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Abstract. Since their publication in 1996, Fault Attacks have been
widely studied from both theoretical and practical points of view and
most of cryptographic systems have been shown vulnerable to this kind
of attacks. Until recently, most of the theoretical fault attacks and coun-
termeasures used a fault model which assumes that the attacker is able to
disturb the execution of a cryptographic algorithm only once. However,
this approach seems too restrictive since the publication in 2007 of the
successful experiment of an attack based on the injection of two faults,
namely a second-order fault attack. Amongst the few papers dealing
with second-order fault analysis, three countermeasures were published
at WISTP’07 and FDTC’07 to protect the RSA cryptosystem using the
CRT mode. In this paper, we analyse the security of these countermea-
sures with respect to the second-order fault model considered by their
authors. We show that these countermeasures are not intrinsically resis-
tant and we propose a new method allowing us to implement a CRT-RSA
that resists to this kind of second-order fault attack.
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1 Introduction

When attackers have access to physical implementations, cryptographic algo-
rithms need to be secured against threats beyond classical cryptanalysis. Among
these, faults attacks (FA) aim at disturbing cryptographic computations, and
exploit erroneous results to recover information on secret data. They were intro-
duced in 1996 [5] and they have been further studied since. Techniques have been
improved and they have found applications on a wide variety of cryptographic
algorithms. A non exhaustive list comprises RSA [1, 5, 16, 17, 19, 25], DSA [22],
DES [3,14], AES [23] and stream ciphers [15].



A fault attack description must specify the fault model it assumes [13]. This
model clarifies the capabilities of the attacker such as the kind of error (e.g. bit
flip in data, program execution modification), the timing precision or the number
of errors. The latter characteristic is called the order of the attack: first-order
attacks assume an attacker who can induce only one error per execution of the
target algorithm. Similarly, second-order attacks assume an attacker who can
induce two errors per execution, and so forth. The practicability of the model is
of importance to assess the feasibility of an attack.

The seminal work [5] introduces several first-order attacks among which one
targets an RSA implementation using the Chinese Remainder Theorem (CRT
for short). Indeed, most RSA implementations in embedded systems use CRT
because of its performance benefits. Let N denote the public modulus composed
of two secret prime numbers p and q such that N = p · q. Let e refer to the
public exponent and d refer to the private exponent. Whereas a straightforward
implementation computes the signature of a message m by performing S =
md mod N , a CRT-based implementation is composed of two exponentiations
Sp = mdp mod p and Sq = mdq mod q, where dp = d mod (p−1) and dq = d mod
(q − 1). As the signature S satisfies S ≡ Sp mod p and S ≡ Sq mod q, it can be
computed from Sp and Sq by using the CRT [9]. This additional computation is
called the recombination step. The principle of the so-called Bellcore attack [5]
is to disturb one of the exponentiations, say Sq, so that the recombination step
results in a faulty signature S̃ satisfying S̃ ≡ S mod p and S̃ 6≡ S mod q. The
secret parameter p can then be recovered by computing gcd(S− S̃, N). The fault
model of this attack is very weak because the attacker only needs to disturb one
exponentiation to succeed. The fault can be introduced at any time during the
computation, either in code or in data.

Due to both the performance advantages of the CRT-RSA and its high vul-
nerability to fault attacks, securing its implementation is an important and chal-
lenging task. Several countermeasures have been introduced of which common
goal is to prevent the output of a hazardous result. To do so, a simple solution
is to verify the signature before returning it. However, this verification may be
costly if the public exponent is not small or/and if it is not provided by the API
(e.g. in Javacard). Therefore, more sophisticated methods have been designed
which do not rely on additional parameters. We can distinguish two main ap-
proaches. The first one is the introduction of internal coherence checks that aim
at verifying the validity of the result before returning it [6, 10, 11]. The second
one is to make use of so-called infective procedures that render the erroneous
signature harmless in case of fault injection [8].

At WISTP’07, Kim and Quisquater [19] introduced a second-order fault
model in which they were able to practically break the (first-order) countermea-
sures of [8] and [10]. Their work also includes improvements of the first-order
countermeasures to achieve a secure implementation in their second-order fault
model. Later, at FDTC’07, they proposed in [20] an implementation also meant
to resist in this model. Unfortunately, we show in this paper that the proposed
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countermeasures are actually not intrinsically resistant in this model and that
they may be successfully attacked.

The rest of this paper is organized as follows. Section 2 recalls the fault
model introduced by Kim and Quisquater. Sections 3 and 4 present the counter-
measures proposed in [19] and [20] respectively and exhibit their vulnerabilities.
Section 5 proposes a generic countermeasure that enables to render any method
intrinsically resistant in the Kim and Quisquater’s fault model. Finally, Section
6 concludes the paper.

2 Kim and Quisquater’s Second-Order Fault Model

The literature contains several practical examples of fault attacks. However, to
the best of our knowledge, the paper [19] is the first one that reports a successful
experiment of a second-order fault attack. In this paper, Kim and Quisquater
explain how they practically mounted a second-order attack against a first-order
resistant CRT-RSA implementation. We shall refer to this attack as the KQ-
attack.

An algorithm is said to be first-order resistant when it contains some coun-
termeasure which ensures that any single error occurring in the execution of the
algorithm is not exploitable by an attacker. In the case of the CRT-RSA, some
redundant computations are usually added in order to check the coherence of the
computation (e.g. [10]) or to infect the faulty signature (e.g. [7]). When a single
fault is injected and corrupts the RSA computation, it is systematically detected
(or at least with high probability) and the faulty signature is not revealed (or
is infected). However, an attacker may defeat such a countermeasure by using
a second-order fault analysis, namely by injecting two faults. In that case, one
of these faults must be dedicated to the corruption of the RSA computation in
order to produce an exploitable faulty signature. The second fault is then used
to render the countermeasure ineffective. For such a purpose, two approaches
are possible:

– In the first approach, the attacker tries to fool the coherence check. Namely,
the second fault aims at covering the effects of the first fault in such a
way that the coherence check does not detect it while the result of the
RSA computation remains faulty. To do so, the attacker needs to precisely
control the two fault injections effects. This implies a very strong and yet
not practical adversary model.

– The second approach consists in directly skipping the coherence verification
(or the infection procedure). Since several experiments have demonstrated
the practicability of skipping the execution of one or more operations (see for
instance [2,19,21]), this approach corresponds to a weaker model of adversary
and is then more natural from a practical point of view.

The Kim and Quisquater’s second-order fault model (referred in the sequel
as KQ-model) corresponds to this latter approach. We formalize it hereafter.
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Fault Model (KQ-model). Two faults are injected. The first fault can be of
any type (instructions skip, memory modification, . . . ), provided it disturbs the
RSA computation and produces an exploitable faulty signature. The second fault
allows the attacker to skip any operation or set of contiguous operations in order
to circumvent the coherence check (or the infective procedure).

In the next section, we show that the countermeasures proposed by Kim and
Quisquater in [19] and [20] do not intrinsically resist all fault attacks in their
model.

3 Analysis of WITSP’07 Countermeasures

In a paper published at WISTP’07, Kim and Quisquater have reported some
practical experiments of second-order fault analysis [19]. They succeeded in
breaking two first-order FA-countermeasures published at FDTC’05: the one by
Ciet and Joye [8] and the one by Giraud [10]. Finally, they proposed to modify
both countermeasures in order to resist to their second-order fault attack. In this
section, we present the two countermeasures improved by Kim and Quisquater
in [19] which are meant to resist fault analysis in the KQ-model and we show
that they are weak with regard to this fault model.

3.1 Analysis of the First WISTP Countermeasure

Description. This first countermeasure of [19] is an improvement of Ciet and
Joye’s countermeasure [8] which is a generalization of Shamir’s trick [24]. The
basic principle is to multiply the modulus p (resp. q) by a small integer r1 (resp.
r2). The exponentiation is then carried out modulo r1 · p (resp. r2 · q) which
allows to verify the result modulo r1 (resp. r2) afterward. If an error is detected,
the resulting signature is infected using a random value r3.

For two security parameters k and l, let r1 and r2 as two co-prime k-bit
integers and r3 as an l-bit integer. And let p∗, q∗ and I∗q be defined as p∗ = r1 ·p,
q∗ = r2 ·q and I∗q = (q∗)−1 mod p∗. Algorithm 1 describes the modified Ciet and
Joye’s scheme.

Algorithm 1 Modified Ciet and Joye’s scheme [19]

Inputs: m, p∗, q∗, dp, dq, I
∗
q , N , r1, r2, r3

Output: S = md mod N

1. Choose a random integer a in Z∗r1r2N
2. Initialize γ with a random number

3. S∗p ← (a+mdp) mod p∗

4. s2 ← (a+mdq mod ϕ(r2)) mod r2

5. S∗q ← (a+mdq ) mod q∗

6. s1 ← (a+mdp mod ϕ(r1)) mod r1

7. S∗ ← S∗q + q∗ · I∗q · (S∗p − S∗q ) mod p∗
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8. c1 ← (S∗ − s1 + 1) mod r1

9. c2 ← (S∗ − s2 + 1) mod r2

10. γ ← b(r3c1 + (2l − r3)c2)/2lc
11. return (S∗ − aγ) mod N

If no fault is injected, the result of Step 7 is S + a mod N and the result
of Step 10 is γ = 1 (since s1 = s2 = 1). This way, Step 11 returns the correct
signature. On the other hand, if an error is detected, Step 10 returns γ 6= 1
and Step 11 infects the returned signature with the random value a (see [19] for
further details).

Analysis. By noticing that S∗ ≡ Sp + a mod p and S∗ ≡ Sq + a mod q, we
observe that the Bellcore attack can be successfully applied to the output of
Algorithm 1 if a is always subtracted to S∗, whatever the fault induced on
either S∗p or S∗q . Indeed, if an attacker disturbs the computation of, say, S∗p in
Step 3 then a faulty value S̃∗ is obtained at the beginning of Step 11 and it
satisfies: S̃∗ 6≡ Sp+a mod p and S̃∗ ≡ Sq +a mod q. Secondly, if he corrupts the
exponentiation (a, γ) 7→ aγ in such a way that it outputs a, Algorithm 1 returns
S̃∗ − a mod N . The Bellcore attack can then be successfully applied.

The feasibility of this attack depends on implementation details of Step 11
of Algorithm 1. However, we show that a straightforward implementation is vul-
nerable. We denote by R0 the register containing S∗ and by R1 the register
containing a. A straightforward implementation of Step 11 performs the follow-
ing operations:

11.1. R1 ← (R1)γ mod N [R1 = aγ mod N ]
11.2. R0 ← R0 −R1 mod N [R0 = S∗ − aγ mod N ]
11.3. return R0

Such an implementation makes Algorithm 1 insecure in the KQ-model. Indeed,
the attacker can skip the operation R1 ← (R1)γ mod N , which results in the
faulty output S̃ = S̃∗ − a mod N .

This example demonstrates that the proposed improvement of the Ciet and
Joye countermeasure is not intrinsically secure in the intended KQ-model. Fur-
thermore, this example is particurlarly relevant, as the same one is used by Kim
and Quisquater in [19] to break the original countermeasure.

3.2 Analysis of the Second WISTP Countermeasure

Description. The second countermeasure is an improvement of Giraud’s scheme
[10, 11] that is based on the Montgomery powering ladder. This exponentiation
algorithm works on a pair of intermediate results of the form (mδ−1,mδ) which
allows to check the coherence of the result.

In the following, CRT(Sp, Sq) denotes Garner’s recombination: ((Sp − Sq) ·
(q−1 mod p) mod p)·q+Sq. The improvement of Giraud’s scheme uses a modified
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exponentiation algorithm that is described in Algorithm 2. The whole modified
Giraud’s scheme is described in Algorithm 3.

Algorithm 2 Modified SPA-FA-resistant modular exponentiation [19]

Inputs: m, d = (1, dn−2, · · · , d0)2, N , a
Output: (a+md−1 mod N, a+md mod N)

1. a0 ← m

2. a1 ← m2 mod N

3. for i from n− 2 to 1 do

adi
← adi

· adi mod N

adi ← adi
2 mod N

4. a1 ← (a+ a1 · a0) mod N

5. a0 ← (a+ a0
2) mod N

6. if (Loop Counter i not modified) & (Exponent d not modified) then

return (a0, a1),

else

return error.

Algorithm 3 Modified Giraud’s scheme [19]

Inputs: m, p, q, dp, dq
Output: S = md mod N

1. Initialize a with a random number in Z∗N
2. (S∗p , Sp)← Algo. 2(m, dp, p, a)

3. (S∗q , Sq)← Algo. 2(m, dq, q, a)

4. S∗ ← CRT(S∗p , S
∗
q )

5. S ← CRT(Sp, Sq)

6. S∗ ← m · S∗ + a mod (p · q)
7. S ← S + a ·m mod (p · q)
8. if (S∗ = S) & (Parameters p and q not modified) then

return (S − a− a ·m) mod (p · q)
else

return error.

If a fault is injected, then it breaks the coherence between S and S∗, and
the test in Step 8 returns an error. Otherwise, the correct signature is returned
(see [19] for further details).

Analysis. We observe that if the test (S∗ = S) is skipped then the algorithm
execution carries on as if the test had been successfully performed. Therefore,
if a first fault induces a faulty signature S̃ and a second one skips the test
(S∗ = S̃), an attacker is able to make Algorithm 3 return a faulty signature
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(S̃ − a− a ·m) mod N which enables the Bellcore Attack. The faulty signature
S̃ can be obtained by disturbing either Step 2 or Step 3 of Algorithm 3 without
modifying the values that are checked (e.g. by disturbing the value a1 at Step 4
of Algorithm 2), or by disturbing Step 5 of Algorithm 3.

Note that such an attack has been successfully put into practice by Kim and
Quisquater in [19]. This shows that the proposed countermeasure is vulnerable
in their model and therefore does not reach its goal.

4 Analysis of the FDTC’07 Countermeasures

At FDTC’07, Kim and Quisquater proposed an implementation of CRT-RSA
which is meant to resist both side channel analysis and fault analysis [20]. In
particular, they claimed the security of their proposal versus the KQ-model.
However, we show in this section that their countermeasure is not intrinsically
resistant in this model.

We analyse two variants of this countermeasure. The first one is the original
countermeasure which has been published in FDTC’07 proceedings. The second
one is a patched version that has been presented at the workshop.

4.1 Analysis of the Original FDTC Countermeasure

Description. Similarly to Ciet and Joye’s scheme, the implementation pro-
posed by Kim and Quisquater is based on Shamir’s trick. For two co-prime k-bit
integers t1 and t2, let p∗ and q∗ be defined as p∗ = p · t1 and q∗ = q · t2. The
following values are then computed and stored in the device: d∗p = d mod ϕ(p∗),
d∗q = d mod ϕ(q∗), eti = d−1 mod ϕ(ti), where i = 1, 2. Algorithm 4 describes
the exponentiation algorithm which is used to compute the two CRT components
S∗p and S∗q while Algorithm 5 describes the whole protected CRT-RSA.

Algorithm 4 FA-DPA-resistant modular exponentiation [20]

Inputs: m, d = (dn−1, · · · , d0)2, N , a, r = a−1 mod N

Output: C = md mod N

1. C ← r mod N

2. a0 ← a

3. a1 ← m · a mod N

4. for i from n− 1 to 0 do

C ← C2 mod N

C ← C · adi mod N

5. return C
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Algorithm 5 FA-DPA-resistant CRT-RSA [20]

Inputs: m, p∗, q∗, d∗p, d
∗
q , N , et1 , et2 , t1, t2

Output: S = md mod N

1. Select a random r in Z∗p∗q∗ and compute a = r−1 mod p∗q∗

2. Initialize c1 and c2 with random values

3. S∗p ← Algo. 4(m, d∗p, p
∗, a, r)

4. S∗q ← Algo. 4(m, d∗q , q
∗, a, r)

5. S∗ ← CRT(S∗p , S
∗
q )

6. c1 ← (m · ret1 − (S∗)et1 + 1) mod t1

7. c2 ← (m · ret2 − (S∗)et2 + 1) mod t2

8. return S = S∗ · ac1·c2 mod N

If no fault is injected during the signature computation (i.e. during Steps 3
to 5) then the result of Step 5 is S · r mod N and the results of Steps 6 and 7
are c1 = c2 = 1. This way Step 8 returns the correct signature. If an error is
detected, then we have either c1 6= 1 or c2 6= 1 and Step 8 returns a signature
infected by the random value a (see [19] for further details).

Analysis. The principle of the attack described below is similar to the one
described in Section 3.1. By noticing that we have S∗ ≡ Sp · r mod p and S∗ ≡
Sq · r mod q, we observe that the Bellcore attack can be successfully applied to
the output of Algorithm 5 if S∗ is always multiplied by a in Step 8 whatever the
fault induced on either S∗p or S∗q .

Let us examine the feasibility of this attack according to the implementation
details of Step 8 of Algorithm 5. We denote by R0 the register containing S∗

and by R1 the register containing a. A straightforward implementation of Step
8 performs the following operations:

8.1. R1 ← (R1)c1·c2 mod N [R1 = ac1·c2 mod N ]
8.2. R0 ← R0 ·R1 mod N [R0 = S∗ · ac1·c2 mod N ]
8.3. return R0

If an attacker corrupts one of the two exponentiations (Step 3 or Step 4) and
then skips the operation R1 ← (R1)c1·c2 mod N in Step 8, then Step 8 returns
a faulty value of S∗ multiplied by a which enables the Bellcore attack.

Here again, this example demonstrates a weakness of the proposed coun-
termeasure with respect to the KQ-model. The authors had been informed of
this attack after the printing of the FDTC’07 proceedings, but before the work-
shop [12]. Therefore, they have patched their countermeasure and presented the
following improved version to the workshop.
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4.2 Analysis of the Improved FDTC Countermeasure

Description. Let α be a small random value (less than one byte) and let β be
defined as β = α−1 mod ϕ(N). Algorithm 6 describes the patched version of the
Kim and Quisquater countermeasure presented at FDTC’07.

Algorithm 6 Improved FA-DPA-resistant CRT-RSA

Inputs: m, p∗, q∗, d∗p, d
∗
q , N , et1 , et2 , t1, t2, α, β

Output: S = md mod N

1. Select a random r in Z∗N and compute a = r−1 mod N∗

2. Initialize c1 and c2 with random values

3. b← aβ mod N

4. S∗p ← Algo. 4(m, dp, p
∗, a, r)

5. S∗q ← Algo. 4(m, dq, q
∗, a, r)

6. S∗ ← CRT(S∗p , S
∗
q )

7. c1 ← (m · ret1 − (S∗)et1 + 1) mod t1

8. c2 ← (m · ret2 − (S∗)et2 + 1) mod t2

9. return S∗ · bc1·c2·α mod N

Analysis. By noticing that S∗ ≡ Sp · bβ mod p and S∗ ≡ Sq · bβ mod q, we
observe that the Bellcore attack can be successfully applied to the output of
Algorithm 5 if S∗ is always multiplied by bα whatever the fault induced on
either S∗p or S∗q . Therefore, by disturbing an exponentiation computing either
S∗p or S∗q and by skipping the multiplication (c1, c2, α) 7→ c1 · c2 · α in such a
way that it returns α, the attacker obtains a faulty signature S̃ = S̃∗ · bα mod N
allowing him to recover the secret CRT parameters since S̃ is congruent to Sq
modulo q (resp. to Sp modulo p) but not to Sp modulo p (resp. to Sq modulo q).

The effectiveness of such an attack depends on the implementation of the
multiplication. We can distinguish three different cases depending on the result
location:

1. c1 ← c1 · c2,
2. c2 ← c1 · c2,
3. temp← c1 · c2.

For the two first cases, if the attacker skips the multiplication c1 · c2 then the
value of c1 (resp. c2) remains unchanged. Therefore, if case 1 (resp. case 2) is
used to implement the multiplication, the attacker must disturb the computation
of Sq (resp. Sp) and skip the multiplication c1 · c2. As c1 = 1 (resp. c2 = 1) since
no error has been induced on Sp (resp. on Sq), then the next multiplication with
α will result in outputting α. The attack is thus effective. However, if the third
method is used, the skipping of the multiplication c1 ·c2 will result in outputting
the previous value of temp which is unlikely to be equal to 1. In this case, our
attack cannot be applied.
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This analysis shows that in the KQ-model most implementations of the im-
proved FDTC’07 countermeasure are vulnerable, in other words this counter-
measure is not intrinsically secure.

5 Countermeasure

In this section, we describe a countermeasure which can be used to counteract the
attacks presented in Sections 3 and 4. The proposed countermeasure is indeed
generic and can make any kind of first-order FA-countermeasure resistant to
attacks in the KQ-model, provided it uses a form of redundancy and a checking
(or infective) procedure.

5.1 Description

Firstly, we assume that the FA-countermeasure computes some redundant value
c which is involved in the checking (or infective) procedure. Thus c is expected to
take a given value, denoted c?, otherwise the checking (resp. infective) procedure
returns an error (resp. infects the returned signature).

Our countermeasure is based on a simple mechanism that advantageously
replaces the checking (resp. infective) procedure: given c and its expected value
c?, we perform the check (c = c?) twice while inserting in between a simple but
pivotal statement. The whole procedure is described hereafter.

Procedure 1 Lock - principle

Inputs: Res, S, c and c?

Process: {Res← S} if c = c? and {Res← 0;S ← 0} otherwise

1. if (c 6= c?) erase S

2. Res← S

3. if (c 6= c?) erase Res

4. return Res

Remark 1. Some works have argued that coherence checks using conditional
branches must be avoided for FA security [4, 7, 26]. The argument behind this
assertion is that such a test can be skipped by corrupting the status register. As
we show in Section 5.2, our solution is secure in the KQ-model despite the use
of conditional branches. For the sake of completeness, we propose in Appendix
A an implementation of the Lock procedure that avoid conditional branches.

A solution to strengthen an FA-resistant CRT-RSA based on the Lock proce-
dure follows the series of steps hereafter. First, the result buffer Res is initialized
at 0. Then the FA-resistant CRT-RSA is executed: from a message m and some
parameters P it outputs a signature S = md mod N and a couple of values (c, c?)
which depends on the FA-countermeasure. Afterward, the Lock procedure de-
scribed in Procedure 1 is executed and Res is eventually returned. If c = c? then
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Lock processes Res ← S and the computed signature is returned. Otherwise,
the Lock procedure handles the signature erasure.

The overall RSA implementation resistant is described in Algorithm 7.

Algorithm 7 KQ-attack resistant RSA

Inputs: m, P
Output: md mod N

1. Res← 0

2. (S, c, c?)← FA-Res-CRT-RSA(m,P)

3. Lock(Res, S, c, c?)

This generic solution can be applied to any FA-countermeasure based on
redundant computation and it is resistant to the KQ-attack as shown in the
next section.

5.2 Security Analysis

In the KQ-model (see Section 2), a first fault is dedicated to the corruption of
the RSA computation and a second fault aims to avoid the erasure of the faulty
signature by skipping some operations. According to this model, we assume that
an attacker can:

– inject a fault in Step 2 of Algorithm 7 producing a faulty signature S̃ and a
faulty pair of checking values (c̃, c̃?) such that c̃ 6= c̃? (this results from the
soundness of the first-order countermeasure that is used),

– skip a set of contiguous operations of Algorithm 7.

We demonstrate hereafter that the skipping of any set of contiguous operations of
Algorithm 7 cannot prevent the Lock procedure from erasing the faulty signature
S̃ (or returning an unexploitable result) while the faulty checking values c̃ and
c̃? are different.

Let us first assume that the adversary skips the entire Step 2 of Procedure 1.
One can check that in this case Res holds its initialization value and Algorithm
7 then returns an unexploitable result.

On the opposite, if Step 2 of Procedure 1 is not entirely skipped, then either
all the previous operations or all the following operations are properly executed
since the set of skipped operations is contiguous. As a result, either Step 1 or
Step 3 of Procedure 1 is executed which ensures the signature erasure in case of
fault detection (i.e. if c̃ and c̃? are different).

To conclude, any KQ-attack implies the return of an unexploitable output
and the attacker gains no sensitive information.
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5.3 Application

In this section, we show how to apply the generic countermeasure described is
Section 5.1 to Ciet and Joye’s scheme [7] and to Giraud’s scheme [11]1. For
this purpose, we have to modify these schemes in such a way that they output a
checking value c and its expected value c?. They can then be used in replacement
of the function FA-Res-CRT-RSA in Algorithm 7.

Modified Ciet and Joye’s Scheme. We describe hereafter the modified Ciet
and Joye’s scheme that includes the countermeasure proposed in Section 5.1.

Algorithm 8 New Modified Ciet and Joye’s scheme

Inputs: m, p∗, q∗, dp, dq, I
∗
q , N

Outputs: S = md mod N , c = (c1, c2), c? = (c?1, c
?
2), r1, r2

1. Initialize (c1, c2) and (c?1, c
?
2) with different arbitrary values

2. S∗p ← mdp mod p∗

3. c2 ← mdq mod ϕ(r2) mod r2

4. S∗q ← mdq mod q∗

5. c1 ← mdp mod ϕ(r1) mod r1

6. S∗ ← S∗q + q∗ · I∗q · (S∗p − S∗q ) mod p∗

7. c?1 ← S∗ mod r1

8. c?2 ← S∗ mod r2

9. S ← S∗ mod N

10. return (S, (c1, c2), (c?1, c
?
2))

If a fault injection implies (c1, c2) 6= (c?1, c
?
2) (i.e. if the signature computation

is corrupted), then one can check that it is impossible to force (c1, c2) = (c?1, c
?
2)

by skipping a set of contiguous operations in Algorithm 8. Indeed, (c1, c2) and
(c?1, c

?
2) are initialized with different values in Step 1 and they remain different

until the end of the algorithm whether the different steps are executed or not.
The only way one could force (c1, c2) = (c?1, c

?
2) would be by skipping Steps 1 to

8 while assuming that the default values (before Step 1) of the buffers storing
(c1, c2) and (c?1, c

?
2) are the same. This would imply that the RSA computation

is not performed which would prevent any attack.

Modified Giraud’s Scheme. We describe hereafter the modified Giraud’s
scheme that includes the countermeasure proposed in Section 5.1. The Giraud’s
scheme [11] is based on the Montgomery powering ladder [18] that from m, p and
dp returns the pair (mdp−1 mod p,mdp mod p). The coherence is checked by ver-
ifying the relation between the two returned values. Moreover, in order to avoid
attacks disturbing the exponent, the modulus or the loop counter some checking
1 It can also be straightforwardly applied to the implementation described in [19] since

the FA-countermeasure is very similar to the one presented in [7].
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information is computed. Let us denote by CI this checking information and by
CI? its expected value. Instead of checking CI = CI? at the end of the exponen-
tiation as in [11], (CI,CI?) is returned as well as (mdp−1 mod p,mdp mod p).
We denote by MME the modified Montgomery powering ladder.

Algorithm 9 summarizes the modified Giraud’s scheme.

Algorithm 9 New Modified Giraud’s scheme

Inputs: m, p, q, dp, dq
Outputs: S = md mod N , c = (S,CIp, CIq), c

? = (S∗, CI?p , CI
?
q )

1. Initialize (CIp, CIq) and (CI?p , CI
?
q ) with different arbitrary values

2. (S∗p , Sp, CIp, CI
?
p )← MME(m, dp, p)

3. (S∗q , Sq, CIq, CI
?
q )← MME(m, dq, q)

4. S∗ ← CRT(S∗p , S
∗
q )

5. S ← CRT(Sp, Sq)

6. S∗ ← S∗ ·m mod N

7. return
(
S, (S,CIp, CIq), (S

∗, CI?p , CI
?
q )

)
In [11], it is not detailed how to compute the checking information CI on

the loop counter, on the exponent and on the modulus. In [10], it is suggested
to double the loop index and to compute a checksum for the exponent and the
modulus. We do not give further details here since it is not our purpose. However,
we mention that for our countermeasure to be valid, it is important that if a
fault injection disturbs either the loop index or the exponent or the modulus,
the attacker cannot force CI = CI? by skipping some operations.

On the other hand, if one injects a fault that does not affect the loop counter
nor the exponent nor the modulus, then it breaks the relation between the S∗p
and Sp (resp. S∗q and Sq) in a way that is unpredictable for the attacker [11].
This makes it impossible for the attacker to recreate this relation – and hence
to force c = c? – by skipping some operations.

6 Conclusion

In this paper, we have analysed the security of the second-order FA-counter-
measures published at WISTP’07 and FDTC’07. We have shown that these
countermeasures are not intrinsically resistant with regard to the corresponding
second-order fault model. We have also proposed a new method to protect CRT-
RSA against this particular class of second-order fault attacks which induces a
very small overhead compared to the traditional first-order FA-countermeasures.
Protecting the CRT-RSA against a wider class of second-order fault attacks is
still an open issue. This problem requires all our attention in order to antici-
pate future evolutions in practical fault induction which could follow the recent
publication of the first practical application of a second-order fault attack.
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Ç. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages 291–302.
Springer, 2002.

19. C. H. Kim and J.-J. Quisquater. Fault Attacks for CRT Based RSA: New At-
tacks, New Results, and New Countermeasures. In D. Sauveron, K. Markantonakis,
A. Bilas, and J.-J. Quisquater, editors, Information Security Theory and Practices
– WISTP 2007, volume 4462 of Lecture Notes in Computer Science, pages 215–228.
Springer, 2007.

20. C. H. Kim and J.-J. Quisquater. How Can We Overcome Both Side Channel
Analysis and Fault Attack on RSA-CRT? In L. Breveglieri, S. Gueron, I. Koren,
D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and Tolerance in Cryptog-
raphy – FDTC 2007, pages 21–29. IEEE Computer Society, 2007.

21. O. Kommerling and M. Kuhn. Design Principles for Tamper Resistant Smartcard
Processors. In the USENIX Workshop on Smartcard Technology (Smartcard ’99),
pages 9–20, 1999.

22. D. Naccache, P. Nguyen, M. Tunstall, and C. Whelan. Experimenting with Faults,
Lattices and the DSA. In S. Vaudenay, editor, Public Key Cryptography – PKC
2005, volume 3386 of Lecture Notes in Computer Science, pages 16–28. Springer,
2005.

23. G. Piret and J.-J. Quisquater. A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and Khazad. In C. Walter, Ç. Koç, and
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A An Implementation of the Lock Procedure Without
Conditional Branches

Let us introduce few notations. The bit-size of the checking value c is denoted
by k and the radix bit-size of the microprocessor is denoted by w. The ith w-bit
digit of a buffer X is denoted by X[i] and the size of the RSA modulus in radix
2w is denoted by l. Our solution makes use of a logical function M : Fk2 → Fw2
that satisfies:

M : X 7→
{

(1, 1, · · · , 1) if X = 0
(0, 0, · · · , 0) if X 6= 0 , (1)
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For a fast implementation of M, we use a look-up table LUT of 256 w-
bit words storing the F8

2 → Fw2 version of M. Namely LUT [0] = 2w − 1 and
LUT [i] = 0 for every i ∈ {1, · · · , 255}.

The implementation of M is described in Algorithm 10.

Algorithm 10 An implementation of function M
Inputs: X ∈ Fk2
Output:M(X) ∈ Fw2

1. Res← 2w − 1

2. for i = 0 to k/w − 1 do

3. for j = 0 to w/8− 1 do

4. Res← Res ∧ LUT [(X[i]� 8j) ∧ 255]

5. return Res

The implementation of the Lock procedure without conditional branches is
described hereafter.

Procedure 2 Lock

Inputs: Res, S, c and c?

Process: {Res← S} if c = c? and {Res← 0;S ← 0} otherwise

1. mask ←M(c⊕ c?)
2. for i = 0 to l − 1

3. S[i]← S[i] ∧mask
4. Res← S

5. mask ←M(c⊕ c?)
6. for i = 0 to l − 1

7. Res[i]← Res[i] ∧mask
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