Zero-Knowledge Proofs from Multiparty Computation: Recent Advances

Matthieu Rivain
WRACH 2023
Jun 14, 2023, Roscoff

Introduction

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zeroknowledge from secure multiparty computation" (STOC 2007)
- Turn an MPC protocol into a zero knowledge proof of knowledge
- Generic: can be apply to any cryptographic problem
- Convenient to build (candidate) post-quantum signature schemes
- Picnic: submission to NIST (2017)
- Recent NIST call (01/06/2023): 7 MPCitH schemes / 50 submissions

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MQ system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

Signature scheme

signature

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

signature

Multiparty computation (MPC)

MPC in the Head transform

Zero-knowledge proof

Background: Additive secret sharing

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right) \quad \text { s.t. } \quad x=\sum_{i=1}^{N} \llbracket x \rrbracket_{i}
$$

Any set of $N-1$ shares is random \& independent of x

Background: Proof of knowledge

- Completeness: $\operatorname{Pr}[$ verif $\checkmark \mid$ honest prover] = 1
- Soundness: Pr[verif $\checkmark \mid$ malicious prover] $\leq \varepsilon$ (e.g. 2^{-128})
- Zero-knowledge: verifier learns nothing on x

Background: Commitment scheme

- Binding: no way x can be opened to $x^{\prime} \neq x$
- Hiding: x does not reveal information about x (without -0)
- Hash commitment: $x=\operatorname{Hash}(x \| \rho)$ with $\rho \leftarrow \$ \quad=(x, \rho)$

MPCitH: general principle

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ($N-1$) private: the views of any $N-1$ parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ($N-1$) private: the views of any $N-1$ parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol
- Broadcast model
- Parties locally compute on their shares $\llbracket x \rrbracket \mapsto \llbracket \alpha \rrbracket$
- Parties broadcast $\llbracket \alpha \rrbracket$ and recompute α
- Parties start again (now knowing α)

and so on...
$g:(y, \alpha, \beta, \ldots) \mapsto\left\{\begin{array}{l}\text { Accept } \\ \text { Reject }\end{array}\right.$

Example: matrix multiplication $y=H x$

$g(y, \alpha)=\left\{\begin{array}{ll}\text { Accept } & \text { if } y=\alpha \\ \text { Reject } & \text { if } y \neq \alpha\end{array} \quad g(y, \alpha)=\right.$ Accept $\Longleftrightarrow H x=y$

MPCitH transform

MPCitH transform

(1) Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

Prover

Verifier

MPCitH transform

(1) Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
(2) Run MPC in their head

$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

Prover

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

(3) Chose a random party $i^{*} \leftarrow^{\$}\{1, \ldots, N\}$

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

(3) Chose a random party $i^{*} \leftarrow^{\$}\{1, \ldots, N\}$

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

Verifier

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is ($N-1$)-private
- Soundness
- if $g(y, \alpha) \neq$ Accept \rightarrow Verifier rejects
- if $g(y, \alpha)=$ Accept, then
- either $\llbracket x \rrbracket=$ sharing of correct witness $F(x)=y \rightarrow$ Prover honest
- or Prover has cheated for at least one party
\rightarrow Cheat undetected with proba $\frac{1}{N}$

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is ($N-1$)-private
- Soundness
- if $g(y, \alpha) \neq$ Accept \rightarrow Verifier rejects
- if $g(y, \alpha)=$ Accept, then
- either $\llbracket x \rrbracket=$ sharing of correct witness $F(x)=y \rightarrow$ Prover honest
- or Prover has cheated for at least one party

$$
\rightarrow \text { Cheat undetected with proba } \frac{1}{N}
$$

- Parallel repetition

Protocol repeated τ times in parallel \rightarrow soundness error $\left(\frac{1}{N}\right)^{\tau}$

Example: matrix multiplication $y=H x$

Verifier

Check $\forall i \neq i^{*}$

- Commitments $\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
- MPC computation $\llbracket \alpha \rrbracket_{i}=H \cdot \llbracket x \rrbracket_{i}$

Check $\alpha:=\Sigma_{i} \llbracket \alpha \rrbracket_{i}=y$

Complete MPC model

Complete MPC model

Randomness oracle

Complete MPC model

Example: [BN20] check product $x y=z$

Verifying arbitrary circuits

- Previous slide reference:
[BN20] Baum, Nof. "Concretely-Efficient Zero-Knowledge Arguments for Arithmetic Circuits and Their Application to Lattice-Based Cryptography" (PKC 2020)
- Product-check protocol \Rightarrow protocol for checking any arithmetic circuit $C(x)=y$
- Principle:
- Let $\left\{c_{i}=a_{i} \cdot b_{i}\right\}$ all the multiplications in C
- Extended witness: $w=x \|\left(c_{1}, \ldots, c_{m}\right)$
- Compute $\llbracket y \rrbracket$ = linear function of $\llbracket w \rrbracket \quad \rightarrow \quad$ check $\llbracket y \rrbracket=$ sharing of y
- $\llbracket a_{i} \rrbracket, \llbracket b_{i} \rrbracket, \llbracket c_{i} \rrbracket=$ linear functions of $\llbracket w \rrbracket \quad \rightarrow \quad$ product check on $\llbracket a_{i} \rrbracket, \llbracket b_{i} \rrbracket, \llbracket c_{i} \rrbracket$

MPCitH: optimisations

Optimising communication (sig. size)

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow N$ commitments
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \quad \rightarrow N$ MPC broadcasts
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes

Optimising communication (sig. size)

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow N$ commitments
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \quad \rightarrow N$ MPC broadcasts
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow \quad h=\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right), \quad \alpha=\Sigma_{i} \llbracket \alpha \rrbracket_{i}$
- Verification
- $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right) \quad \forall i \neq i^{*}$
- $\llbracket \alpha \rrbracket_{i^{*}}=\alpha-\Sigma_{i \neq i *} \llbracket \alpha \rrbracket_{i}$
- Check $\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right)=h$

Optimising communication (sig. size)

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow N$ commitments
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ N MPC broadcasts \rightarrow hash (+1 MPC broadcast)
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow \quad h=\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right), \quad \alpha=\Sigma_{i} \llbracket \alpha \rrbracket_{i}$
- Verification
- $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right) \quad \forall i \neq i^{*}$
- $\llbracket \alpha \rrbracket_{i^{*}}=\alpha-\Sigma_{i \neq i^{*}} \llbracket \alpha \rrbracket_{i}$
- Check $\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right)=h$

Optimising communication (sig. size)

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow$ Ncommitments \rightarrow hash +1 commitment
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ N MPC broadcasts \rightarrow hash (+1 MPC broadcast)
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes
- First optimisation: hashing
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow \quad h=\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right), \quad \alpha=\Sigma_{i} \llbracket \alpha \rrbracket_{i}$
- Verification
- $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right) \quad \forall i \neq i^{*}$
- $\llbracket \alpha \rrbracket_{i^{*}}=\alpha-\Sigma_{i \neq i^{*}} \llbracket \alpha \rrbracket_{i}$
- Check $\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right)=h$
- Also works with commitments

Optimising communication (sig. size)

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow$ Ncommitments \rightarrow hash +1 commitment
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ N MPC broadeasts \rightarrow hash (+1 MPC broadcast)
$\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes main cost
- First optimisation: hashing
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow \quad h=\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right), \quad \alpha=\Sigma_{i} \llbracket \alpha \rrbracket_{i}$
- Verification
- $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right) \quad \forall i \neq i^{*}$
- $\llbracket \alpha \rrbracket_{i^{*}}=\alpha-\Sigma_{i \neq i *} \llbracket \alpha \rrbracket_{i}$
- Check $\operatorname{Hash}\left(\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N}\right)=h$
- Also works with commitments

Second optimisation: seed trees

- [KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)
- Pseudorandom generation from seed
- $\left(\llbracket x \rrbracket_{i}, \rho_{i}\right) \leftarrow \operatorname{PRG}\left(\right.$ seed $\left._{i}\right)$
- $\llbracket x \rrbracket_{N}=x-\sum_{i=1}^{N} \llbracket x \rrbracket_{i}$
- Seeds $\left\{\operatorname{seed}_{i}\right\}$ generated from a common "root seed"
- Goal: revealing $\left\{\operatorname{seed}_{i}\right\}_{i \neq i^{*}}$ with less than $(N-1) \cdot \lambda$ bits

Second optimisation: seed trees

Second optimisation: seed trees

- Signature $=$ transcript $\mathrm{P} \rightarrow \mathrm{V}$
- $\left\{\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)\right\} \rightarrow$ Ncommitments \rightarrow hash +1 commitment
- $\llbracket \alpha \rrbracket_{1}, \ldots, \llbracket \alpha \rrbracket_{N} \rightarrow$ NMPC broadeasts \rightarrow hash (+1 MPC broadcast)
- $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \neq i^{*}} \rightarrow N-1$ input shares + random tapes $\rightarrow \log (N)$ seeds
- Verification
$+\llbracket x \rrbracket_{N}$ if $i^{*} \neq N$
- Sibling path $\rightarrow\left\{\text { seed }_{i}\right\}_{i \neq i^{*}}$
$-\operatorname{seed}_{i} \rightarrow\left(\llbracket x \rrbracket_{i}, \rho_{i}\right) \quad \forall i \neq i^{*}$
- ...

Optimising computation: hypercube technique

- [AGHHJY23] Aguilar Melchor, Gama, Howe, Hülsing, Joseph, Yue. "The Return of the SDitH" (EUROCRYPT 2023)
- High-level principle
- Apply MPC computation to sums of shares

$$
\Sigma_{i \in I} \llbracket x_{i} \rrbracket \xrightarrow{\varphi} \Sigma_{i \in I} \llbracket \alpha_{i} \rrbracket
$$

- Only $\log N+1$ such party computations necessary for the prover
- Only $\log N$ for the verifier
- See Nicolas' talk at EC: https://youtu.be/z6nE4fOWvZA (49:33)

MPCitH with threshold LSSS

Background: Shamir's secret sharing

- Sharing $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ such that
- Let $\left(r_{1}, \ldots, r_{\ell}\right) \leftarrow \$$
- Let P the polynomial of coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right)$

$$
\left\{\begin{array}{l}
\llbracket x \rrbracket_{1}=P\left(f_{1}\right) \\
\vdots \\
\llbracket x \rrbracket_{N}=P\left(f_{N}\right)
\end{array} \quad \text { with } f_{1}, \ldots, f_{N} \in \mathbb{F}\right. \text { distinct field elements }
$$

Background: Shamir's secret sharing

- Sharing $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ such that
- Let $\left(r_{1}, \ldots, r_{\ell}\right) \leftarrow \$$
- Let P the polynomial of coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right)$

$$
\left\{\begin{array}{l}
\llbracket x \rrbracket_{1}=P\left(f_{1}\right) \\
\vdots \\
\llbracket x \rrbracket_{N}=P\left(f_{N}\right)
\end{array} \quad \text { with } f_{1}, \ldots, f_{N} \in \mathbb{F}\right. \text { distinct field elements }
$$

- $(\ell+1, N)$-threshold linear secret sharing scheme (LSSS)

Background: Shamir's secret sharing

- Sharing $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ such that
- Let $\left(r_{1}, \ldots, r_{\ell}\right) \leftarrow \$$
- Let P the polynomial of coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right)$

$$
\left\{\begin{array}{l}
\llbracket x \rrbracket_{1}=P\left(f_{1}\right) \\
\vdots \\
\llbracket x \rrbracket_{N}=P\left(f_{N}\right)
\end{array} \quad \text { with } f_{1}, \ldots, f_{N} \in \mathbb{F}\right. \text { distinct field elements }
$$

- $(\ell+1, N)$-threshold linear secret sharing scheme (LSSS)
- Linearity: $\llbracket x \rrbracket+\llbracket y \rrbracket=\llbracket x+y \rrbracket$

Background: Shamir's secret sharing

- Sharing $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ such that
- Let $\left(r_{1}, \ldots, r_{\ell}\right) \leftarrow \$$
- Let P the polynomial of coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right)$

$$
\left\{\begin{array}{l}
\llbracket x \rrbracket_{1}=P\left(f_{1}\right) \\
\vdots \\
\llbracket x \rrbracket_{N}=P\left(f_{N}\right)
\end{array} \quad \text { with } f_{1}, \ldots, f_{N} \in \mathbb{F}\right. \text { distinct field elements }
$$

- $(\ell+1, N)$-threshold linear secret sharing scheme (LSSS)
- Linearity: $\llbracket x \rrbracket+\llbracket y \rrbracket=\llbracket x+y \rrbracket$
- Any set of ℓ shares is random and independent of x
- Any set of $\ell+1$ shares \rightarrow coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right) \rightarrow$ all the shares

Background: Shamir's secret sharing

- Sharing $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ such that
- Let $\left(r_{1}, \ldots, r_{\ell}\right) \leftarrow \$$
- Let P the polynomial of coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right)$

$$
\left\{\begin{array}{l}
\llbracket x \rrbracket_{1}=P\left(f_{1}\right) \\
\vdots \\
\llbracket x \rrbracket_{N}=P\left(f_{N}\right)
\end{array} \quad \text { with } f_{1}, \ldots, f_{N} \in \mathbb{F}\right. \text { distinct field elements }
$$

- $(\ell+1, N)$-threshold linear secret sharing scheme (LSSS)
- Linearity: $\llbracket x \rrbracket+\llbracket y \rrbracket=\llbracket x+y \rrbracket$
- Any set of ℓ shares is random and independent of x
- Any set of $\ell+1$ shares \rightarrow coefficients $\left(x, r_{1}, \ldots, r_{\ell}\right) \rightarrow$ all the shares
- $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ is a Reed-Solomon codeword of $\left(x, r_{1}, \ldots, r_{\ell}\right)$

MPCitH with threshold LSSS

- [FR22] Feneuil, Rivain. "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022)
- ZK property \Rightarrow only open ℓ parties
- Verifier challenges a set $I \subseteq\{1, \ldots, N\}$ s.t. $|I|=\ell$
- Prover opens $\left\{\llbracket x \rrbracket_{i}, \rho_{i}\right\}_{i \in I}$

MPCitH transform with threshold LSSS

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I
$\operatorname{Com}^{\rho_{1}}\left(\llbracket x \rrbracket_{1}\right)$

(3) Chose random set of parties
$I \subseteq\{1, \ldots, N\}$, s.t. $|I|=\ell$
(5) Check $\forall i \in I$

- Commitments $\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
- MPC computation $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right)$

Check $g(y, \alpha)=$ Accept

Prover

MPCitH transform with threshold LSSS

Sharing and commitments

Sharing and commitments

Sharing and commitments

Sharing and commitments

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$ is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

Opening $\llbracket x \rrbracket_{i}$
\Rightarrow need to prove that $\llbracket x \rrbracket_{i}$
is consistent with the root

MPCitH transform with threshold LSSS

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

Prover

Soundness

Soundness

мим

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
sharing sent to the verifier s.t. $g(y, \bar{\alpha})=$ Accept

Soundness

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1$
sharing sent to the verifier s.t. $g(y, \bar{\alpha})=$ Accept

Soundness

Soundness

Soundness

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover
$\rightarrow \quad \llbracket \bar{\alpha} \rrbracket$
sharing sent to the verifier s.t. $g(y, \bar{\alpha})=$ Accept

Soundness

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover
sharing sent to the verifier s.t. $g(y, \bar{\alpha})=$ Accept
- Malicious prover \Rightarrow \# honest parties $\leq \ell$

Soundness

- Malicious prover \Rightarrow \# honest parties $\leq \ell$
- \# honest parties < ℓ

Soundness

$|I|=\ell$

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow \# honest parties $\leq \ell$
- \# honest parties < ℓ

Open parties include at least 1 cheating party \Rightarrow MPC verification fails

$\llbracket \bar{\alpha} \rrbracket_{N} \quad \rightarrow \quad \llbracket \bar{\alpha} \rrbracket$
sharing sent to the verifier s.t. $g(y, \bar{\alpha})=$ Accept

Soundness

$\llbracket \bar{\alpha} \rrbracket_{1} \llbracket \bar{\alpha} \rrbracket_{2}$
$\llbracket \bar{\alpha} \rrbracket_{N} \quad \rightarrow \quad \llbracket \bar{\alpha} \rrbracket$
sharing sent to

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover the verifier s.t. $g(y, \bar{\alpha})=$ Accept
- Malicious prover \Rightarrow \# honest parties $\leq \ell$
- \# honest parties $<\ell \Rightarrow$ cheat always detected

Soundness

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover
sharing sent to the verifier s.t. $g(y, \bar{\alpha})=$ Accept
- Malicious prover \Rightarrow \# honest parties $\leq \ell$
- \# honest parties $<\ell \Rightarrow$ cheat always detected
- \# honest parties $=\ell$

Soundness

$\llbracket \bar{\alpha} \rrbracket_{1} \llbracket \bar{\alpha} \rrbracket_{2}$
$I=$ honest parties

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover
 $g(y, \bar{\alpha})=$ Accept
- Malicious prover \Rightarrow \# honest parties $\leq \ell$
- \# honest parties $<\ell \Rightarrow$ cheat always detected
- \# honest parties $=\ell$

Soundness

$$
I \neq \text { honest parties }
$$

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow \# honest parties $\leq \ell$
- \# honest parties $<\ell \Rightarrow$ cheat always detected
- \# honest parties $=\ell$

Soundness

$I \neq$ honest parties

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow \# honest parties $\leq \ell$
- \# honest parties $<\ell \Rightarrow$ cheat always detected
- \# honest parties $=\ell$

Soundness

- \mathscr{P}_{i} is "honest" if $\llbracket \alpha \rrbracket_{i}=\llbracket \bar{\alpha} \rrbracket_{i}$
- \# honest parties $\geq \ell+1 \Rightarrow$ honest prover
- Malicious prover \Rightarrow \# honest parties $\leq \ell$
- \# honest parties $<\ell \Rightarrow$ cheat always detected
- \# honest parties $=\ell \Rightarrow$ soundness error $\frac{1}{\binom{N}{\ell}}$

Soundness

- We implicitly assumed that the MPC protocol has no false positive
- False positive probability $p \neq 0 \rightarrow$ more complex analysis [FR22]
- Soundness error

$$
\frac{1}{\binom{N}{\ell}}+p \frac{\ell(N-\ell)}{\ell+1}
$$

- Fiat-Shamir transform: p should be small for efficient application

Comparison

	Additive sharing + seed trees + hypercube	Threshold LSSS with $\ell=1$
Soundness error	$\frac{1}{N}+p\left(1-\frac{1}{N}\right)$	$\frac{1}{N}+p\left(\frac{N-1}{2}\right)$
Prover \# party computations	$\log N+1$	2
Verifier \# party computations	$\log N$	1
Size of seed / Merkle tree	$\lambda(\log N)$	$2 \lambda(\log N)^{*}$

* might be more for MPC protocols with many rounds of oracle queries

Comparison

	Additive sharing + seed trees + hypercube	Threshold LSSS with $\ell=1$
For signatures with $\lambda=128, N=256, \tau=16$		
Prover \# party computations	144	32
Verifier \# party computations	128	16
Size of seed / Merkle tree	2KB	4KB

Conclusion

- MPC in the Head is great!
- Efficient and short ZK proofs for small circuits / one-way functions
- Typical application: PQ signatures
- (For larger computation, ZK-SNARK are better)
- Two interesting options (trade-off)
- Additive sharing (with seed trees and hypercube)
- Threshold sharing
- Other type of sharing: sharing over the integers / MPCitH with rejection
[FMRV22] Feneuil, Maire, Rivain, Vergnaud. "Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection" (ASIACRYPT 2022)

