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• 2007: [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:  
“Zero-knowledge from secure multiparty computation” (STOC 2007)


• 2016: [GMO16] “ZKBoo: Faster Zero-Knowledge for Boolean Circuits” (Usenix 2016)


• 2017: Picnic submission to NIST


‣ MPCitH applied to LowMC


• 2017  today: Active area of research


‣ Drastic improvements


‣ Application to various PQ problems


• 2023: NIST call for additional PQ signatures


‣ 7 (to 9) MPCitH schemes / 40 round-1 candidates

→

Brief History
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Knowledge Soundness

y, C

⋮

Ok ✅

VerifierProver

If  Prover s.t. 
∃
P[ Verifier 

✅

] > ε

x

then  Extractor

which recovers  

∃
x

If doesn’t know  (we cannot extract ) x x

then  P[ Verifier 
✅

] ≤ ε

Contraposition

⚙
Extractor



Question 1



Question 1

I know  s.t. k y = AESk(0)

y

⋮

Prover Verifier

❓



Question 1

I know  s.t. k y = AESk(0)

y

Prover Verifier

k

Indeed, y = AESk(0)



Useful Proof of Knowledge

x y, C

Prover Verifier



Useful Proof of Knowledge

x y, C

Prover Verifier

        learns nothing about  x

Zero Knowledge (informal)



Useful Proof of Knowledge

x y, C
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|
📜
| ≪ |x | , |C | , |y |

verif. time ≪ |x | , |C | , |y |

Succinctness (informal)

📜

Transcript
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Back to Knowledge Soundness

If  Prover s.t.  
then  Extractor which recovers  

∃ P[ Verifier 
✅

] > ε
∃ x

x⚙
Extractor

Knowledge Soundness Zero Knowledge

📜

 Simulator producing 

genuine transcripts

∃

📜

🤖
Simulator

≈

🤔 Those 2 seem somehow contradictory.
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Question 2

⚙

Extractor

🤖
Simulator

x

Q. Why this doesn’t work?

A. Simulator only outputs 📜 
     Prover is stateful, it can be copied and forked.
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c

c

(3) Continue with  questions≠

q1
a1

c
q2
a2(4) Recover  from 


 and  
x

(c, q1, a1) (c, q2, a2)

Known as 

(2-)special soundness 
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Prover Verifier


k ← $
c = gk

c

q ← $q

a
a = qx + k

Check ga = yq ⋅ c

Q. Why is Schnorr protocol zero-knowledge?
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Check ga = yq ⋅ c

Answer

Simulator 🤖





q ← $
a ← $
c = ga/yq

(c, a, q)

Perfect zero-knowledge 💡 Knowing the question (a.k.a. challenge) before 

the commitment enables perfect simulation.

commitment
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Prover Verifier


k ← $
c = gk

c

q ← $q

a
a = qx + k

Check ga = yq ⋅ c

Q. Why is Schnorr protocol knowledge sound?
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c
q1
a1

c
q2
a2

a1 = q1x + k a2 = q2x + k

Extractor 

x = (a1 − a2)/(q1 − q2) x

2-Special Knowledge Soundness

💡 For any , if           can produce 2  transcripts 

 (with same ), then Extractor gets .
c ≠

(c, q, a) c x

 If           don’t know , they can produce 

at most one such transcript. 
⇒ x

 Soundness error = 

                                = 
⇒ P["getting the right q"]

2−|q|
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..........

ετ = P[
✅

  τ times  ]

Prover Verifier

⋮

⋮

⋮

Parallel repetition
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Non-Interactive Proof

I know  

s.t. 

x
y = C(x)

x y, C



Ok ✅ / Nok ⛔
𝖵𝖾𝗋𝗂𝖿 : π ↦

Prover Verifier

π
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qn
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q2
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Verifier🎲

🎲

🎲

Public-coin
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Fiat-Shamir Transform

Prover

c
q1
a1

⋮
qn
an

q2
a2

HASH

HASH

HASH

π = (c, a1, …, an)

q1 = 𝖧𝖺𝗌𝗁(c)

q2 = 𝖧𝖺𝗌𝗁(c, a1)

q3 = 𝖧𝖺𝗌𝗁(c, a1, a2)

checks  by recomputing the hashs

instead of randomly picking the ’s

π
qi

💡  behaves as a random function. 
Security in the Random Oracle Model (ROM).
𝖧𝖺𝗌𝗁( ⋅ )

⋮
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⋮

⋮

⋮

⋮

Sequential 

repetition

Parallel

repetition

Q. With Fiat-Shamir, which one is better and why?
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Try new  until  

can be answered  trials 
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Try new  until  

can be answered  trials 

cτ qτ = 𝖧𝖺𝗌𝗁(c1, a1, …, cτ)
⇒1/ε

             Forge in time   sequential 

             repetition is weak with Fiat Shamir.

τ ⋅ (1/ε) ⇒⚠

c2

cτ

⋮
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Answer
Prover

⋮

⋮

⋮

HASH

Try  times to get  questions

that can all be answered at the 

same time.

1/ετ τ

             Parallel repetition is 

             secure with Fiat Shamir.🛡



ZK PoK + Fiat-Shamir = Signature

⋮

⋮

⋮

x

⃗c

⃗q

⃗a

y = C(x)

𝖵𝖾𝗋𝗂𝖿 𝖯𝗋𝗈𝗈𝖿(y, ⃗c , ⃗q , ⃗a ) ↦
✅

 / 
⛔

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q )



⋮

⋮

⋮

x

HASH⃗c

⃗q

⃗a

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q )

ZK PoK + Fiat-Shamir = Signature
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⋮

x

HASH

message ✉ 

⃗c

⃗q

⃗a

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q )

ZK PoK + Fiat-Shamir = Signature



⋮

⋮

⋮

x

HASH

message ✉ 

σ := ( ⃗c , ⃗a )
signature  

⃗c

⃗q

⃗a

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q )

ZK PoK + Fiat-Shamir = Signature



⋮

⋮

⋮

x

HASH

message ✉ 

σ := ( ⃗c , ⃗a )

Verif Sig : 


  1. 

  2. 

(y, σ, msg)
⃗q = 𝖧𝖺𝗌𝗁(msg, ⃗c )

𝖵𝖾𝗋𝗂𝖿 𝖯𝗋𝗈𝗈𝖿(y, ⃗c , ⃗q , ⃗a )signature  

⃗c

⃗q

⃗a

⃗a = 𝖠𝗇𝗌𝗐𝖾𝗋(x, ⃗c , ⃗q )

ZK PoK + Fiat-Shamir = Signature
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Secret Sharing
Example: additive secret sharing


• Reconstruction:  
 
                          


• Generation: 


 ,        

x = ∑
N

i=1
[[x]]i

[[x]]1, …, [[x]]N−1 ← $ [[x]]N = x − ∑
N−1

i=1
[[x]]i
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Q. How to construct a simple binding and hiding

commitment scheme using symmetric cryptography?

A. Hash commitment: 
 
                    with                  := Hash(x ∥ ρ) ρ ← $ := (x, ρ)x

🔒 🔑

‣ Biding by collision resistance


‣ Hiding in the ROM

Question 7
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MPC in the Head

Commitment of views

Challenge: parties to reveal

Response: open views

x y, C

🔒 🔒 🔒 🔒 🔒

view = input share, 

   randomness, 

   received messages 

🔒 view commitment

Generate [[x]]
Run MPC protocol

(1) Check commitments: 
🔒

🔒

(2) Check view consistency: (3) Check result: 

y

y
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Question 8
Commitment of views
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Response: open views

🔒 🔒 🔒 🔒 🔒

A. 2-private.
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[[x̃]] x̃ ≠ x
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🔒
⛔

⛔

y⛔



Question 9



Q. What is the soundness error of this protocol?

Question 9
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒



Q. What is the soundness error of this protocol?

Question 9
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

A. If the prover cheat on a single message


     the verifier detects the cheat only if the challenge is


     Soundness error =  =  1 − P[detection] 1 −
2

N(N − 1)



Q. What is the soundness error of this protocol?

Question 9
Commitment of views

Challenge: parties to reveal

Response: open views

🔒 🔒 🔒 🔒 🔒

A. If the prover cheat on a single message


     the verifier detects the cheat only if the challenge is


     Soundness error =  =  1 − P[detection] 1 −
2

N(N − 1)😇 We can do much better!

(See you tomorrow!)
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‣ Let    and  


‣ We have 


 


‣ Giving


     


• Protocol:


1. Parties locally compute  and 


2. Parties broadcast  and 


3. Parties reconstruct  and  and compute  as above

[[x]] [[y]] [[a]], [[b]], [[c]]

α = x + a β = y + b

x ⋅ y = (α − a)(β − b) = αβ − βa − αb + ab

[[xy]] = αβ − β[[a]] − α[[b]] + [[c]]

[[α]] = [[x]] + [[a]] [[β]] = [[y]] + [[b]]

[[α]] [[β]]

α β [[xy]]

😇
Compiling this protocol 
with MPCitH, we get a ZK 
PoK for .y = C(x)

🤔
Wait, what do you do for 
multiplication triples?

(See you tomorrow!)


