l, [c]] Compi

» let a=x+a and f=y+b @ with M
» We have

x-y = (a—a)f—-—0b) = aff — pa—ab+ ab

it

> lemg @ Wa W | .
[xy]] = aff — Bla]l — al[b]] + [[c]] multiplication triples?

ing this protocol

°CitH, we get a ZK

PoK fory = C(x).

what do you do for

(See you tomorrow!)

® Protocol:
1. Parties locally compute [a]l = [[x]] + [[a]l and [[£]] = [y] + [»]l
2. Parties broadcast [[a]] and [[/]]

3. Parties reconstruct @ and ff and compute [[xy]] as above

